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Abstract 
 

A cavity model well suited for computer aided design is presented and developed to 

study the rectangular microstrip antenna. The patch is described by geometrical and 

electrical parameters. The resonant frequency, resonant resistance, bandwidth, efficiency 

and other electrical parameters of RMSA have been presented as a function of varying 

the patch dimension and substrate parameters. The accuracy and usefulness of the 

method are investigated through comparison with experimental results as well as other 

previous theoretical methods. 

 

 

 
 

 ةـــــــلاصـالخ
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هندسيا وكهربائيا وتم حساب كل من التردد الرنيني والمقاومة الرنينية  (patch)المستطيل الفعال  وأبعادتم تحديد معلمات 
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1. Introduction 
 

Modern communication systems demand low coast and low profile antennas. 

Microstrip antenna (MSA) is one of the candidate antennas meeting those requirements due 

to its conformal nature and capability to integrate with the rest of the printed circuitry 
[1]

. 

The MSA is a resonant structure that consists of a dielectric substrate sandwiched 

between a metallic conducting patch and a ground plane. The patch is generally made of 

copper or gold and can take any possible shape 
[2,3]

.  

During the past decades, microstrip antennas experienced a great gain in popularity and 

hence become a major research topic in both theoretical and applied electromagnetic. They 

are well known for their highly desirable physical advantage characteristics 
[4]

.However, two 

principal disadvantages of MSA are narrow bandwidth and low gain. Numerous researches 

have investigated their basic characteristics and recently extensive efforts have also been 

devoted to the bandwidth and gain problems and considerable progress have been made 
[5-10]

. 

There is a number of techniques available for analyzing microstrip patch antennas. The 

analytical techniques include transmission line model 
[11-13]

, and cavity model 
[14-16]

. The 

most common numerical techniques used are moment method 
[17]

 and the finite difference 

time domain method 
[18]

. The later technique is time consuming while the former method and 

the analytical techniques have been applied to regular shapes only like, rectangular, circular, 

and elliptical shapes 
[11]

. However, the analysis of MSA is normally difficult to handle which 

is primarily due to the existence of a dielectric substrate to support the conductor 
[19]

. 

The aim of this work is to use the cavity model to study the rectangular microstrip 

antennas operating in the range of (3GHz) which excited by a coaxial feed. For this purpose a 

computer program written in Fortran-77 language, which is based on the cavity model is 

presented and developed for the first time prior to this work. Moreover, this program has 

been also modified in order to investigate the effect of various parameters on the 

performance of rectangular microstrip antennas operating in the range of (3GHz). 

 

2. Theory 
 

2-1 Resonance Frequency and RMSA Dimension 

The MSA consists a conducting plate separated from a ground plane usually by a thin 

layer of dielectric. A shape of rectangular microstrip antenna is shown in Fig.(1). A cavity 

model was used to calculate the resonant frequencies whenever a magnetic wall is introduced 

at the sides of the patch while the electric wall is introduced at the bottom and top of the 

patch. By employing this simple model, the dominant TM10-resonant frequency mode of 

RMSA is given by 
[14]

: 
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where, (c) is the velocity of electromagnetic waves in space, Leff and εeff are effective length 

and effective dielectric substrate permittivity respectively. The effective length is given       

by 
[20]

: 

 

LLLeff  …………………………………………………………………... (2) 

 

Since the length of the patch has been extended by (ΔL) on each side so it can be 

expressed by 
[21]

: 
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where, (h) is the substrate thickness and (W) is the width of the patch which is given by 
[20]

: 
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While the effective dielectric substrate permittivity can be expressed as 
[22]

: 
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Figure (1) Microstrip antenna element 
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2-2 Radiation Pattern of Rectangular Patch  

The far-field radiation pattern of a rectangular microstrip patch operating in the       

TM10-mode is broad in the E and H-planes. The pattern of a cavity with two perfectly 

conducting electric walls (top and bottom), and four perfectly conducting magnetic walls      

(side walls) are given by 
[20]

: 
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where, 

 














Cos.
2

W.k
Z

Cos.Sin.
2

h.k
X

o

o

…………………………………………………………. (7) 

 

and Vo=h.Eo is the voltage across sides of radiating edge of the patch, then, the principal E 

and H-planes reduces to: 

E-plane (θ=90, 0≤Ф≤ 90, and  270≤Ф≤360): 
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and H-Plane (Ф=0 , 0≤θ≤180): 
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2-3 Input Impedance   

The input impedance of a RMSA excited by a coaxial feed can be determined by 

returning to the cavity model approximation for the fields in the patch. The input impedance 

is given by Ohms law: 

 

oI

Vin
Zin   ……………………………………………………………………. (10) 
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With Vin is the input voltage at the feed-point and it can be computed as 
[23]

: 
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and, 
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Equation (10), can then be evaluated for the dominant TM10-mode at k
2
=k10

2
.εr which 

leaves the input resistance as 
[24]

: 
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where, (xf) is a distance from the edge of the patch and (δeff=1/Qt), where Qt can be 

calculated using section 2-5. However, there is another accurate expression for the input 

resistance of RMSA excited by a coaxial feed given by 
[25]

 as: 
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where, (xf) is a distance from the center of the patch, and   
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where, (Gr)is the radiation conductance which is given in section 2-4, and Gm is the mutual 

conductance and it is expressed as 
[25]

: 
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grm F.GG   ………………………………………………………………….. (18) 
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where, )LL(kl  , Lkp  , )l(J  and )l(J2 are zero and second order Bessel functions, 

respectively. 

 

2-4 Power and Directivity  

The radiation power (Prad) over a sphere of radius (r) is given by a definition of the 

Pointing vector as 
[20]

: 
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where,  is the characteristic impedance of space and equal to (120π)Ω ,Then, for a RMSA 

operating in the dominant TM10-mode, Eq.(20), becomes: 
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So the radiation conductance (Gr) is given by: 
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The usual HPBW is defined by the angles at which the antenna element power pattern 

falls 3dB below the main beam peak 
[26]

 and the relation of E-and H-plane of HPBW are 

given by 
[23]

: 
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The directivity of an antenna is defined as the ratio of the radiation intensity in a given 

direction from the antenna to the radiation intensity averaged over all directions, and 

mathematically can be expressed as: 
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For RMSA-operating at TM10-mode, the directivity is given by: 
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2-5 Quality Factors, Bandwidth, Efficiency and Gain 

At resonance, the MSA element can be assigned a quality factor, Qt, to describe its 

bandwidth. The Qt factor is the total of all quality factors associated with system losses, 

which include dissipated losses within the patch due to loss metal conductors and substrates, 

power loss due to radiation and surface wave propagation on a dielectric coated conductor. 

For very thin substrate (h<<λo) of arbitrary shapes (including rectangular and circular) there 

are approximate formulas to represent the quality factors of various losses 
[20-21]

. These can 

be expressed as:     
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where, (μo is a permeability =4π*10
-9 

H/cm, ζ is the copper conductivity =5.7*10
5
 S/cm, fr is 

the resonance frequency in Hz and tanδ is the loss tangent). Therefore, the total quality factor 

Qt influenced by all of these losses and is, in general, written as 
[21]

: 
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The fractional bandwidth of MSA elements is usually determined from the total quality 

factors with (VSWR=2:1) and is given by: 
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  ………………………………………………………………… (29) 

 

The radiation efficiency is defined as the ratio of the power radiated to the power 

received by the input to the element. It can also be expressed in terms of the quality factors, 

which for a MSA, can be written as 
[20]

: 
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t

rad

Q

Q
  ……………………………………………………………………… (30) 

 

However, the antenna gain is a measure of an antennas ability to concentrate the power 

accepted at input terminal and mathematically is related to the directivity and efficiency as: 

 

rD.Gain   ………………………………………………………………….. (31) 

 

All the above equations have been formulated in the computer program in several 

subroutines to identify their values with respect to the variation of various parameters of 

RMSA, excited by a coaxial feed.   

 

3. Results and Discussion 
 

To test the accuracy of the computer program, which is based on the cavity model, the 

resonance frequency and resonance resistance of TM10-mode have been calculated.        

Table (1), represents the results obtained in this work and compared with measured values of 

Ref. 
[27]

 and other previous theoretical methods 
[16,17]

,for different values of (εr, h, w, L, and 

tanδ). It is obviously seen that the resonant frequencies obtained in this work are in good 

agreement with measure data compared to the other theoretical methods. However, there are 

some discrepancies between the measured and calculated resonant resistances. The reasons 

can be explained these differences are attributed to the surface wave effect which is assumed 

to be negligible in this work and the fields are assumed to be constant in the direction normal 

to the substrate planes 
[27]

. Moreover, the computed resonant resistances, by using Eq.(16), 

are better than those obtained with Eq.(15) in comparison with measured values. After that 

the effect of varying various parameters of RMSA such as dielectric constant, width, 

substrate thickness and loss tangent (tanδ) have been carried out using the computer program 

which is based on the cavity model. 

The dimension of the RMSA has been taken as: (W=4 cm, L=3 cm, h=0.159 cm, 

εr=2.55 and tanδ=0.001). 

 

3-1 The Effect of Varying the Dielectric Constant (r) 

The effect of varying the dielectric constant (εr) from (1 to 2.6) on the electrical 

properties of RMSA with the feed-point fixed at (0.7 cm) from the center of the patch are 

shown in Fig.(2) for bandwidth and Fig.(3) for both directivity and antenna gain. It is clearly 

seen that, the bandwidth decreases from (187.9 to 60 MHz), the gain decreases from (9.62 to 

6.68 dB) and directivity decreases from (9.75 to 6.96 dB). So the dielectric constant of higher 

value of permittivity gives lower electrical parameters of RMSA. However, when the      

feed-point location is optimized for each (εr) and the dimensions of the RMSA are scaled to 

operate at around (3 GHz) then a better comparison of the effect of (εr) can be obtained. 

Table (2), represents the computed and measured values of some electrical properties of 
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RMSA for four different values of (εr).One can sees that our calculated results of bandwidth, 

gain and resonance resistance are very close to their corresponding measured values. In 

addition, as the (εr) increases from (1 to 9.8) the bandwidth decrease from (82.7 to 26.6 

MHz) due to a decreases in the fringing fields. Also, the gain decrease from (9.6 to 4.7 dB) 

due to a decrease in the aperture area. 

 
Table (1) Comparison of calculated and measured values of resonant 

frequency and resonant resistance of the rectangular patch with  

different εr, tanδ, and substrate thickness 
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Figure (2) Variations of bandwidth versus the substrate permittivity (εr) 

 

 
Figure (3) Variations of directivity and gain versus the substrate 

permittivity (εr) 
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Table (2) Comparison of calculated and measured values of the effect  
of the substrate permittivity on the electrical properties of RMSA  

with (h=0.159 cm and tanδ=0.001) 
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3-2 The Effect of Varying the Value of the Width (W) 

The effect of varying the value of the width (W) from (1 to 5 cm) on the electrical 

properties of RMSA with feeding point located (0.7 cm) from the edge is shown in Fig.(4) 

for bandwidth and efficiency and Fig.(5) for H-plane HPBW. It is seen that the bandwidth 

increases fro (21 to 71 MHz) and efficiency increased from (81.32 to 94.73 %), while the   

H-plane HPBW decreases from (89 to 70). However, they are not very evident from these 

plots, because the feed point is not optimum for the different width. Accordingly, a better 

comparison will be obtained when the feed point is optimized for the individual widths. 

Table (3) represent the measured and calculated resonant frequency, resonant resistance by 

using Eq.(16), bandwidth, gain and H-plane HPBW with the computed value of directivity 

and efficiency. This table indicates that computed results of electrical parameters of RMSA 

are in good agreement with the corresponding measured values. Furthermore, except the 

value of H-plane HPBW, all the other parameters are increased with increasing the value of 

the width due to an increase in the aperture area of the patch. While the HPBW in the          

H-plane decreases, whereas it remains almost the same in the E-plane, because the increase 

in the width is in the H-plane. 

 

3-3 The Effect of Varying the Substrate Thicknesses (h)   

The effect of varying the substrate thicknesses (h) on the bandwidth and efficiency of 

RMSA with (εr=2.55, W=4 cm, L=3 cm, tanδ=0.001 and feed-point xf=0.7) are shown in 

Fig.(6). It is observed that the bandwidth increases from (42.32 to 147.26 MHz) and 

efficiency increased from (88.65 to 98.23 %) due to an increase in the radiation power. This 

implies that, thicker substrate gives higher values of electrical parameters of RMSA. 
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Figure (4) Variations of bandwidth and efficiency versus the patch width 

 

 
 

Figure (5) Variation of H-Plane half power beam width versus the patch width 
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Table (3) Comparison of calculated and measured values of the effect  
of the width of the patch on the electrical properties of RMSA with  

(L=3 cm, εr=2.55, h=0.159 cm and tanδ=0.001) 
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Figure (6) Variations of bandwidth and efficiency versus  
the substrate thicknesses 
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3-4 The Effect of Increasing the Value of Loss Tangent (tan) 

Finally, the effect of increasing the value of loss tangent (tanδ) on the bandwidth and 

efficiency of RMSA is investigated with (εr=2.55, h=0.159, W=4 cm, L=3 cm and feed-point 

xf=0.7 cm from the center of the patch) and is shown in Fig.(7). It is seen that, with an 

increase in the value of (tanδ) the bandwidth increases from (81.4 to 167.78 MHz) and 

efficiency decreases from (71.45 to 34.66 %). So the use of loss material leads to increase the 

bandwidth and to reduce the efficiency which gives lower gain. 

 

 

Figure (7) Variations of bandwidth and efficiency of RMSA versus  
the loss tangent 
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