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CFD Simulation of Incompressible Steady 2-D Laminar and 
Turbulent Flows Over a Flat Plate Using Two Equation 

Turbulence Model 
 
 
 

 
 
 
 
 

 

Abstract 
 

The aim of the present work is to develop the computer program to simulate the steady 

two-dimensional laminar and turbulent flows. The finite volume method is used to solve the 

flow governing equations numerically. The Navier-Stokes equations are solved for the 

velocity flow field. Since all the variables are stored at the center of each control volume. 

The correct velocity field is then used to solve k-epsilon equations. The eddy viscosity, that 

represents the influence of turbulence on the mean flow field, can be calculated from those 

values of k and epsilon obtained. The boundary layer on a flat plate is employed as a test 

case because it is one of the standard famous problems for the validation of CFD program 

and a Reynolds number is chosen at 1400 as a case study. It is found that the computed 

results are in good agreement with the available published data. Moreover, the governing 

equations are solved by using body-fitted coordinates system so that this computer program 

can be developed further for the simulation of laminar and turbulent flows over any object 

of complex geometry in the future. 

 

 

 

 ةـــــــلاصـالخ

مستقر  واضطرابيالهدف من الدراسة الحالية هو تطوير برنامج حاسوبي معد سلفا،لغرض نمدجة جريان طباقي 

تم أيجاد 0المعادلات الرياضية المستخدمة عدديا لالمحددة لحفي الدراسة الحالية طريقة الحجوم  استخدمت ثنائي البعد

 استخدامهاالطبقة المتاخمة على صفيحة مستوية تم 0الابعاد ستوكس الثنائية-سرع الجريان بواسطة حل معادلات نافير

في 0لتحقيق دقة النتائج حيث تم مقارنة النتائج المستحصلة مع نتائج سابقة وأبدت توافق جيد في النتائج اختباركحالة 
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CFD simulation of fluid mechanics flow problems covers many important applications 

in mechanical engineering. Understanding, the flow behavior is therefore important for the 

design and development of engineering applications. In fluid dynamics, the flow behavior is 

governed by the continuity equation, the Navier-Stokes equations, the energy equation and the 

equation of state. For incompressible flow, where the free-stream Mach number is lower than 

0.5, the effects of temperature variation on fluid properties are very small, so that the fluid 

properties can be practically treated as constant. Therefore, the continuity and Navier-Stokes 

equations are adequate for the prediction and study of viscous incompressible flow. To study 

turbulent flow, the continuity and Navier-Stokes equations can be solved directly by any 

numerical method. However, the solution requires the large number of grid points, volumes, 

elements or other form of sub-domain to capture the characteristics of turbulent flow. In 

general, the turbulent flow is predicted and studied on the basis of mean quantities. By this 

way, the continuity and Navier-Stokes equations are time-averaged. From the other hand, 

turbulence models have been developed and widely used with success over a wide range of 

engineering applications 
[1]

. 

The current work is aimed to develop the computer program to simulate the steady   

two-dimensional turbulent flow using two-equation turbulence model.  

 

2. Mathematical Analysis 
 

Incompressible steady flow is governed by the continuity equation and the           

Navier-Stokes equations where all the fluid properties are constants. For turbulent 

incompressible flow, these governing equations are essentially time-averaged and the 

resulting solution is the mean flow field. This technique gives rise to the additional unknown 

terms which cause an important problem. This problem can be solved using a two equation 

turbulence model 
[2]

. The following equations are used in the analysis:  

 

2-1 Continuity Equation 
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where,   is the fluid density and ju  is the flow velocity. 

 

2-2 Navier-Stokes Equations 
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where, P  is the pressure, and ijt  and ij  are the laminar and turbulent flow shear stresses 

respectively with the following definitions 
[3]

: 
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where,   is the fluid dynamic viscosity and ij  is the Draic delta function where, 0ij  for  

ji   and 1ij  for ji  , and the turbulent shear stress is defined by 
[4]

: 
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where, t  is the eddy viscosity and k  is the kinetic energy of turbulence. 

 

2-3 Two-Equation Turbulence Model  

The formula of this model is given by 
[5]

: 
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where,  is the model constant,   is the turbulence damping function, and   is the 

dissipation rate of k. 

The Transport Equations for k  and    can be determined from 
[6]

: 
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where, k  is the model constant and G is the additional turbulence term. 
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where, (  , 1c , 2c ) are the model constants, and ( 1f , 2f ) are the damping functions, and 

E  is the additional term. 

For the k  turbulence model 
[7]

, the model constants, damping functions and 

additional terms are provided as follows: 
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11.0 , 1.1k  , 27.1 , 42.1c 1  , 0.2c 2   …………………………. (8) 
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where,       
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3. Numerical Scheme 
 

The finite volume method 
[8]

 is used numerically to solve the governing equations which 

can be written in a general form as follows: 
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where,   is the general dependent variable,   is the effective diffusion coefficient, and 
S  is 

the source/sink term of  . To simulate the external flow past a body of complex shape, the 

general form of the governing equations is essentially transformed from the physical domain 

),( yx  into the computational domain ),(   as in the following equation 
[9]

: 
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Using the finite volume method, the computational domain is divided into a number of 

control volumes. The transformed equations can be integrated as follows: 

 

   





























































P

n

s

e

w

n

s

e

w

S)J(
J

J
)V()U(

  ………………………… (18) 

 

where, 

PS  is the average value of 

S  at the center P of each control volume, and (e ,w ,n ,s) 

are the east, west, north and south faces of each control volume. The convection terms are 

approximated by the first-order upwind differencing scheme and the diffusion terms are 

estimated by the second-order central differencing scheme. Therefore, the standard form of 

the finite volume equation can be obtained as: 
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The continuity equation is not solved directly with other governing equations. The     

p -equation is solved instead to obtain the pressure correction p  and its value is used to 

correct the values of pressure and velocities to satisfy the conservation law of mass. The     

p -equation can be written in a standard form as follows 
[10]

: 
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where, 
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*U , *V  are calculated from the resulting velocities of the Navier -Stokes equations, whereas 
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where, 
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However, the current grid system is technically rather complicated for programming and 

requires a large amount of computer storage. This point becomes clear when the computer 

program is developed further for real-world applications. The collocated grid system is 

employed in this work so that all the variables are stored at the center of each control volume 

gradient 
[11]

.  

In the current work, the boundary layer on a flat plate is chosen as a test case. 

Physically, the pressure field of this flow is constant and known throughout the flow domain. 

Therefore, the pressure correction p  obtained is used to correct the velocities only, not to 

correct the pressure because the pressure itself is already known and constant.  

 

4. Computer Program Algorithm 
 

The algorithm for the simulation of turbulent two-dimensional flow can be summarized 

as follows: 

1. Using the p -equation for the pressure correction. 

2. Correct the velocities by the pressure correction. 

3. Calculate the k -equation for the turbulence kinetic energy. 

4. Start the computation with an initial value of velocities, pressure correction, turbulence 

kinetic energy and dissipation rate of turbulence kinetic energy. 
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5. Calculate the Navier-Stokes equations for the velocities. 

6. Calculate the  -equation for the dissipation rate of turbulence kinetic energy. 

7. Repeat from step (2) until the solution converges the steady state. 

 

5. Results and Discussion 
 

Calculations are used for laminar and turbulent incompressible flows and program   

input data are summarized in Table (1) below: 

 
Table (1) Program input data 

 

Parameter Laminar Flow Turbulent Flow 

max  105 250 

max  105 160 

LRe  2 x 10 ^ 4 6 x 10 ^6 

P  (Pa) 101325 101325 

Relaxation Factor 0.31 0.31 

 

 where, max  and max  are the numbers of grid lines used in the computational domain, 

LRe  is the Reynolds number based on the length of the flat plate and the free-stream velocity 

, P  is the free-stream pressure, and the relaxation factor is used to stabilize the numerical 

scheme used. 

Figures (1) and (2) show the velocity distribution and skin friction coefficient of the 

laminar boundary layer on a flat plate in which the computed results are compared with the 

analytical solution. In Fig.(1),  U/uu*  and x/Uyy*   . It is found that the 

computed results are in good agreement with the analytical solution so that the numerical 

method used is accurate for the simulation of the laminar boundary layer on a flat plate. It is 

found that the computed results are in good agreement with the analytical solution 
[12]

 so that 

the k  turbulence model is capable of simulating the turbulent boundary layer on a flat 

plate. Figures (3) to (6) show the distributions of the velocity, Reynolds stress, turbulence 

kinetic energy and dissipation rate of turbulence kinetic energy of the turbulent boundary 

layer on a flat plate. They are normalized in dimensionless units .As problem size increases, 

the speed up also increases rapidly. Also, as more grids are included, more speed is required. 
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Figure (1) Velocity distribution of the laminar boundary layer on a flat plate 

 

 
 

Figure (2) Skin friction coefficient of the laminar boundary layer on a flat plat 

 

 

Figure (3) Velocity distribution of the turbulent boundary layer  

on a flat plate at 
Re  = 1400 
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Figure (4) Reynolds-stress distribution of the turbulent boundary  

layer on a flat plat at Re  = 1400 

 

 
Figure (5) Distribution of the turbulence kinetic energy of the turbulent 

boundary layer on a flat plate at Re  = 1400 

 

 

Figure (6) Distribution of the dissipation rate of k of the turbulent boundary 

layer on a flat plate at Re  = 1400 
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6. Conclusions 
 

Both laminar and turbulent incompressible steady viscous flows are simulated in the 

current work. The numerical method used is capable of accurately predicting the laminar and 

turbulent boundary layers on a flat plate. The data of the turbulent boundary layer on a flat 

plate at 1400Re   is used as a test case to yield the performance of the k  turbulence 

model of 
[7]

 .It is found that the computer program in general provides good results. Also, the 

use of body fitted coordinate system seems to be very effective in simulating this problem. 

 

7. References 
 

1. Majewski, R., and Wieteska, R., “Investigation of Weno Schemes for 3D 

Unstructured Grids”, XXI ICTM, Warsaw, Poland, 2004, pp. 1-2.                                                                        
 

2. Hoffmann, K. A., “Computational Fluid Dynamics for Engineers”, Engineering   

Education System Publications, Texas, U.S.A., 1989.                  
 

3. Nemec, M., Aftosmis, A., and Pullian, T., “CAD-Based Aerodynamic Design of 

Complex Configurations using a Cartesian Method”, NASA Technical Report, 

NASA-04001, 2004, pp. 1-13.                                                                 
 

4. Gibson, M. M., Jones, W. P., and Whitelaw, J. H., “Turbulence Models for 

Computational Fluid Dynamics”, Course Lecture Notes, Department of 

Mechanical Engineering, Imperial College of Science, Technology and 

Medicine,1992.. 
 

5. Hinze, J. O., “Turbulence”, 2
nd

 Edition, McGraw-Hill Book Company, 1975. 
 

6. Karki, K. C., and Patankar, S. V., “Pressure Based Calculation Procedure for 

Viscous Flows at All Speeds in Arbitrary Configurations”, AIAA Journal,       

Vol. 27, No. 9, 1989, pp.1167-1174. 
 

7. Launder, B. E., and Sharma, B. I., “Application of the Energy-Dissipation Model 

of Turbulence to the Calculation of a Flow Near a Spinning Disk”, Letters in 

Heat and Mass Transfer, Vol. 1, 1974, pp. 131-138. 
 

8. Anderson, J. D., “Computational Fluid Dynamics, the Basic with Applications”, 

McGraw-Hill Book Company, U.S.A., 1995. 
 

9. Sorensen, N., “3D Background Aerodynamics using CFD”, Riso National 

Laboratory Publications, Roskilde, Denmark , 2002, pp. 1-18. 
 



Journal of Engineering and Development, Vol. 10, No. 2, June (2006)                           ISSN 1813-7822 

 

 99 

10. Hosseini, R., Rahimian, M., and Mirzaei, M., “Performance of High-Accuracy 

Schemes in Inviscid Fluxes Calculation”, Unpublished Paper, By e-mail from: 

hoseinis @ me.ut.ac.ir.   
 

11. Lang, N. J., and Shih, T. H., “A Critical Comparison of Two-Equation 

Turbulence Models”, NASA Technical Memorandum 105237, 1991. 
 

12. Spalart, P. R., “Direct Simulation of a Turbulent Boundary Layer”, Journal of 

Fluid Mechanics, Vol. 187, 1988, pp. 61-98. 

 


