
Journal of Engineering and Development, Vol. 10, No. 3, September (2006) ISSN 1813-7822

 104

Implementation of Reed-Solomon Encoder/Decoder
Using Field Programmable Gate Array

Abstract

In this paper, (15, 11) and (255, 239) Reed-Solomon codes have been designed and

Implemented using ALTERA Field Programmable Gate Array (FPGA) device. The design

is carried out by writing VHDL modules for different encoder and decoder components.

The waveforms are tested using the package MODEL-SIM 5.4a. While synthesis reports

and board programming file are obtained using the package QUARTUS II.

ALTERA-FLEX10K10 FPGA board is used as a target device for the designed

Reed-Solomon encoder/decoder.

Simulation waveforms show that (15, 11) and (255,239) Reed-Solomon decoders

could correct up to 2 and 8 erroneous symbols respectively.

 ةـــــــلاصـالخ

باستخدام تقنية (255,239)و (15,11)بطول Reed-Solomon في هذا البحث، تم تصميم وبناء شفرتي
 VHDL. وتم إنجاز هذا التصميم بكتابة نماذج بلغة ALTERA(نوع FPGAمصفوفة البوابات المبرمجة الواسعة)

للحصول على الأشكال MODEL-SIM 5.4aرنامج لمختلف مكونات المشفر وحلال التشفير. ولقد تم استخدام الب
للحصول على تقارير البناء وملفات QUARTUS IIالموجية للإشارات في التصميم بينما تم استخدام البرنامج

 البرمجة.
 لغرض البناء الحقيقي لدائرتي المشفر وحلال التشفير. FLEX10K10 FPGAوتم اختيار اللوح

قادرة على تصحيح حد أقصى من الأخطاء (15,11)دائرة حلال الشفرة ذات الطول نتائج المحاكاة بينت أن
قادرة على تصحيح حد أقصى من الأخطاء مقداره ثمانية (255,239)مقداره خطئان في حين أن الدائرة ذات الطول

 أخطاء.

Dr. Hikmat N. Abdullah

Electrical Engineering Dept., College of Engineering

Al-Mustansiriya University, Baghdad, Iraq

Journal of Engineering and Development, Vol. 10, No. 3, September (2006) ISSN 1813-7822

 105

1. Introduction

Many digital signaling applications in broadcasting use forward error correction, a

technique in which redundant information is added to the signal to allow the receiver to detect

and correct errors that may have occurred in transmission. Many different types of code have

been devised for this purpose, but Reed-Solomon codes
[1]

 have proved to be a good

compromise between efficiency and complexity. A particularly important use of a

Reed-Solomon code for television applications is in the DVB-T transmission standard
[2]

.

Hitherto, modulators and demodulators for DVB-T have in general used custom chips to

provide the Reed-Solomon encoding and decoding functions. However, there are

circumstances (such as for digital radio cameras) where it would be beneficial to include these

processes in gate array designs for the transmitter and receiver. This would then provide the

flexibility to modify the encoding parameters to suit the particular requirements of the radio

camera application without sacrificing the compactness of a single-chip implementation.

Although custom core design for gate arrays are available, the charges are significant and can

complicate further exploitation of the intellectual property embodied in a design
[3]

.

In this paper, (15,11) and (255,239) Reed-Solomon encoders/decoders have been

implemented using ALTERA-FLEX10K10 FPGA. QUARTUS II package is used to perform

VHDL models of different units of encoder and decoder and obtain synthesis reports while

Model-Sim 5.4a package is used to obtain simulation waveforms.

2. FPGA Implementation of Reed-Solomon Encoder

(15,11) and (255,239) Reed-Solomon codes has been implemented using ALTERA

FPGA. These two codes could correct up to 2 and 8 errors respectively. The word length in

each symbol is 4 and 8 bits respectively and the codes are based on Galios fields with 16 and

256 elements respectively. The code generator polynomial for the first code is:

g(x)=x
4
+15x

3
+3x

2
+x+12 ……………………………………………………... (1)

while for the second one is:

g(x)=x
16

+59x
15

+13x
14

+104x
13

+189x
12

+68x
11

+209x
10

+30x
9

+8x

8
+163x

7
+65x

5
+229x

4
+98x

3
+98x

2
+36x+59 ……………………… (2)

The structure of implemented (15,11) Reed-Solomon encoder is shown in Fig.(1). All

data paths in figure provide for 4 bit values. During the message input period, the selector

passes the input values directly to the output and AND gate is enabled. After the eleven

calculation steps have been completed the remainder is contained in the D-type registers. The

control waveform then changes so that the AND gate prevents further feedback to the

multipliers and the four remainder symbol values are clocked out of the registers and routed to

Journal of Engineering and Development, Vol. 10, No. 3, September (2006) ISSN 1813-7822

 106

the output by the selector. For (255,239) encoder, the number of stages would be 16 with

multipliers coefficients obtained from the generator polynomial corresponding to the code

(eq.2) while data paths provide for 8 bit values.

Figure (1) (15,11) Reed-Solomon encoder

VHDL modules were written for each element in the encoder for FPGA implementation

purpose and a main VHDL program “encoder.vhd” that organize the operations of all these

modules according to the hierarchy structure shown below:

3. FPGA Implementation of Reed Solomon Decoder

Figure (2) shows the block diagram of the implemented Reed-Solomon Decoder. In this

figure, the first process is to calculate the syndrome values from the incoming codeword.

These are then used to find the coefficients of the error locator polynomial Λ1 …….. Λv using

Berlikamp algorithm. The error locations are identified by the Chien search and the error

values are calculated using Forney’s method. As these calculations involve all the symbols of

the received codeword, it is necessary to store the message until the results of the calculations

are available. Then, to correct the errors, each error values are added (modulo-2) to the

appropriate location in the received codeword.

Journal of Engineering and Development, Vol. 10, No. 3, September (2006) ISSN 1813-7822

 107

Figure (2) Reed-Solomon decoder

The tree of VHDL programs that is written to implement the decoder is shown below:

3-1 Syndrome Calculation

The syndrome values are computed as follows: first dividing the received polynomial by

each of the factors (x+α
i
) of generated polynomial resulting a quotient Qi(x) and a remainder

that is:

R(x)/(x+α
i
) = Qi(x)+Si/(x+α

i
) for 0<i<2t+1 ……………………… (3)

where: t is the number of error codewords that could be corrected.

Rearranging eq.(3) produces:

Si=Qi(x)×(x+α
i
)+R(x) ………………………………………………………... (4)

Then substituting x=α
i
 in eq.(4), so that:

Journal of Engineering and Development, Vol. 10, No. 3, September (2006) ISSN 1813-7822

 108

Si=R(α
i
) = Rn-1(α

i
)

n-1
 + Rn-2(α

i
)

n-2
+ …….+ R1α

i
+ R0 ……………………. (5)

where: the coefficient Rn-1 …. R0 are the symbols of the received codeword.

This means that each of the syndrome values can also obtained by substituting x=α
i
 in

the received polynomial. Figure (3) shows the hardware arrangement used for syndrome

calculation.

Figure (3) Hardware of syndrome calculation

3-2 Berlikamp Algorithm

Berlikamp algorithm is one of the more efficient iterative techniques for finding the

coefficients of error locator polynomial Λ1…..Λv in the following equation:

Si+v + Λ1Si+v-1+….+ ΛvSi=0 for i=0,….,2t-v-1 …………………… (6)

and the coefficients of error magnitude polynomial Ω0 ……… Ω0 in the following equation:

Ω(x)= [S(x)Q(x)] mod x
2t

 …………………………………………………… (7)

This is done by forming an approximation to the error locator polynomial, starting with

Λ(x)=1, then at each stage, an error value is formed by substituting the approximate

coefficients into equations corresponding to the value of v. The error is then used to reduce to

refine a correction polynomial, which is then added to improve the approximation Λ(x). The

process ends when the approximate error locator polynomial checks consistently with the

remaining equations. As soon as the coefficients of error locator polynomial is obtained, the

coefficients of the error magnitude polynomial could be computed from eq.(7) in which any

terms of degree x
2t

or higher in the product are ignored. More details about this algorithm

could be found in
[4]

.

3-3 Calculation of Error Values: Forney Method

Forney’s algorithm is an efficient method to compute error values Z1….Zv. With this

algorithm, the error value is computed using:

Journal of Engineering and Development, Vol. 10, No. 3, September (2006) ISSN 1813-7822

 109

Z j= Q(xj-1)/Λ′(xj-1) …………………………………………………………. (8)

where: Λ′(xj-1) is the derivative of Λ(x) for x=xj-1 equation only gives valid results for

symbol positions containing an error. If the calculation is made at other positions, the

result is generally non-zero and invalid.

The Chien search is therefore is needed to identify the error position. Figure (4) shows

the hardware of the error value calculation. In this figure, γ is a common constant for all Λi

and Ωi coefficients.

Figure (4) Hardware of error value calculation

3-4 Chien Search for Error Positions

It is a simple operation at which different element values of Galios Field are substituted

successively in Λ(x) equation. The substitution value that produces a value of zero in Λ(x)

would identify the error positions. Figure (5) shows the hardware of Chien search.

Figure (5) Hardware of Chien search

Journal of Engineering and Development, Vol. 10, No. 3, September (2006) ISSN 1813-7822

 110

4. Top Level Design

Using QUARTUS II software package provided by ALTERA
[5]

, VHDL design

modules are written for each encoder/decoder and error source (channel) components. At the

top level of design, a schematic file is created to specify the main entities of the design and to

assign input and output pins as it looks like in the ALTERA-FPGA chip. Figure (6) shows

the top level design file for the (255,239) Reed-Solomon code. In this figure, the input pin

clock is used to provide a clock to different components. For this purpose, a special module is

used to make necessary scaling. The reset pin is used for resetting purpose. The pin control is

used to control the generation of coded message as mentioned in section II. The pins data

[7..0] are located to apply real input data from external data source while pins E [7..0] are

used to receive error pattern for test purpose. Finally the pins y [7..0] are used to produce the

output data from decoder after correcting errors. For actual application, the channel entity is

omitted.

For (15,11) Reed-Solomon code, the structure of the top-level design is the same as for

(255,239) code shown in Fig.(6) with the exception in that the width of data paths everywhere

is 4 bits instead of 8 bits.

Figure (6) Top level design file of reed-solomon encoder/decoder

5. Implementation Results

5-1 Simulation Results

The simulation waveforms for (15,11) and (255,239) Red-Solomon encoder and decoder

are carried out using Model-Sim 5.4a package. Figure (7) shows waveforms for (15,11) code.

The symbols of the coded message are represented as a set of 4 bits displayed in decimal

form. In this figure, the signal ‘tx’ is the coded message produced by the encoder while the

signal ‘r’ is the received coded message in which two errors in the sixth and thirteenth

Journal of Engineering and Development, Vol. 10, No. 3, September (2006) ISSN 1813-7822

 111

symbols are introduced using the error signal ‘e’. The signal ‘y’ denotes the received coded

message after correction. As it is clear form this figure, the two errors are corrected

successfully by the decoder. A small delay is noticed between the received and corrected

message. This is due to the required time to calculate and store syndrome values and other

intermediate results until producing the final error correction symbols.

Figure (7) Simulation waveforms for (15,11) reed-solomon code

Figure (8) shows waveforms for (255,239) code. The signal names have the same refer

as in the previous figure. Here, the symbols of the coded message are represented as a set of 8

bits and also read in decimal form. The figure shows a segment of the coded message

produced by the encoder ‘tx’ (from symbol 233 to symbol 246) since it is not possible to

display all symbols of coded message in one screen view. The received coded message ‘r’ is

infected by a burst of 8 successive errors (from symbol 234 to symbol 241). These errors are

corrected successfully as it is shown by the output signal of the decoder ‘y’.

Figure (8) Simulation waveforms for (255,239) reed-solomon code

Journal of Engineering and Development, Vol. 10, No. 3, September (2006) ISSN 1813-7822

 112

5-2 Synthesis Reports

There is a large number of synthesis reports (hardware and software reports) obtained

from synthesis operation. They describe all what concern the implementation process like

storage resources required, I/O resources required, computation resources required, time delay

at different points inside the chip ….etc.
[6]

. Table (1) shows the summary of hardware

synthesis reports for (15, 11) Implemented Reed-Solomon encoder/decoder.

Table (1) The summary of hardware synthesis reports for (15, 11)
Implemented Reed-Solomon encoder/decoder

Device utilization for EPF10K10LC84-3

Resource Used Available Utilization

IOs 16 160 10%

FG Function Generators 603 2592 23.5%

H Function Generators 289 1296 22.3%

CLB Flip-Flops 708 2592 27.3%

Maximum period 6.05ns (Maximum frequency: 165.3 MSPS).

Maximum path delay from the any node: 6.05ns.

While Table (2) shows the summary of hardware synthesis reports for (255,239)

Implemented Reed-Solomon encoder/decoder.

Table (2) The summary of hardware synthesis reports for (255, 239)
Implemented Reed-Solomon encoder/decoder

Device utilization for EPF10K10LC84-3

Resource Used Available Utilization

IOs 28 160 17.5%

FG Function Generators 2327 2592 89.7%

H Function Generators 949 1296 73.2%

CLB Flip-Flops 1971 2592 76.1%

Maximum period 17.21ns (Maximum frequency: 58.1 MSPS).

Maximum path delay from the any node: 17.23ns.

It is seen from these two reports summary that the FPGA resources requirements

increases as the length of Reed-Solomon code increases and as a result the maximum possible

operating speed decreases.

Journal of Engineering and Development, Vol. 10, No. 3, September (2006) ISSN 1813-7822

 113

5-3 Implementation

After obtaining a correct simulation results for the written VHDL modules, both (15, 11)

and (255,239) Reed-Solomon encoder and decoder has been implemented by generating a

program files via QUARTUS II package corresponding to each implementation case. These

program files are then downloaded to the FPGA ALTERA-FLEX10K10 board whose picture

shown in Fig.(9). The data are applied to this development board internally by writing a

VHDL module that produces such an input data. The coded messages are recognized by the

aid of the seven segment display provided in the board. This operation should be done at a

low data rates in order to recognize the values of coded messages symbols that’s displayed in

hexadecimal form.

Figure (9) ALTERA-FLEX device family FLEX10K development board

6. Conclusions

Reed-Solomon codes are block-based error correcting codes with a wide range of

applications in digital communications and storage. The usage of FPGA Technology to

implement these codes provides many advantages like efficient reconfigurability and

universal chip implementation. The design procedure using FPGA Technology is done by

writing a hardware description programs (using language like VHDL) to each element in the

system and a main program to control the influence of signals in the system. A schematic top-

level design is then required to specify pins needed for real hardware interfacing. After correct

compilation, obtaining timing analysis, synthesis reports and simulation, a programming file

is finally downloaded to the FPGA board.

Journal of Engineering and Development, Vol. 10, No. 3, September (2006) ISSN 1813-7822

 114

7. References

1. Clarke, C. K., “Reed-Solomon Error Correction”, British Broadcasting

Corporation, July, 2002.

2. Haykin, S., “Communication Systems”, Forth Edition, John Wiley and Sons Inc.,

2001.

3. Wakelny, J. F., “Digital Design, Principles and Practices”, Prentice-Hall Inc., New

Jersey, 2000.

4. Purser, M., “Introduction to Error-Correcting Codes”, Artech. House, Boston,

London, 1995.

5. http: // www.altera.com.

6. “Synthesis and Simulation Design Guide”, Altera Inc., 2004.

http://www.altera.com/

