
Journal of Engineering and Development, Vol. 10, No. 2, June (2006) ISSN 1813-7822

 45

Text Hiding In Image Border

Abstract

This paper deals with secret-key steganography approach of data hiding, it takes

advantage of images with dark background or boundaries.

The main goal is to hide a text in an image without drawing suspicion about the

hidden information.

The developed algorithm compares between the ASCII code of the text character and

the value of the image pixel, if they are equal, the pixel position (else Character ASCII

code) will be stored in the image border after encrypting it.

This developed algorithm has been applied on (gray scale, 256-color, and true color)

images, good results were obtained with true color and gray scale images .The 256-color

images may draw a suspicion about the hidden information. Binary and multispectral

images cannot be used in this algorithm.

 ةـــــــلاصـالخ
 إلاوالمراقب العادي للاتصال لا ٌرى أصلاوجود البٌانات إخفاءالبٌانات هً إخفاءفً عملٌة الأساسٌةالفكرة إن

وهو ٌعنً بالبحث عن البٌانات المخفاة واستخلاصها Steganalysis الغطاء الذي تخفى فٌه البٌانات ، على انه هنالك علم
 تعذر. إنتدمٌرها أو

ني مكتيوب إخفياءالبٌانات ذو المفتاح السري والهدف الرئٌسً فيً هيذا البحيث هيو إخفاءهذا البحث بفرع ٌعنى
 .شكوك حول المعلومات المخفاة إثارةفً صورة بدون

تقارن الخوارزمٌة المقترحة لهيذا البحيث بيٌن القٌمية الرقمٌية للحيرف مين الين وبيٌن قٌمية الشيدة اللونٌية لعنصير
الصورة بعد إطار(فً ASCIIتا ٌسجل الموقع)وفً حالة عدم المساواة تسجل قٌمة الحرف فً جدول الصورة وان تساو

 بشكل ما. تفجٌره
نتيائ وأعطيتلون ، اللون الحقٌقً(652من الصور)التدرج الرمادي ، أنواعطبقت هذه الخوارزمٌة على عدة

لون تثٌر الشك حول البٌانيات المخفياة فٌهيا. -652ان صور وصور التدرج الرمادي، فً حٌن الألوانجٌدة للصور حقٌقٌة
 الأمنٌةلعدم صلاحٌتها لهذه الخوارزمٌة.طبقت بعض العملٌات الأطٌافوالصور متعددة الألوانولم تستخدم الصور ثنائٌة
 البٌانات. أمنٌةالخوارزمٌة ولزٌادة أداءعلى البٌانات المخفاة لتحسٌن

Asst. Lect. Razi J. Al-Azawi
Laser and Electronic Optics Engineering Department

University of Technology, Baghdad, Iraq

Journal of Engineering and Development, Vol. 10, No. 2, June (2006) ISSN 1813-7822

 46

1. Introduction

That information hiding can be classified into, Stenography and digital watermarking.

Each of them has its related classifications, can see Fig.(1).

Figure (1) Information hiding

1-1 Steganography

Most of the existing steganography algorithms are performed in pixel domain as it

provides more embedding space (capacity), reliability, and controllability in

encoding/decoding of the hidden message, and where BMP files deals with the image at the

pixel domain
[1]

. The most of the digital data is represented in compressed form for reduction

of storage space and transmission cost, but there are risks of losing embedding data
[2]

.

The goal of Steganography is to avoid drawing suspicion to the transmission of a secret

message
[3]

.

The public goal is to embed a secrete message in a digital cover by using a private

technique for each of them .there are three classified of steganography types as (1) Secret Key

Steganography which is cannot any one know the hidden message unless he has the key. The

stegobject contains the cover, hidden message and the secret key (2) Public Key

Steganography. The public key is stored in public database, whereas the public key is used in

the embedding process, the secret key is used to reconstruct the secret message
[5]

, The

Stegobject contains the cover, hidden message, private key, and the public key. The private

key dose not needs to be agreed upon by the source and Destination prior to imprisonment in

this technique (3) Pure Steganography stegobject contains the cover and the hidden message

only. In this type the algorithms hide information in a digital cover without using any types of

key
[6]

.

Information Hiding

Watermarking Steganography

Intellectual

Property

Copyright
Protection

Pure Secrete

Key
Public
Key

Journal of Engineering and Development, Vol. 10, No. 2, June (2006) ISSN 1813-7822

 47

Steganography allows for authentication, copyright protection, and embedding a

message in an image or another types of cover.There are new kinds of covers such as (1)

Hiding in Network (2)Hiding in Image (3) Hiding in Disk Space (4) Hiding in Text (5) Hiding

in Audio

The most Simplified of several kinds of image steganography are : (1)Compression

Techniques (2) Noise insertion (3) LSB insertion (4) Border Modification .

Steganalysis involves two aspects, detection and distortion of embedded message, which is

attacks against hidden data
[4]

, or discovering and rendering useless such covert message
[7]

.

2. Hide and Extract Algorithm

The algorithm can be divided into two main procedures Hide and Extract. The Hide

procedure can be divided into three algorithms (Search, Compress, and Hide) and the Extract

procedure can be divided too into three algorithms (File Extract, Decompress, Text Extract),

Search algorithm has two inner operations (Image Stretch, and Range Compression) as shown

in Fig.(2).

Developed programs are built using Visual Basic programming language. Hide

procedure is used for comparison the image with the text and recording results, transforming

them, and hiding them in the image (cover). Extract procedure is used for extracting the

hidden information from image border by extracting the data from stegobject, re-transforming

them, and extracting the text from the image according to the re-transformed data. Developed

algorithm takes advantage of images with dark background or boundaries, these images allow

us to hide our secret message in the border of the image without drawing any suspicion about

them. In this approach, secret information is a text (English/Arabic), the covers are gray scale

or colored images. Binary and multispectral images will not be used in this approach because

their data types are not appropriate for this approach. This algorithm was included with some

of security operations in order to avoid steganalysis attacks.

2-1 Search Algorithm

Two operations of security (Image Stretching and Range compression) are applied to the

data in order to increase their security, and improve algorithm performance.

Stretches the image and research's image pixels for each character of the text. If there is

a pixel value that equal to the character ASCII code, pixel position will be separated into three

bytes and stored in a file as previously explained. Else, instead of the three separated bytes,

three bytes will be stored in the same file. First one is the complement of the character ASCII

code, (i.e. 255-character ASCII code), will be stored in the same file of the positions. Two

operations of security (Image Stretching and Range compression) are applied to the data in

order to increase their security, and improve algorithm performance.

Journal of Engineering and Development, Vol. 10, No. 2, June (2006) ISSN 1813-7822

 48

Hiding Text in Image Algorithm

Figure (2) Block diagram of the developed algorithm

2-1-1 Stretch Algorithm

Image stretching is one of image enhancement operations. Image pixel values can be

expanded, compressed, or moved to any other range (within 0-255 range) in order to explain

some unseen details of the image.

Stretch equation subtracts the minimum number from each number, divides subtraction

result by numbers range (maximum number-minimum number), and multiplies division

results by the stretched rang. This operation can convert numbers from original to another

range, which starts with (0). If beginning value of the stretched numbers does not desired to

 Search
 Algorithm

Compress Algorithm

Hide Algorithm

Innocent Cover Secret Text

File Extract Algorithm

Text Extract Algorithm

Decompress Algorithm

Estimated Text

Stegobject

Image Stretching

Range compression

Journal of Engineering and Development, Vol. 10, No. 2, June (2006) ISSN 1813-7822

 49

be (0), the beginning number can be determined by adding starting value to multiplying result.

The general form of stretching equation will be
[4]

:



















 startZ*
minmax
minA

A
st

old
st

 ……………………………………....... (1)

where:

Ast : Result number from stretch equation applying.

Aold: Original pixel value, which is desired to be stretched.

min: Smallest value among numbers, which are desired to be stretched

max: Largest value among them

Zst: Result stretched range, into which pixel values may be stretched

Start: Starting number of Zst

2-1-2 Range compression

Pixel position is variant in a large range, which may exceeds the range of pixel value

(0-255), i.e. it cannot be stored in a byte, it must be transformed into the suitable range. The

Suggested transforming method is to separate each two digits of the position value in a byte,

this separation can be done by the following set of equations (2)-(3), which are implemented

for this purpose. For images that dose not exceed (999999) bytes in size, pixel position can be

divided into three bytes. After separation, these bytes will be stored in a file as a reverse

manner as follows:

10000

a
b  …………………………………………………………………… (2)

Separating the first two digits by decimal point:

 bintb1  ……………………………………………………………………. (3)

Cutting the two separated in equation (2) digits using integer operator:

  100*bbb 111  ……………………………………………………………. (4)

Separating the second two digits from resultant number in equation (2):

 
112 bintb  ………………………………………………………………….. (5)

Cutting the two digits that separated in equation (4)

  100*bbb 2113  ……………………………………………………………. (6)

Journal of Engineering and Development, Vol. 10, No. 2, June (2006) ISSN 1813-7822

 50

Taking the reminder two digits from resultant number in equation (5):

where:

a: the original pixel position from the image to be separated

b1, b2, b3: the resultant numbers of separation

b11: temporary variable for equations requirement

For more security, the resultant numbers (b1, b2, and b3) will be stored as (b3, b2, and

b1). For example, if there is an arbitrary position in the image file like 12869, which will be

displayed at the coordinates (22, 21) of (584,364) image, see Fig.(3), it will be separated into

1, 28, and 69, by applying equations (2)-(6) as shown below. These numbers will be stored as

69, 28, and 1:

a= 12869 pixel position in the image file

b= 1.2869 separating (1) from the other digits, Equation (2)

b1= int (1.2869)=1 cutting (1) from the other digits, Equation (3)

b11= (1.2869-1)*100=28.69 separating (28) from the remainder digits, Equation, (4)

b2= int (28.69) =28 cutting (28) from the remainder digits, Equation (5)

b3= (28.69-28)*100=69 separating and cutting (69) from the remainder digits,Equation (6)

Numbers like (69, 28, and 1) may give different imagination about the original number

(12869).

Figure (3) Image pixel with 12869position and (22,21) display coordinates

Im
a

g
e

 H
ig

h

=
3

6
4

(22, 21)

Image width =584

Journal of Engineering and Development, Vol. 10, No. 2, June (2006) ISSN 1813-7822

 51

 Loop

2-1-3 Algorithm Steps

Stretches the image and seeks image pixels for each character of the text. If there is a

pixel value that equal to the character ASCII code, pixel position will be separated into three

bytes and stored in a file as previously explained. Else, instead of the three separated bytes,

three bytes will be stored in the same file. First one is the complement of the character ASCII

code, (i.e. 255- character ASCII code), second one is a random number RND of (0-99) range,

which is used for disguise only, and the third is (0) value as a flag for knowing that these three

values are not separated position. Algorithm steps can be explained as:

 Start

 Open (image, text, position) files

 Stretch the image file

 Read text Character

 Search image file for pixel value =character ASCII code

 If found Then

 Split pixel position into three bytes, two digits for each

 Else

 Split Character ASCII code into three bytes as

 (255 – character ASCII code)

 RND of (0-99) range(0)

 End If

 Print results in Position file

 If not end of text file

 Go to loop

 End if

 End.

2-2 Compress Algorithm

Position file, which result from Search algorithm executing contains numbers of (0-99)

range. Hidden data of this range cause large variation in border colors. Figure (4-a) explains

image with hidden data of (0-99) range, in which Fig.(4-b & c) is an expanded portion of the

border with perceptible color differences, they may draw a suspicion about the hidden

information. This range must be reduced in order to reduce color variation. Numbers can be

transformed by replacing them with distances of central number as shown in Table (1). Each

number (X) of (0-99) range will be replaced with two numbers. First one is (X-50), second

one is RND, which is used to explain whether X is larger or smaller than (50), i.e. if X is

larger than 50 RND will be of (26- 50) range, else it will be of (0-25) range. Distances of (50)

will transform (0-99) range into (0-50) range, i.e. (99-50) will transform (99) into (49) and all

the resultant numbers will be less or equal to (50). Numbers of (0-50) range are still cause

noticeable color variation. For more transforming, distances between (0-50) range numbers

Journal of Engineering and Development, Vol. 10, No. 2, June (2006) ISSN 1813-7822

 52

 Loop

and (25) will transform (0-50) range into (0-25) range. Each number (Y) of (0-50) range will

be replaced with two numbers. First one is the distance of (25), and the second one is RND to

explain if Y is larger or smaller than (25), i.e. if Y is larger than 25, RND will be of (13-25)

range, else it will be of (0-12) range.

Resultant numbers from search algorithm will be replaced with four numbers of (0-25)

ranges. For resultant numbers from previous example (section 3-2-1-2) 69, 28, and 1,

Table (1-a) explains original numbers, their distances of (50), and RNDs as indicators.

Table (1-b) explains resultant numbers from table (1-a), their distances of (25), and RNDs as

indicators. Table (1-c) explains original numbers and the final results from this

transformation, which will be stored in compress file. Border with hidden data of (0-25) range

will appear as black border.

Figure (5-a) explained stegobject with hidden data of (0-25) range. Figures (5-b & c)

are expanded portions of the border without perceptible color differences, it may prevent

drawing a suspicion about the hidden information, especially if they will be hidden in an

image with dark background. Following steps can perform this transformation:

 Start

 Open (Position, Compress) files

 Let st (1 … 4) be a matrix of four elements

 Read x (from position file)

 Let the first element in St be the absolute value of the distance of

(50) (St(1) = x – 50)

 If x is grater than (50) Then

 Let the third element in St = RND of (26-50) range as indicator

 Else

 Let the third element in St = RND of (0-25) range as indicator

 End If

 For each of the first and third element in st

 Let the element be absolute value of the distance of (25)

 If the element is grater than 25 Then

 The successor element in st = RND of (13-25) range

 Else

 The successor element in st = RND of (0-12) range : End If

 Store st elements in Compress file

 If not end of Position file

 Go to loop : End If

 Store RND of (26-30) range in Compress file as indicator of the ending of the hidden

data

 End.

Journal of Engineering and Development, Vol. 10, No. 2, June (2006) ISSN 1813-7822

 53

Table (1) Range compression
 (a) Distances between the numbers and (50)
 (b) Distances between (a) numbers and (25)
 (c) The final number of a & b, for each original number, four numbers will be stored

(a) Distances of 50

Numbers Distance of 50 RND (indicator)

69 19 38

28 22 7

1 49 19

(b) Distances of 25

Numbers Distance RND

19 6 6

38 13 15

22 3 9

7 18 8

49 24 19

19 6 2

(c) Results Numbers

Numbers Stored as

69 6 6 13 15

28 3 9 18 8

1 24 19 6 2

Figure (4) (a) Image with hidden data of (0-99) range (b) & (c) Expanded
portion from the top & bottom of image border, color differences

in the image border can be easily

(b)

(a)

(c)

Journal of Engineering and Development, Vol. 10, No. 2, June (2006) ISSN 1813-7822

 54

 Loop

Figure (5) (a) Image with hidden data of (0-25) range (b) & (c) Expanded
portion from the top & bottom of image border with unnoticeable

color differences in the image border

2-3 Hide Algorithm

After applying Compress algorithm, result numbers will be stored in the image border.

For more security, each three numbers will be stored in a reverse manner. In order to give a

fancy fashion about these numbers, they will be stored in the top, bottom, left, and right of the

image border respectively in each time, see Fig.(6), this can be done according to the

following steps

 Start

 Open (Compress, image) files

 Read three numbers from Compress file

 Hide them in one side of the image border in a reverse manner

 If not end of Compress file Go to loop.

 Hide RND of (26-30) as indicator to the data end

 fill the reminder of the border with RND of hidden data range (0-25)

 End.

(b)

(a)

(c)

Journal of Engineering and Development, Vol. 10, No. 2, June (2006) ISSN 1813-7822

 55

P1 P2 P3 P4 P5 P6 P7 … Top

 6 6 13

2 24

6 8

19 18

 15 3 9

 P1 P2 P3 P4 P5 P6 P7 … Bottom

Figure (6) Storing data in the image border in unordered manner

In brief, Hide procedure can be explained as follows, a character ASCII code in exact

position will be found-after stretching-in another position (12869 as example). It will be

encrypted and stored in the image border as (12) numbers {(13, 6, and 6) in the top, (9,3, and

15) in the bottom, (24, 8, and 18) in the left, and (2,6,and 19) in the right) of the image border.

This may give completely different imagination about the original character.

3. Extract Procedure

Extract procedure tends to recover the hidden information from the image. Extract

procedure contains three algorithms File Extract, Decompress, and Text Extract, which are the

opposite of Hide procedure algorithms Hide, Compress, and Search respectively in order to

reveres effects of each of them.

3-1 File Extract Algorithm

The File Extract algorithm tends to reveres the effect of Hide algorithm. It reads three

numbers from each of top, bottom, left, and right of the image border, each three numbers will

be stored in the file in a reverse manner as an opposite of Hide algorithm. Results will be

stored in Recover file in order to use them in Decompress algorithm. File Extract algorithm

can be performed according to the following steps:

Journal of Engineering and Development, Vol. 10, No. 2, June (2006) ISSN 1813-7822

 56

 Loop

 Loop

 Start

 Open (Recover, image) files

 Read three numbers (n1, n2, and n3) from the one side of the image border

 Store them in Recover file as (n3, n2, and n1)

 If not end of hidden Data

 Go to Loop

 End if

 End.

3-2 Decompress Algorithm

The Decompress algorithm tends to reverse Compress algorithm effect by reconverting

numbers from (0-25) range to (0-99) range and stores results in Decompress file. Four

numbers will be taken. As previously explained, the second and fourth numbers are

indicators. They explain if the first or third numbers are larger or smaller than (25). If the

indicator is less than 12, number will be subtracted from (25). Else the number will be added

to (25), i.e. two numbers of (0-50) range will be obtained. The second one is indicator. If it is

less than 25 the first will be subtracted from (50). Else it will be added to (50).

Each four numbers that obtained from Recover file (results of File Extract algorithm)

will be reconverted to one number of (0-99) ranges. The following steps can do this:

 Start

 Open (Recover, Decompress) files

 Read four numbers (m1, m2, m3, and m4) from Recover file

 For the first and the third number do

 If the indicator (successor number) is less than 12

 Subtract the number from (25)

 else

 Add it to (25)

 end if

 If the second of the two result numbers is less than (25)

 Subtract the first one of them from (50)

 else

 add it to (50)

 end if

 if not end of Recover file

 Go to loop

 End If

 End.

Journal of Engineering and Development, Vol. 10, No. 2, June (2006) ISSN 1813-7822

 57

 Loop

3-3 Text Extract Algorithm

Text Extract algorithm is the opposite of Search algorithm, where the pixel positions

were divided into three numbers. Each three numbers from Decompress file, which result

from Decompress algorithm, will be constructed into one pixel position by equation (7).

Equation (7) will reverse the effect of equations (2)-(6):

pos = x3*10000 + x2*100 + x1 ……………………………………………... (7)

After getting the positions and before extracting the character from the position (pos) of

the image, it must be stretched according to equation (1) to obtain the stretched image where

the pixels were searched for character ASCII code. The corresponding characters of resultant

numbers in ASCII table will be stored in Estimated Text file, which is the estimation of the

original hidden text. The estimated text can be obtained via next steps.

 Start

 Open (Decompress, Image, and Estimated Text) files

 Stretch the image

 Read three numbers (X1, X2, and X3) from Decompress file

 Construct position by equation (pos = X3 * 10000 + X2 * 100 + X1)

 Read pixel value (Y) from the position pos of the image file

 Get the corresponding character of (Y) in ASCII table

 store results in Estimated Text file

 If not end of Decompress file

 Go to loop

 End If

 End.

4. References

1. S., Areepongsa, Y. F., Syed, N., Haewkamnred, and K. R., Rao, “Steganography for Low

Bit-Rate Wavelet Based Image Coder”, University of Texas, 2000.

2. Neil, F. Johnson, and Sushil, Jajodia, “Steganalysis of Image Created using Current

Steganography Software”, Information Hiding Second International Workshop, Springers,

1998.

3. Neil, F. Johnson, Zoran Duric, and Sushil, Jajodia, “Information Hiding: Steganography

and Watermarking-Attacks and Countermeasures”, Kluwer Academic Publishers, 2001.

4. Sowers, Sabrina, and Youssef, “Testing Digital Watermarking Resistance Destruction”,

Information Hiding Second International Workshop, Springers, 1998.

5. Neil, F. Johnson, “History and Steganography”, Internet Survey, 2000.

Journal of Engineering and Development, Vol. 10, No. 2, June (2006) ISSN 1813-7822

 58

6. A. S., Rahma, and M. J., Jawad, “Using Duplicating Palettes Method in BMP

Images for Information Hiding”, Journal of First Workshop on Information Hiding

technologies, 2004.

7. Christian Cachim, “An Information Theoretic Model for Steganography”, Internet

Survey, 2001.

