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Performance of Discrete Wavelet Transform (DWT) Based 
Speech Denoising in Impulsive and Gaussian Noise 

 
 
 
 
 

 

 

 

Abstract 
 

The aim of this paper is to investigate the effect of impulsive noise on the performance 

of the speech denoising using Discrete Wavelet Transform (DWT). The employed model of 

impulsive noise consists of Bernoulli distributed impulse arrivals and Gaussian distributed 

amplitudes of the impulses.  

In this study DWT algorithm has been applied for the suppression of ambient noise. 

This method is based on thresholding the wavelet coefficients, that can be done by standard 

deviation method for each frame by level dependent thresholding using different types of 

threshold (semisoft, hard soft and super soft) in channel contains  impulsive and Gaussian 

noise together.  

The results of simulation indicate that using discrete wavelet transform in speech 

denoising application provides a good quality and semisoft threshold gives the best 

performance. 

 

 

 

 ةـــــــلاصـالخ
علأ  تميرأت تيلرأت الوووأ ا ب سأتخدا   (Impulsive)الهدف من هذا البحث هو دراسة تأثيرر الوووأ ا الضبوأ 

لليمأ  الضبوأرة  لتميرأت  (Gaussian)تحورت المورجة الميطعة.  تأ  اسأتخدا  توعرأر برضأول  للضبوأ ا الأواردو مأر توعرأر 
 المودرت للووو ا الضبو .
استخدا  خوارعمرة تحورأت المورجأة الميطعأة لتيلأر  الوووأ ا.  تعتمأد هأذه الخوارعمرأة علأ   ت  ف  هذه الدراسة

لأر  لكأت يب سأتخدا  ت (Frame)طة طررية الاضحراف المعر ري لكت ميطر  والت  رمكن أ ضج عه  بوستيلر  عوامت المورجة 
حرث ت  اسأتخدا  أضأوا    (Level Dependent Thresholding)                                                    مرحلة

 Semisoft, Hard soft and Super)                                                                       مختلفة من التيلر 

soft)   ف  قض و تتثلف من الووو ا الضبو  و الووو ا(Gaussian)  . ًمع 
فأ  تطبريأ ا إعالأة الوووأ ا مأن  الميطعأة استخدا  تحورت المورجأة إن إل البحث  تشرر الضت ئج المحصلة ف  هذا

 أعط  أفوت الضت ئج. (Semisoft)والتيلر   الصوا قد أعط  ضت ئج جردو
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In many speech processing applications, speech has to be processed in the presence of 

undesirable background noise. One of the most important branches of speech processing is 

speech enhancement which focuses on finding an optimal estimate of clean speech from noisy 

speech signal. 

Application areas include the reduction of noise for listening purpose, the preprocessing 

of speech coding or recognition systems. Noise reduction or speech enhancement has always 

been a non-trivial problem for communication engineers. The total removal of background 

noise is practically impossible and distortion of the speech content is inevitable 
[1]

. 

The discrete wavelet transform distinguishes itself in the analysis of non-stationary 

signals such as speech. The wavelet shrinkage is a powerful tool in denoising signal corrupted 

by noise. Speech denoising using Discrete Wavelet Transform (DWT) is studied in 
[2-5]

.  

In the real wireless communications scenarios besides from Additive White Gaussian 

Noise (AWGN) there are impulsive man-made noises from ignition of automobiles or other 

sources such as power transport lines which affect the performance of the system.  The 

modeling of impulsive noise has been carried out for years 
[6-8]

. 

In this study AWGN and Bernoulli-Gaussian model for impulsive noise are employed.  

DWT using different types of thresholding will also be considered.   

 

2. Impulsive Noise Model 
 

The model discussed in the following is a Bernoulli-Gaussian (BG) model of an 

Impulsive Noise (IN) process. The random time of occurrence of the impulsive is modeled by 

a Bernoulli process b(k), where k is the time point and b(k) is a binary-valued process that 

takes a value of “1” with a probability of   and a value of “0” with probability of (1- ). The 

amplitude of the impulsive is modeled by a Gaussian process g(k) with mean zero and 

variance 
2 . Each impulsive is shaped by a filter with the impulsive response h(k). The 

Bernoulli-Gaussian model of impulsive noise is illustrated in Fig.(1). The IN can be 

expressed as 
[8]

: 

 







1P

0i

)ik(b)ik(g)i(h)k(n  …………………………………………………. (1) 

 

where: P is the length of the impulsive response of the impulsive shaping filter. 

In a Bernoulli-Gaussian model the probability density function (pdf) of impulsive noise 

n(k) is given by 
[8]

: 

 

))k(n(pdf))k(n()1())k(n(pdf N

BG

N  ………………………………….. (2) 

 

where: ))k(n(  is the Kronecker delta function and  
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is the probability density function of a zero Gaussian process. 

 

 

 

 

 

 

 

 

 

 

Figure (1) Impulsive noise model 

 
The value of   is a measure of impulsivity of the impulsive noise. By decreasing   the 

noise becomes more impulsive. Typical values for   used in the simulations are =1, 0.5, 

0.1, 0.01, 0.001, and 0.0001. In the real world there is no impulsive noise only but a mixture 

of impulsive noise and AWGN. Accordingly, as shown in Fig.(2) in the simulation both IN 

and AWGN are considered. In this regard we also define a parameter that controls the power 

ratio of the AWGN part and the “impulsive” part of the total noise as 
[8]

: 

 

)component_AWGN(power

)component_impulsive(power
  …………………………………………. (4) 

 

with the definition of  , the noise impinging the system consists of IN and AWGN with a 

manageable ratio of power. The whole set-up of the simulation is illustrated in Fig.(2). 

 

 

 

 
 

 

 

 

 

  

 

Figure (2) Block diagram of the simulation set-up 
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3. Discrete Wavelet Transform (DWT) 
 

The general form of an L-level DWT is written in terms of L detail sequences, 

)k(d j forj=1,2,….,L, and the L-th level approximation sequence, )k(cL as follows 
[9]

: 

 

 



k

L

1j k

jjLL )t()k(d)t()k(c)t(f ………………………………………. (5) 

 

where: )t(L is the L-th level scaling function and )t(j for j=1,2,…,L are wavelet function 

sequences for L different levels. 

In order to work directly with the wavelet transform coefficients, the relationship 

between the detailed coefficients at a given level in terms of those at previous level is used. In 

general, the discrete signal assumes the highest achievable approximation sequence, referred 

to as 0-th level scaling coefficients. The approximation and detail sequences at level j are 

given by 
[9]

: 

 

 

m

jo1j )m(c)k2m(h)k(c  …………………………………………………. (6) 

 

and 

 

 

m

j11j )m(c)k2m(h)k(d ………………………………………………….. (7) 

 

Eqs. (6) and (7) state that approximation sequence at higher scale (lower level index), 

with the wavelet and scaling filters, ho(t) and h1(t) respectively, can be used to calculate the 

detail and approximation sequences (or discrete wavelet transform coefficients) at lower 

scales. 

The scaling coefficients are related to wavelet coefficients by: 

 

  )nN(h1)n(h o

n

1  …………………………………………………………. (8) 

 

where: N is a finite odd length of quadrature mirror filter.   

Let the function f(t) be a discretely sampled function. The decomposition of f(t) in the 

wavelet basis is done by recursive filtering with Ho and  H1 with down-sampling of factor of 

two in each set. A lower resolution signal is delivered by low pass filtering with half-band 

low pass filter Ho followed by down-sampled by two. The higher resolution (or detail) is 

computed by a high pass filter H1 followed by down- sampling by two 
[10]

. 

The coefficients ho(n) and h1(n), used to construct the set of scaling and wavelet basis, 

are low pass (Ho) and high pass (H1)FIR filter coefficients respectively. Ho={ho(n)} and 

H1={h1(n)}. According to the Equation (8), H1 is the reverse of Ho. 
[11]
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Figure (3) shows filter bank of discrete wavelet transform. The symbol      is a down-

sampler (decimator) that takes a signal x(n) as input and produces an output of y(n)=x(2n), 

which means half of the data is discarded 
[12]

. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

Figure (3) Filter bank of discrete wavelet transform 

 

3-1 Wavelet Reconstruction 

The wavelet reconstruction process consists of upsampling and filtering. In the 

upsampling process, the input signal is stretched twice its original length and zeros are 

inserted in the even numbered samples.  

The inverse discrete wavelet transform is illustrated in Fig.(4). The j scale coefficients 

sequence cj is up-sampled, by doubling its length (inserting zeros between each term), then 

convoluting it with the scaling coefficients h(n), the same is done to the j level wavelet 

coefficient dj sequence and the results are added to give the j+1 level scaling function 

coefficients 
[12]

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4) Two stage two-band tree signal synthesis tree of IDWT 
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3-2 Wavelet Thresholding 

Donoho proposed a powerful approach for noise reduction .It is based on the 

thresholding of the wavelet coefficients. Let y be a finite length observation sequence of the 

signal x that is corrupted by zero-mean white Gaussian noise (G) and impulsive noise (I) 
[1]

: 

 

y = x+G+I ……………………………………………………………………... (9) 

 

or,             y = x+n ………………………………………………………………………... (10)                                                   

 

where: n=G+I 

Let W(.) and W
-1

(.) denote the forward and inverse wavelet transform operators. Let 

D(., ) denote the thresholding operator with threshold  . The practice of thresholding 

denoising consists of the following three steps: 

 

1.               Y=W(y) ………………………………………………………………………. (11)                                            

 

2.              X
~

=D(Y,  ) …………………………………………………………………... (12)    

 

3.               x = W
-1

( X
~

) …………………………………………………………………... (13)    

 

where:  X
~

 represents the wavelet coefficients after thresholding. 

In this paper the following types of threshold are introduced: 

 

3-2-1 Hard Soft-Thresholding 

The hard soft-thresholding is given by 
[13]

: 

 










|Y|Y

|Y|Y
),Y(D  ………………………………………………….. (14)                                    

 

where:   is the attenuation factor. 

 

3-2-2 Super Soft-Thresholding  

Super soft-thresholding is given by 
[7]

: 

 

 












YY

Y1)Y(signY
),Y(D …………………………………. (15)    

 

where:   0  is the threshold value 

            10    is the attenuation factor. 
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3-2-3 Semisoft-Thresholding  

The semisoft-thresholding function is given by 
[5]

: 

 

 





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






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
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2

21

12

12

1

21

YY

Y
Y

)Ysgn(

Y0

),,Y(D …………………….. (16)                         

 

where: D(Y, 21, ) represents the output value after thresholding the wavelet coefficients 

and 21 and   denote lower and upper threshold respectively. Thresholding value 1  is 

determined by Equation (18) and 2  is given by: 

 

2 = 2 1 …………………………………………………………………….. (17) 

 

 

4. Discrete Wavelet Transform Based Denoising Technique  
 

In this study the level dependent threshold is based on thresholding detailed coefficients 

for each level is used. Figure (5) shows the block diagram of speech denoising using level 

dependent threshold 
[14]

. 

 

 

 
 

 

 

 
Figure (5) block diagram of speech denoising using level dependent threshold 

 
The noisy speech signal is sectioned into frames (typical value of frame length is 256 

samples). Then, the discrete wavelet transform is taken for noisy speech, after that the wavelet 

transform coefficients are filtered using different types of threshold (that is discussed in 

previous section). The threshold value ( ) can be determined by [14]: 

 

jj Nlog2  ………………………………………………………………. (18)                                                                                            

 

with,        
6745.0

)d(MAD j

j   ………………………………………………………………… (19)                        

 

where: MAD(dj) is median absolute deviation of detail coefficients for each level, and Nj  is 

the data length for each level. 
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Finally, the inverse discrete wavelet transform is used to recover the clean speech signal. 

This procedure is repeated for each frame. 

 

5. Objective Measures 
 

The frequency signal-to-noise ratio (SNR) is the most widely used objective measure of 

speech quality. The SNR measure in frequency domain for k
th

 frame is defined by 
[15]

: 

 

 






n

2

kk

n

2

k

10k

)n(X
~

)n(X

)n(X

log10SNR    [dB] …………………………………. (20)                                                                  

 

where: Xk(n) is the DFT of the k
th

 frame of the clean speech,  and )n(X
~

k is the DFT of the 

corresponding frame of the denoised speech signal. These SNRk for different frames are 

averaged to give the over all SNR.  

The SNR enhancement (in dB) is obtained by: 

 

SNR Enhancement= SNRo-SNRi ………………………………………… (21)          

 

where: SNRo represents the output signal to noise ratio, and iSNR represents the input signal 

to noise ratio. 

 

6. Simulation Results 
 

Simulations of speech denoising using DWT and different types of thresholding over 

AWGN plus IN channel were carried out. Various values of SNRi from -10 dB to 10 dB is 

used for performance evaluation. Various impulsivities ( ) and power of impulsive noise 

with respect to AWGN (i.e.,  ) are considered and the SNR performance are evaluated. The 

effect of different impulsive noise sources is simulated by changing the impulse-shaping filter 

of the IN model. 

The sentence that is used in the recording is “الحمد لله رب الع لمرن”. The data is sampled at 

8KHz using a computer sound blaster (in normal room conditions). The data samples are 

quantized into 16 bit. Figure (6) shows the waveform of the clean speech signal. 
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Figure (6) The waveform of the clean speech signal 

 
6-1 Filter Shape of The Impulse Noise {h(n)} 

In order to investigate how the shape of the filter h(t) affects the SNR enhancement of 

the denoising algorithm over the impulsive noise channel, two different impulse-shaping 

filters. The filter hhpf(t) is a High Pass Butterworth filter with cutoff frequency 4KHz. The 

second filter hlpf(t) is a Low Pass Butterworth filter with a cutoff frequency 4KHz. 

Figure (7) shows the SNR enhancement results using hard soft-thresholding over 

impulsive noise only db6, =0.01 and = 0.1. This figure shows the effect of the impulse-

shaping filter on the SNR enhancement. It is seen that for the impulse filter hlpf(t) provides a 

worse SNR enhancement than hhpf(t) for low iSNR (from –10 to 0 dB). In this study, all the 

results that is discussed later depends on hlpf(t) filter. 

 

 
Figure (7) SNR Enhancement results using DWT based hard soft-thresholding 
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6-2 Hard soft-thresholding Results 

Figure (8) shows the SNR enhancement results using hard soft-thresholding with 

different types of wavelet (db4, db6, db8, db10 and db12) for =0.1.  From this figure, all 

Duabechies types give approximately the same results. 

 

 

Figure (8) SNR Enhancement results using DWT based hard  
soft-thresholding, for =0.1 

 
Figure (9) shows the effective of the impulsivity of noise on the performance of SNRo 

using db4 (only effect of impulse noise is taken). Form this figure, some points can be 

noticed: 

 For given , when the performance of SNRo remains the same for all values of SNRi, this 

mean that no effect of noise on the speech signal (that is clear for =0.0001 and 0.001). 

 When   increases, it approaches to Gaussian noise.   

 For =1, the impulsive noise appears to be the same of Gaussian noise. 

 

 

Figure (9) The influence of impulsive noise on the performance  
of SNRo using db4 
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Figure (10) shows the SNR enhancement results using hard soft-thresholding for 

=0.1 and db6 with different values of   (  =0, 0.1, 1, 5 and 10).  From this figure, when 

 =0 only effect of Gaussian noise is appeared. When  is less than 1, the impulsive noise is 

slightly affects the SNR enhancement. When  is increased, the SNR enhancement is 

decreased. 

 

 

Figure (10) SNR enhancement results using DWT based hard  
soft- thresholding with db6 and =0.1 

 
Figure (11) shows the SNR enhancement versus   for different values of   and 

SNRi=5 dB. From this figure, two points can be noticed: 

 When  =0 no effect of impulsive noise on the results (only Gaussian noise exist), 

therefore changes the values of  does not affect the SNR enhancement. 

 For given  , when    increases, SNR enhancement is decreased. 

 

 

Figure (11) SNR enhancement results using hard soft-thresholding  
with db6   and different values of   


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All previous results are obtained for =0.1. Figure (12) shows SNR enhancement 

results using DWT based hard soft-thresholding for different value of   and various values of 

SNRi when db6,  =1, and =0.1 are used. From this figure, select   gives the best results 

depends on SNRi. For low SNRi select values of   near 0 (i.e. 0.1, 0.2 and 0.3) gives the best 

SNR enhancement, also changes   slightly effect on SNR enhancement. While for high SNRi 

(more than 0 dB) certain value of gives the best SNR enhancement, for examples, for 

SNRi=2 dB the best choice of   is 0.1, for SNRi=4 dB the best choice of  is 0.4 and for 

SNRi=10 dB the best choice is 0.8. 

 

 
 

Figure (12) SNR enhancement results using DWT based hard  
soft-thresholding for different value of when db6,  =1, and =0.1 are used 

 
6-3 Super soft-thresholding Results 

Figure (13) shows the SNR enhancement results using super soft-thresholding with 

different types of wavelet (db4, db6, db8, db10 and db12) for =0.1,  =1 and =0.1.  For 

low SNRi, db12 gives the best results and for high SNRi, db4 gives the best results. It can be 

seen from this figure that changing in using duabechies order affects slightly on the SNR 

enhancement except for SNRi=0, 2 and 4 dB. 

Figure (14) shows SNR enhancement results using DWT based super soft-thresholding 

for various value of   and different values of SNRi when db6,  =1, and =0.1 are used. 

From this figure, selection of   gives the best results depends on SNRi. For low SNRi (less 

than 0 dB) selecting any value of   gives approximately the same performance. While for 

high SNRi (more than 0 dB) certain value of gives the best SNR enhancement, for 

examples, for SNRi=2 dB the best choice of    is 0.1, for SNRi=4 dB the best choice of  is 

0.4 and for SNRi=10 dB the best choice is 0.8 and so on. 

 

 

 
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Figure (13) SNR Enhancement results using DWT based super  
soft-thresholding, for =0.1,  =1 and =0.1 

 

 
 

Figure (14) SNR enhancement results using DWT based super  
soft-thresholding for different value of   and different values of SNRi  

when db6,  =1, and =0.1 are used 

 
Figure (15) shows the SNR enhancement for various values of   and different values 

of   when SNRi=5 dB. When   increases, worst SNR enhancement can be obtained.  For 

=0 no effect of impulsive noise on the SNR enhancement.  For  =0 effect of impulsive is 

negligible (energy of impulsive noise=0), the variation of SNR enhancement is not from 

impulsive but from Gaussian channel. 

 
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Figure (15) SNR enhancement results using super soft-thresholding with 
different values of   and   when db6 and =0.1 are used 

 
6-4 Semisoft-thresholding Results 

Figure (16) shows the effect of the impulsivity of noise on the performance of SNRo 

using db6 (only effect of impulse noise is taken). The same discussion for Fig.(9) is 

considered here. 

Figure (17) shows the SNR enhancement for DWT based semisoft-thresholding using 

various values of , different values of   and SNRi=5 dB. Comparing these results with hard 

soft-thresholding, then semisoft-thresholding gives more SNR enhancement than super     

soft-thresholding. 

 

 

Figure (16) The influence of impulsive noise on the performance  
of SNRo using db6 
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Figure (17) SNR enhancement results using semisoft-thresholding with 
different values of   and   when db6 and =0.1 are used 

 
6-5 Discussion of Results 

Figs.(18), (19), (20), (21), and (22) show comparison results for different types of 

thresholding (semisoft, hard soft, and super soft ) using db6, SNRi=5 dB and =0.1 for  =0, 

0.1, 1, 5, 10 respectively. From these figures some points can be noticed: 

 Semisoft gives the best SNR enhancement. 

 When  has large value (greater than 1) and <0.5 all methods of thresholding are failed 

to suppress noise from the speech. 

 Hard soft threshold gives the worst results compared with other thresholds.  

 When   increases, the difference between types of thresholding is decreased. 

 

 
 

Figure (18) Comparison results between different types of thresholding  
using db6,  =0 and SNRi=5 dB are used 
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Figure (19) Comparison results between different types of thresholding  
using db6,  =0.1, and SNRi=5dB are used 

 

 
 
 

Figure (20) Comparison results between different types of thresholding  
using db6,  =1and SNRi=5 dB are used 
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Figure (21) Comparison results between different types of thresholding  
using db6,  =5 and SNRi=5 dB are used 

 

 

 
Figure (22) Comparison results between different types of thresholding  

using db6,  =10 and SNRi=5 dB are used 
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7. Conclusion 
 

The following is a summary of the conclusion remarks. 

The performance of speech denoising algorithm in the impulsive noisy environment 

depends on the impulsivity of the noise and its power relative to the AWGN. 

For =0 there is no affect of impulsive noise on the SNR enhancement, when   

increases (more than 0 and less than 1), the value of SNR enhancement is decreased. For =1 

impulsive noise appears the same AWGN and gives the same effect on the SNR enhancement. 

For  =0 only Gaussian noise exist. When   increases, SNR enhancement is decreased. 

Hard soft and super soft-thresholding depends on value. The selection of    depends on 

SNRi. It can be seen from Figs.(16) and (19) for low SNRi selection the values of   near 0 

(i.e. 0.1, 0.2 and 0.3) gives the best SNR enhancement. While for high SNRi (more than 0 dB) 

certain value of gives the best SNR enhancement. 

DWT gives good performance for obtaining clean speech signal from impulse and 

AWGN channel. Semisoft threshold gives the best SNR enhancement over both super soft 

and hard soft threshold. 
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