Journal of Engineering and Development, Vol. 10, No. 2, June (2006) ISSN 1813-7822

Text Hiding In Image Border

Asst. Lect. Razi J. Al-Azawi
Laser and Electronic Optics Engineering Department

University of Technology, Baghdad, Iraq

Abstract

This paper deals with secret-key steganography approach of data hiding, it takes
advantage of images with dark background or boundaries.

The main goal is to hide a text in an image without drawing suspicion about the
hidden information.

The developed algorithm compares between the ASCII code of the text character and
the value of the image pixel, if they are equal, the pixel position (else Character ASCII
code) will be stored in the image border after encrypting it.

This developed algorithm has been applied on (gray scale, 256-color, and true color)
images, good results were obtained with true color and gray scale images .The 256-color
images may draw a suspicion about the hidden information. Binary and multispectral
images cannot be used in this algorithm.

YRS I |

Y s Y Jaaidll goled) il jall g Mol Clilsl) 3 g 5 2 ld3) o8 Clill) o163 Lulae 6 Lunsls¥) 5,860)
L i) 5 Slisall Sl e Cinily ey 8 5 Steganalysis e <lllis 4l e ¢ lilull 48 635 o3 o Uil
aad) La_pens g/

o si€a i o LdS) 4t Cannll 18 6 ati] gl 5 5 susl) FLidal) 53 Clilal] lis) g ds Canil] b vy
Loldsal) Cila pleal) Jon & 6805)0 9t 5) paa (S

il i ol 50) L s 5 sl o i g l] Do 0] Latil] s ol Vg din yial) e 10 o

ey 5y puall Jlb) 4 (ASCI Usia A i) dad Jaisd 5] slesal] pae s 4 5) 28 gall Sy U sl] 5 5 sucall
o S8 o puadi

gl cube [y (Adnd) Gslll ¢ ol YOT ¢ gale Il g aill) saall (o g5 5ae Ao Dyl i) ods ik
L LRl SLill] Jgn N i 5l YO Ty sm O s (o aggila il il s) $IY) i) puall 53
Lo/ Clalanll any ik dua j) gid) ode] leiindm el CilibY) saaeia y sacall s o oY) Ll) pcall aasiiaas ol
lil! daiol 590 il 5 e j) s oIS Span] slésal) L] e

45

Journal of Engineering and Development, Vol. 10, No. 2, June (2006) ISSN 1813-7822

1. Introduction

That information hiding can be classified into, Stenography and digital watermarking.
Each of them has its related classifications, can see Fig.(1).

Information Hiding

| |

Watermarking Steganography

| |
! ; f ; .

Intellectual Copyright Pure Secrete Public
Property Protection Key Key

Figure (1) Information hiding

1-1 Steganography

Most of the existing steganography algorithms are performed in pixel domain as it
provides more embedding space (capacity), reliability, and controllability in
encoding/decoding of the hidden message, and where BMP files deals with the image at the
pixel domain ™. The most of the digital data is represented in compressed form for reduction
of storage space and transmission cost, but there are risks of losing embedding data 12!,

The goal of Steganography is to avoid drawing suspicion to the transmission of a secret
message .

The public goal is to embed a secrete message in a digital cover by using a private
technique for each of them .there are three classified of steganography types as (1) Secret Key
Steganography which is cannot any one know the hidden message unless he has the key. The
stegobject contains the cover, hidden message and the secret key (2) Public Key
Steganography. The public key is stored in public database, whereas the public key is used in
the embedding process, the secret key is used to reconstruct the secret message !, The
Stegobject contains the cover, hidden message, private key, and the public key. The private
key dose not needs to be agreed upon by the source and Destination prior to imprisonment in
this technique (3) Pure Steganography stegobject contains the cover and the hidden message
only. In this type the algorithms hide information in a digital cover without using any types of
key [,

46

Journal of Engineering and Development, Vol. 10, No. 2, June (2006) ISSN 1813-7822

Steganography allows for authentication, copyright protection, and embedding a
message in an image or another types of cover.There are new kinds of covers such as (1)
Hiding in Network (2)Hiding in Image (3) Hiding in Disk Space (4) Hiding in Text (5) Hiding
in Audio

The most Simplified of several kinds of image steganography are : (1)Compression
Techniques (2) Noise insertion (3) LSB insertion (4) Border Modification .

Steganalysis involves two aspects, detection and distortion of embedded message, which is
attacks against hidden data !, or discovering and rendering useless such covert message [

2. Hide and Extract Algorithm

The algorithm can be divided into two main procedures Hide and Extract. The Hide
procedure can be divided into three algorithms (Search, Compress, and Hide) and the Extract
procedure can be divided too into three algorithms (File Extract, Decompress, Text Extract),
Search algorithm has two inner operations (Image Stretch, and Range Compression) as shown
in Fig.(2).

Developed programs are built using Visual Basic programming language. Hide
procedure is used for comparison the image with the text and recording results, transforming
them, and hiding them in the image (cover). Extract procedure is used for extracting the
hidden information from image border by extracting the data from stegobject, re-transforming
them, and extracting the text from the image according to the re-transformed data. Developed
algorithm takes advantage of images with dark background or boundaries, these images allow
us to hide our secret message in the border of the image without drawing any suspicion about
them. In this approach, secret information is a text (English/Arabic), the covers are gray scale
or colored images. Binary and multispectral images will not be used in this approach because
their data types are not appropriate for this approach. This algorithm was included with some
of security operations in order to avoid steganalysis attacks.

2-1 Search Algorithm

Two operations of security (Image Stretching and Range compression) are applied to the
data in order to increase their security, and improve algorithm performance.

Stretches the image and research's image pixels for each character of the text. If there is
a pixel value that equal to the character ASCII code, pixel position will be separated into three
bytes and stored in a file as previously explained. Else, instead of the three separated bytes,
three bytes will be stored in the same file. First one is the complement of the character ASCII
code, (i.e. 255-character ASCII code), will be stored in the same file of the positions. Two
operations of security (Image Stretching and Range compression) are applied to the data in
order to increase their security, and improve algorithm performance.

47

Journal of Engineering and Development, Vol. 10, No. 2, June (2006) ISSN 1813-7822

Hiding Text in Image Algorithm

Secret Text E Innocent Cover

" ' ¥ Search
Image Stretching Algorithm

¥

Range compression
|

v

Compress Algorithm

¥

Hide Algorithm
|

v
4

Stegobject

File Extract Algorithm

}

Decompress Algorithm

}

Text Extract Algorithm

l

Estimated Text

a2
=4

Figure (2) Block diagram of the developed algorithm

2-1-1 Stretch Algorithm

Image stretching is one of image enhancement operations. Image pixel values can be
expanded, compressed, or moved to any other range (within 0-255 range) in order to explain
some unseen details of the image.

Stretch equation subtracts the minimum number from each number, divides subtraction
result by numbers range (maximum number-minimum number), and multiplies division
results by the stretched rang. This operation can convert numbers from original to another
range, which starts with (0). If beginning value of the stretched numbers does not desired to

48

Journal of Engineering and Development, Vol. 10, No. 2, June (2006) ISSN 1813-7822

be (0), the beginning number can be determined by adding starting value to multiplying result.
The general form of stretching equation will be !:

A = Aold_ml_n *7 +start] ... (D)
st max—min st
where:
Ast . Result number from stretch equation applying.
Aoig: Original pixel value, which is desired to be stretched.
min: Smallest value among numbers, which are desired to be stretched
max: Largest value among them
Zy: Result stretched range, into which pixel values may be stretched
Start: Starting number of Z

2-1-2 Range compression

Pixel position is variant in a large range, which may exceeds the range of pixel value
(0-255), i.e. it cannot be stored in a byte, it must be transformed into the suitable range. The
Suggested transforming method is to separate each two digits of the position value in a byte,
this separation can be done by the following set of equations (2)-(3), which are implemented
for this purpose. For images that dose not exceed (999999) bytes in size, pixel position can be
divided into three bytes. After separation, these bytes will be stored in a file as a reverse
manner as follows:

d
= 000 *FrrTr e ()

Separating the first two digits by decimal point:

b, _|nt(b) ... (3)
Cutting the two separated in equation (2) digits using integer operator:

Dy =(0=1,) 100 ceeeeieeiieieeiceeeeeeeeeeee e 4)
Separating the second two digits from resultant number in equation (2)

b, _|nt(b11) ... (5)
Cutting the two digits that separated in equation (4)

Dy =(01; =0,)¥100 1euriieriereeieeeeete ettt (6)

Journal of Engineering and Development, Vol. 10, No. 2, June (2006) ISSN 1813-7822

Taking the reminder two digits from resultant number in equation (5):
where:
a: the original pixel position from the image to be separated
bi1, by, bs: the resultant numbers of separation
b11: temporary variable for equations requirement
For more security, the resultant numbers (b1, b2, and b3) will be stored as (b3, b2, and
bl). For example, if there is an arbitrary position in the image file like 12869, which will be
displayed at the coordinates (22, 21) of (584,364) image, see Fig.(3), it will be separated into
1, 28, and 69, by applying equations (2)-(6) as shown below. These numbers will be stored as
69, 28, and 1:
a= 12869 pixel position in the image file
b= 1.2869 separating (1) from the other digits, Equation (2)
b;=int (1.2869)=1 cutting (1) from the other digits, Equation (3)
b;1= (1.2869-1)*100=28.69 separating (28) from the remainder digits, Equation, (4)
b= int (28.69) =28 cutting (28) from the remainder digits, Equation (5)
b3= (28.69-28)*100=69 separating and cutting (69) from the remainder digits,Equation (6)
Numbers like (69, 28, and 1) may give different imagination about the original number
(12869).

Image width =584

v

A

—

~ (22, 21)

Imaae Hiah

|

Figure (3) Image pixel with 12869position and (22,21) display coordinates

50

Journal of Engineering and Development, Vol. 10, No. 2, June (2006) ISSN 1813-7822

2-1-3 Algorithm Steps

Stretches the image and seeks image pixels for each character of the text. If there is a
pixel value that equal to the character ASCII code, pixel position will be separated into three
bytes and stored in a file as previously explained. Else, instead of the three separated bytes,
three bytes will be stored in the same file. First one is the complement of the character ASCI|I
code, (i.e. 255- character ASCII code), second one is a random number RND of (0-99) range,
which is used for disguise only, and the third is (0) value as a flag for knowing that these three
values are not separated position. Algorithm steps can be explained as:

A

Start
Open (image, text, position) files

Stretch the image file
Loop
Read text Character

Search image file for pixel value =character ASCII code
If found Then

Split pixel position into three bytes, two digits for each
Else

Split Character ASCII code into three bytes as

(255 — character ASCII code)

RND of (0-99) range(0)

End If

Print results in Position file

If not end of text file

Go to loop

End if

End.

A A A A A A A A A A A A A A A A

2-2 Compress Algorithm

Position file, which result from Search algorithm executing contains numbers of (0-99)
range. Hidden data of this range cause large variation in border colors. Figure (4-a) explains
image with hidden data of (0-99) range, in which Fig.(4-b & c) is an expanded portion of the
border with perceptible color differences, they may draw a suspicion about the hidden
information. This range must be reduced in order to reduce color variation. Numbers can be
transformed by replacing them with distances of central number as shown in Table (1). Each
number (X) of (0-99) range will be replaced with two numbers. First one is (X-50), second
one is RND, which is used to explain whether X is larger or smaller than (50), i.e. if X is
larger than 50 RND will be of (26- 50) range, else it will be of (0-25) range. Distances of (50)
will transform (0-99) range into (0-50) range, i.e. (99-50) will transform (99) into (49) and all
the resultant numbers will be less or equal to (50). Numbers of (0-50) range are still cause
noticeable color variation. For more transforming, distances between (0-50) range numbers

o1

Journal of Engineering and Development, Vol. 10, No. 2, June (2006) ISSN 1813-7822

and (25) will transform (0-50) range into (0-25) range. Each number (YY) of (0-50) range will
be replaced with two numbers. First one is the distance of (25), and the second one is RND to
explain if Y is larger or smaller than (25), i.e. if Y is larger than 25, RND will be of (13-25)
range, else it will be of (0-12) range.

Resultant numbers from search algorithm will be replaced with four numbers of (0-25)
ranges. For resultant numbers from previous example (section 3-2-1-2) 69, 28, and 1,
Table (1-a) explains original numbers, their distances of (50), and RNDs as indicators.
Table (1-b) explains resultant numbers from table (1-a), their distances of (25), and RNDs as
indicators. Table (1-c) explains original numbers and the final results from this
transformation, which will be stored in compress file. Border with hidden data of (0-25) range
will appear as black border.

Figure (5-a) explained stegobject with hidden data of (0-25) range. Figures (5-b & c)
are expanded portions of the border without perceptible color differences, it may prevent
drawing a suspicion about the hidden information, especially if they will be hidden in an
image with dark background. Following steps can perform this transformation:

< Start
< Open (Position, Compress) files

< Letst(1...4)beamatrix of four elements
Loop
< Read x (from position file)

< Let the first element in St be the absolute value of the distance of
(50) (St(1) =x-50)

< If x is grater than (50) Then

< Let the third element in St = RND of (26-50) range as indicator

< Else

< Let the third element in St = RND of (0-25) range as indicator

< EndIf

< For each of the firstand third element in st

< Let the element be absolute value of the distance of (25)

< If the element is grater than 25 Then

< The successor element in st = RND of (13-25) range

< Else

< The successor element in st = RND of (0-12) range : End If

< Store st elements in Compress file

< If not end of Position file

< Gotoloop: End If

< Store RND of (26-30) range in Compress file as indicator of the ending of the hidden
data

< End.

52

Journal of Engineering and Development, Vol. 10, No. 2, June (2006)

ISSN 1813-7822

Table (1) Range compression
(a) Distances between the numbers and (50)
(b) Distances between (a) numbers and (25)
(c) The final number of a & b, for each original number, four numbers will be stored

@ Distances of 50
Numbers Distance of 50 RND (indicator)
69 19 38
28 22 7
1 49 19
(b) Distances of 25
Numbers Distance RND
19 6 6
38 13 15
22 3 9
7 18 8
49 24 19
19 6 2
(c) Results Numbers
Numbers Stored as
69 6 6 13 15
28 3 9 18 8
1 24 19 6 2

(a)

Figure (4) (a) Image with hidden data of (0-99) range (b) & (¢) Expanded
portion from the top & bottom of image border, color differences
in the image border can be easily

53

Journal of Engineering and Development, Vol. 10, No. 2, June (2006) ISSN 1813-7822

Figure (5) (a) Image with hidden data of (0-25) range (b) & (c) Expanded
portion from the top & bottom of image border with unnoticeable
color differences in the image border

2-3 Hide Algorithm

After applying Compress algorithm, result numbers will be stored in the image border.
For more security, each three numbers will be stored in a reverse manner. In order to give a
fancy fashion about these numbers, they will be stored in the top, bottom, left, and right of the
image border respectively in each time, see Fig.(6), this can be done according to the
following steps

< Start

Open (Compress, image) files
Loop
Read three numbers from Compress file

Hide them in one side of the image border in a reverse manner

If not end of Compress file Go to loop.

Hide RND of (26-30) as indicator to the data end

fill the reminder of the border with RND of hidden data range (0-25)
End.

A A A A A A A

54

Journal of Engineering and Development, Vol. 10, No. 2, June (2006) ISSN 1813-7822

P1 P2 P3 P4 P5S P6 P7...Top

13/ 6| 6

24 2
8 6
18 19
9 (3|15

P1 P2 P3 P4P5 P6 P7... Bottom

Figure (6) Storing data in the image border in unordered manner

In brief, Hide procedure can be explained as follows, a character ASCII code in exact
position will be found-after stretching-in another position (12869 as example). It will be
encrypted and stored in the image border as (12) numbers {(13, 6, and 6) in the top, (9,3, and
15) in the bottom, (24, 8, and 18) in the left, and (2,6,and 19) in the right) of the image border.
This may give completely different imagination about the original character.

3. Extract Procedure

Extract procedure tends to recover the hidden information from the image. Extract
procedure contains three algorithms File Extract, Decompress, and Text Extract, which are the
opposite of Hide procedure algorithms Hide, Compress, and Search respectively in order to
reveres effects of each of them.

3-1 File Extract Algorithm

The File Extract algorithm tends to reveres the effect of Hide algorithm. It reads three
numbers from each of top, bottom, left, and right of the image border, each three numbers will
be stored in the file in a reverse manner as an opposite of Hide algorithm. Results will be
stored in Recover file in order to use them in Decompress algorithm. File Extract algorithm
can be performed according to the following steps:

55

Journal of Engineering and Development, Vol. 10, No. 2, June (2006) ISSN 1813-7822

< Start
< Open (Recover, image) files
Loop
< Read three numbers (ny, n,, and n3) from the one side of the image border
< Store them in Recover file as (ns, ny, and ny)
< If not end of hidden Data
< Go to Loop
< End if
< End.

3-2 Decompress Algorithm

The Decompress algorithm tends to reverse Compress algorithm effect by reconverting
numbers from (0-25) range to (0-99) range and stores results in Decompress file. Four
numbers will be taken. As previously explained, the second and fourth numbers are
indicators. They explain if the first or third numbers are larger or smaller than (25). If the
indicator is less than 12, number will be subtracted from (25). Else the number will be added
to (25), i.e. two numbers of (0-50) range will be obtained. The second one is indicator. If it is
less than 25 the first will be subtracted from (50). Else it will be added to (50).

Each four numbers that obtained from Recover file (results of File Extract algorithm)
will be reconverted to one number of (0-99) ranges. The following steps can do this:

< Start

Open (Recover, Decompress) files
Loop
Read four numbers (m;, my, ms, and m,) from Recover file

For the first and the third number do

If the indicator (successor number) is less than 12
Subtract the number from (25)

else

Add it to (25)

end if

If the second of the two result numbers is less than (25)
Subtract the first one of them from (50)

else

add it to (50)

end if

if not end of Recover file

Go to loop

End If

End.

A A A A A A A A A A A A A A A A A

56

Journal of Engineering and Development, Vol. 10, No. 2, June (2006) ISSN 1813-7822

3-3 Text Extract Algorithm

Text Extract algorithm is the opposite of Search algorithm, where the pixel positions
were divided into three numbers. Each three numbers from Decompress file, which result
from Decompress algorithm, will be constructed into one pixel position by equation (7).
Equation (7) will reverse the effect of equations (2)-(6):

Pos = X3*10000 + X2*100 + X1 ceueurerinieinieninieniuieieiiieninieneaceeeenne (7)

After getting the positions and before extracting the character from the position (pos) of
the image, it must be stretched according to equation (1) to obtain the stretched image where
the pixels were searched for character ASCII code. The corresponding characters of resultant
numbers in ASCII table will be stored in Estimated Text file, which is the estimation of the
original hidden text. The estimated text can be obtained via next steps.

< Start
< Open (Decompress, Image, and Estimated Text) files
< Stretch the image
Loop
< Read three numbers (X1, X2, and X3) from Decompress file
< Construct position by equation (pos = X3 * 10000 + X2 * 100 + X1)
< Read pixel value (Y) from the position pos of the image file
< Get the corresponding character of (Y) in ASCII table
< store results in Estimated Text file
< If not end of Decompress file
< Go to loop
<End If
< End.

4. References

1. S., Areepongsa, Y. F., Syed, N., Haewkamnred, and K. R., Rao, “Steganography for Low
Bit-Rate Wavelet Based Image Coder”, University of Texas, 2000.

2. Neil, F. Johnson, and Sushil, Jajodia, “Steganalysis of Image Created using Current
Steganography Software”, Information Hiding Second International Workshop, Springers,
1998.

3. Neil, F. Johnson, Zoran Duric, and Sushil, Jajodia, “Information Hiding: Steganography
and Watermarking-Attacks and Countermeasures”, Kluwer Academic Publishers, 2001.

4. Sowers, Sabrina, and Youssef, “Testing Digital Watermarking Resistance Destruction”,
Information Hiding Second International Workshop, Springers, 1998.

5. Neil, F. Johnson, “History and Steganography”, Internet Survey, 2000.

57

Journal of Engineering and Development, Vol. 10, No. 2, June (2006) ISSN 1813-7822

6. A. S., Rahma, and M. J., Jawad, “Using Duplicating Palettes Method in BMP

Images for Information Hiding”, Journal of First Workshop on Information Hiding
technologies, 2004.

7. Christian Cachim, “An Information Theoretic Model for Steganography”, Internet
Survey, 2001.

58

