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Abstract 
 

In this study, a theoretical analysis is presented for estimating the in-plane large 

displacement elastic stability behavior of steel frames having prismatic and non-prismatic 

members (Tapered and non-linearly tapered) with end gusseted plates subjected to 

increasing static loads.  

The analysis adopts the beam-column approach and models the structural members 

as beam-column elements. The formulation of the beam-column element is based on 

Eulerian approach allowing for the influence of the axial force on bending stiffness. Also, 

changes in member chord length due to axial deformation and flexural bowing are taken 

into account.  

The effect of gusseted plate is taken and the modified stability and bowing functions 

are derived for gusset plate with prismatic and non-prismatic members (Tapered and    

Non-linearly tapered). 

The post-buckling analysis is studied, and the incremental load control with different 

load increment strategies and the modified Newton-Raphson method with different iterative 

strategies are used to obtain the complete load-displacement curve.  

As a result, the beam column approach can be used in the analysis of plane frames 

with and without gussets and with any varying section. The ultimate load capacity can be 

increased with gusset-plate members. 
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تتنـاول هـذه الدراسـة التحليـل النظـري للسلوكيـة المرنة للهياكلل الحديديلـة المستويلـة ملـخ ا خلـذ  نظلـر ار ت لـار 
والتللت تحتللوي  لللء م شللاة مولاللورية و ر مولاللوريةيخ ية و ر خ يللة الت يللر  والتللت  .الإزاحللاا الك يللـرخ الخاصللة  هللا
 لتقوية والمعرشة  حمال ساكنة مسل ة  لء المفاصل.تحتوي نهاياتها  لء صفائح ا

 ت ة قد تم  ار تماد  لء  ريقة اويللر . كملا تلم - ت ة. إن الاتقاق  نصر العمود-ت نا هذه الدراسة  ريقة العمود
وتر ا خذ  نظر ار ت ار تأثير القلوخ المحوريلة  للء صللا ة العلزم كلذلب اخلذ  نظلر ار ت لار تلأثير الت يلراا  لت  لول الل

 نتيجة ارنفعال المحوري وتقوس ارنحناة.
 ت هذه الدراسة تم اخذ تأثير صفائح التقوية للأ شلاة المولالورية واللامولالورية يخ يلة و ر خ يلة الت يلر  وتلم 

ل لر  الحصلول  للء سللوب الهياكلل  لت مرحللة ملا  علد ارن علا   قلد تلم .الاتقاق دوال ارستقرارية والتقوس المعدللة لهلا
 سلون المحلورخ ار-وكذلب تم استخدام  ريقة نيلوتن  ريقة الحمل المتزايد مخ استراتيجياا مختلفة لزيادخ ا حمال استخدام

 للحل المتكرر. مخ استراتيجياا مختلفة
العت لة  لت -ونتيجة لهذه الدراسة تم الحصول  لء  ع  ارستنتاجاا المهمة ومنها إمكانية اسلتخدام  ريقلا العملود

لعللدخ منللوا  مللن المقللا خ وا  شللاة المولاللورية واللامولاللورية يخ يللة ور خ يللة الت يللر   مللخ اخللذ تللأثير تحليللل الهياكللل 
 مخ صفائح التقوية للأ شاة. صفائح التقوية, كما وجد  ان سعة التحمل القصوى يمكن من تزداد

 

1. Introduction 
 

It is usually convenient to work to frame centerlines, so that the ends of members dealt 

within a structural analysis actually lie with the boundaries of the joints. Although the joints 

cannot be absolutely rigid, it is more accurate to assume complete rigidity than to assume an 

effective rigidity equal to that of the rest of the member. Complete flexural rigidity over given 

lengths at the ends of members may be allowed for in the calculations by introducing 

modified values of the various stability functions. 

The present study allows to analyze structures consisting of members (prismatic and 

non-prismatic members of varying sections) with gusset plates by treating it as a single 

member, then the results of analysis are compared with exact solution by considering each 

member to consist of three elements, one of inner part with classical properties of the member 

and two terminal parts with infinite rigidity. 

The effect of gusseted plate with prismatic and non-prismatic member is taken and the 

modified stability and bowing functions are derived in this study, and it is presented in this 

paper. 

 

2. Modified Force-Displacement Relationships for Members with 
End Gusset Plates (Non-Prismatic Member)  

 

The member ( BA  ) of length (L) shown in Fig.(1) is completely rigid over the length 

ends ( 2gBBand1gAA  ). The central length AB=Lo has uniform or non-uniform 

flexural rigidity (E. I). 
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Figure (1) Relative forces in local coordinates for a member with gusset plates 

 
In this study, the non-prismatic member force-deformation relations, obtained from an 

application of the conventional beam- column theory by expressing the terminal bending 

moments (M1) and (M2) by rotations of BandAatand BA
  respectively 

[1]
: 

 

)(
L

1EI
1M B2A1

O

 ……………………………………………………..… (1) 

 

)(
L

1EI
2M B3A2

O

 ……………………………………………………..… (2) 

 

)bC
L

u
(EAQ

O

O  ……………………………………………………..……... (3) 

 

in which ( 21 and  ) are stability functions for non-prismatic members (tapered or          

non-linearly tapered) with end gusset plates expressed in terms of (S1,Sc and S2) as shown in 

the following, and Ao: is equivalent area of non-prismatic member. 
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where: 

q
2U

)Sc1S(
AG

2

m

* 



 ……………………………………………………….. (7) 

while U is the depth factor (U=d1/d2) and m is the shape factor. 

where S1, Sc and S2 are modified stability function for non-prismatic member, which are 

shown as following: 
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3. Modified Stability Function-Approximate Formula (Tapered 
Member) 

 

AL-Sarraf 
[2]

 proposed an approximate formula for the modified stability functions. 

These functions are: 

 

1

4m

1 C.US
 ……………………………………………………………… (8) 

 

 
2

4m1
C.USC

 ………………………………………………………… (9) 

 

 
1

2m.21

2 CUS
 ……………………………………………………….. (10) 

 

where: C1 and C2 are stability functions of prismatic members having load parameter (q): 

 

1

2

2

12m

1

EI

QL
q,

U

q
q





 …………………………………….. (11) 

 

The value of (Φ) depends on the shape factor as follows: 

For             m = 4  Φ = 1 ……………………………………………………………… (12) 

 

For         m  3  Φ = 1.04 + 0.08 (3-m) …………………………………………... (13)  

 

4. Estimation of Stability Functions using Approximate Method          
(Non-Linearly Tapered Member) 

 

To facilitate the estimation of the elastic critical load of structures with non-prismatic 

members, it is necessary to tabulate the stability functions. These functions are dependent on 

three parameters q1, U, and m 
[1] 

. 

It is noticed that the modified stability functions for members with non-linear variation 

of sections can be estimated using the relations 
[3]

:  

The value of  depends on the shape factor (m):   

 A- For members having parabolic distribution of cross section  

 

For          m=4     =0.825 ……………………………………………………………… (14) 

 

For          m  3   =0.88-0.284 (3-m) ………………………………………………… (15)                                              
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B- For members having cubic distribution of cross section  

 

For            m=4       =0.8429 …………………………………………………………… (16) 

 

For            m  3     =0.8365-0.036 (m-3) ……………………………………………. (17)                                                 

 

Figure (2) shows the modified axial force-deformation interaction for a member with 

gusset plates. The derivation of the modified axial force-deformation relations for members 

with gusset plates gives: 

 

 

Figure (2) Modified axial force deformation for members with gusset plates 

 

21O cos.2gcos.1gLL   ………………………………………………… (18) 

 

O

21

L

.2g.1g 
 ……………………………………………………………... (19) 

 

2u1uu  …………………………………………………………….......... (20) 
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


 ……………………………………... (21) 

 

21I .2g.1gV   ……………………………………...................................... (22) 

 

 )cos1.(2g)cos1.(1guuuu 21I   ………………………….. (23) 

 

 sin.Vcos.uu II ………………………………………………………… (24) 
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QE

Q
q

2

2

O


 ………………………………………………………….. (25) 
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Equation (25) can be rewritten as: 
 

)bC
L

u
(q

O

2

2





 ……………………………………………………… (26) 

 

while         
r

L

A
1I

L O

O

O   ……………………………………………………………. (27) 

 

and   OL =L-g1-g2 

 

For non-prismatic member with gusset plates, assuming 2B1A and  , then the 

derivation of the length correction factor due to bowing actions is shown below: 

 

)...2.(bC
2

23212

2

11  ……………………………………………... (28) 

 

where: bC,u : are the modified axial deformation in a member with gusset plate due to axial 

force, and the length correction factor due to bowing action which have been derived with the 

modified stability functions, respectively. 

While i  is a modified bowing function for non-prismatic member with gusset plate, 

which is derived in the next paragraph in this paper. 

0A : is equivalent area depending on the shape factor (n) as follows:
 

 

I. For       n=1, U > 1,  
 
  20 A*
Uln

1U
A


 ………………………………….. (29) 

 

II. For      1n  ,  U > 1,              
  

  2n10 A*
1U

n11U
A







 …………………………... (30) 

 

III. For      U= 1,                                 10 AA   or 20 AA  …………………… (31) 

 

Ulog

A

A
log

n 2

1

 ……………………………………………………………………. (32) 

 

where:      

A1 and A2: are the areas of larger and smaller depth for non-prismatic member respectively. 

The non-prismatic member is shown in Fig.(3). 
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Figure (3) Non-prismatic beam-column element 

 
5. Modified Bowing Functions for Non-Prismatic Member with End     

Gusset Plates  
 

In this study, the derivation of modified bowing functions for a non-prismatic member 

which takes into account the effect of the gusset plates are shown below:  

  

3,2,1i
2

2

i

i 



 ……………………………………………………. (33) 

 

while i  is the first derivative of the stability function with gusset plates.  

 

1

4/m).2(

1 C.U  
………………………………………………………… (34) 

 

2

4/m).1(
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……………………………………………………………… (35) 

 

1

4/m.

3 C.U  
………………………………………………………………... (36) 

 

where:  

 : is a factor depending on the shape factor and the degree of variation of the section 

(i.e.tapered or non-linearly tapered). 

iC : is the first derivative of the modified stability function for prismatic member with gusset 

plates.    

 

The modified bowing functions for a non-prismatic member with gusset plates become: 

L 

u 

Q 

M2 
θ2 

θ1 

M1 

Q 

Lc= L-u 

Deformed shape 

x 

b 

a L 

O d2 2 d(x) d1 
1 1 

Initial  



Journal of Engineering and Development, Vol. 10, No. 3, September (2006)           ISSN 1813-7822 
 

 8 

12
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 ………………………………………………………….... (39) 

 

While the modified stability functions for a prismatic member with gusset plates are 
[4]

:  

 

Ag).
L

1g
1(

L

1g2
CC

OO

11  ………………………………………………... (40) 

 

Ag.
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 ………………………………….. (41) 

 

where: C1 and C2are stability functions for a prismatic member without gusset plates. 
 

The tangent stiffness matrix for non-prismatic member (tapered and non-linearly 

tapered) with gusseted plate is derived as below: 

 

 

H
Symetric

H

2G

H

2G
H

1G

H

2G.1G

H

1G

L

1I.E
t

2

2

2

3

2221

O












  ……………………………… (42) 

 

where: 
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2
..)..(21G   ……………………………………. (43) 
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2g1gLLO  ……………………………………………………………… (46) 

 

where ( iC ) is the derivation of ( iC ) with respect to (q) and the derivation is shown below:  
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where: ii CandC   are shown in reference 
[2]

. 

 

6. Modified Tangent Stiffness Matrices for Non-Prismatic Member with 
Gusset Plates       

 

Introducing the notation:  

O

O

32211 L.Q3S,2M2S,1M1Sand
L

u
u,u,u   

 

Then making use of equation 
j
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As defined previously, the modified member tangent stiffness matrix including the 

effect of gusset plates would be: 
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2g1gLLO  ................................................................................................ (56) 

 

7. Post-Buckling Analysis 
 

It is the consequence of any discrete formulation (e.g. the finite element method), that 

the deformation of a given structure is described by a set of (N) deformation parameters, 

which are also called generalized coordinates. In this context, the load-deformation history of 

a structure presents itself as a curve in a (N+1) dimensional space spanned by the deformation 

parameters and the magnitude of the applied loads. Such a curve is usually referred to as 

equilibrium path or deformation path. The problem of elastic stability is intimately connected 

with singularities that occur somewhere along the path under consideration. These singular 

points are better known as critical points. Well known is their classification into limit points 

and bifurcation points. In principle, the elastic stability formulations should be relevant to the 

problem at hand and should have the capability of:  

1. Computing the critical points, i.e. limit or bifurcation points  

2. Tracing parts of the path or paths (branches) connected with these points. 
 

From another point of view, the method should have the capability of computing      

post-buckling. 

It is clear now that there are two distinct strategies required for the successful 

completion of a single load increment in an incremental– iterative method:  

1. Selection of a suitable external load increment for the first iterative cycle.   The chosen 

increment is termed as an initial load increment and a particular strategy used to 

determine it is termed a load incrimentation strategy.  

2. Selection of an appropriate iterative strategy for application in subsequent iterative cycles 

with the aim of restoring equilibrium as rapidly as possible. If iterations are performed on 

the load parameter as well as the nodal displacement, an additional constraint equation 

involving the change in the load parameter is required. It is the form of this constraint 

equation that distinguishes the various iterative strategies.  

 

7-1 Incrimentation of the External Work 

The initial load increment is chosen so as to limit the incremental work iW performed 

by the applied external loads. The incremental work for the ith load step is computed by
 [5]

: 

 





 )
J

Jd
(WW

1i

1ii  ………………………………………………………….. (57) 

 

and  
1

i  is calculated by: 

 

   
it

T

ir

i1

i

vF

W
  ……………………………………………………………. (58) 
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The procedure is initiated by the computation of 1W  from Eq. (58) using specified 

starting load level 1

1 . 

 

7-2 Iteration at Constant External Work 

Iteration at constant external work is an example of the general method described by 

Powell and Simons
 [6]

, and for an increment  
ir

j

i F  of external load, the quantity:  

 

   j

i

T

ir

j

ii vFW   ………………………………………………………… (59) 

 

is an incremental work term. If the external work is to remain unchanged during equilibrium 

iterations, then 0WI  . The expression for the iterative change in the load parameter J

I  

is: 

 

   

   
it

T

ir

j

ir

T

irj

i
vF

vF 
  …………………………………………………………. (60)   

 

A description of the incremental-iterative method for a single load increment i follows. 

It is assumed that perfect convergence has been achieved at the conclusion of the (i-1)th load 

increment, so that the solution   )v,( 1i1i  is known to satisfy total equilibrium. At the first 

iterative cycle (j=1), the new load increment commences with the computation of the tangent 

stiffness matrix  IT , is based on the known displacements and forces at conclusion of the 

previous load increment. The (tangent displacement),  
itv  for this load increment are then 

computed as the solution of
 [5] 

 

     
iriti FvT   …………………………………………………………... (61)  

 

in which  
irF is the reference external load vector, typically as specified in the input data for 

the problem. Next, the value of the initial load increment 1

i  is determined according to a 

particular load incrimentation strategy.  
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8. Results and Discussions 
 

8-1 Elastic Large Displacement and Post-Buckling Analysis of Plane 

Structure with Prismatic and Non-prismatic Varying Section      

(With Gusseted Plate) 
 

EX.1: Gusseted Williams Toggle Frame 

This case study aims to examine the reliability of the modified derived tangent stiffness 

matrix for members with gusset plates and to check the efficiency of the proposed modified 

elastic bowing functions. It also checks the accuracy of the method with highly nonlinear 

structure. Figure (4) shows the geometry and loading conditions of Williams toggle frame, 

which is analyzed using the present method with post-buckling behavior. This frame is 

analyzed in this study using the modified method with 2-elements compared with 6-elements 

for the whole frame (i.e. each member consists of 3-elements, the medium part with the 

classical properties of the member and two hug edge members represent the rigid gusset 

plates). Also, the results are compared with AL-Barazanji
 [4]

, who used 2-elements and 

modified method for prismatic member only. Good agreements are shown for these methods 

of analysis when (g/L=0.1), as shown in Fig.(5). This figure shows the complete path of   

load-displacement curve in the present study when using 2 or 6 elements, as compared with 

AL-Barazanji
 [4]

, since the post-buckling is used in this study. Figure (6) shows the          

load-displacement relationship with and without gusset effect with post buckling in this study 

(i.e. g/L=0.1 and g/L=0). In this modified method (U=1) is taken. 

 

 
Figure (4) Geometry and loading conditions  



Journal of Engineering and Development, Vol. 10, No. 3, September (2006)           ISSN 1813-7822 
 

 13 

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00

Vertical displacement of point B (mm)

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

L
o
a

d
 P

 (
N

)

g/L=0.1

Al-Barazanji (2-elements)

Present study (6-elements)

Present study (modified, 2-elements)

 
Figure (5) Load-displacement curves  
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Figure (6) Load-displacement curves with gusseted effect  

 
Ex.2: Effect of Gusseted Plate Length on Member Capacity 

Figure (7) shows the geometry and loading conditions of toggle frame with different 

gusset lengths, g1 and g2. Figure (8) shows the load-displacement curves for vertical 

displacement at point B with different gusset lengths. The post-buckling, which is taken in 

this study appears in these curves. The load-capacity is increased when gusset length is 

increased.       

Also, it is noticed that when gusset length (g1=0.2L), the structure becomes more stiff, 

and the load-capacity is increased. 
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Figure (7) Geometry and loading  
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Figure (8) The effect of gusseted plate length on load-displacement curves 

 
Ex.3: Effect of using Different Types of Variation of Cross-Section (Prismatic, 

Tapered and Nonlinear Tapered) with Gusseted Plate 
 

The effect of prismatic or non-prismatic (linear and non-linear tapered) is very important 

for load carrying capacity. In this problem, three cases of column are taken, prismatic (U=1), 

tapered (U=2) and non-linear tapered (U=2) with parabolic distribution. The gusset ratio for 

length 0.1 is taken as shown in Fig.(9), for geometry and loading conditions and one gusset 

element for modified stability function is used for representing the columns. The displacement 

ratio for horizontal, vertical and rotation is shown in Fig.(10) respectively. From the results 

shown in Fig.(10), it is shown that for horizontal displacement ratio u/L= 0.775 for prismatic 

without gusset and 0.65 for prismatic with gusset and 0.1 for parabolic member with gusset 

and 0.085 for tapered with gusset for the same value of load which is 20000 kN at point B. 
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For vertical displacement ratio, it is shown that V/L=0.567 for prismatic member 

without gusset and about 0.37 for prismatic with gusset and about 0.01 for tapered and 

parabolic member which gives the results with very small difference. 

For rotation ratios (rot./6.28), they are equal to 0.25 for prismatic member without 

gusset, 0.215 for prismatic with gusset, 0.0265 for parabolic, and about 0.026 for tapered 

column with gusset.  

The member with gusset gives load capacity higher than that without gusset, while the 

non-prismatic gives more capacity and the tapered member gives nearly, equal stiffness to 

non-linear tapered. 

 
            

 

 

 

 

 

  

  

  

  

  

      

      

      

    
 

Figure (9) Geometry and loading conditions of prismatic and tapered columns 
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Figure (10) Continued 

 
9. Conclusions 
 

1. In all the examples and case studies, the used load incrimentation strategies are 

efficient for enabling the program to estimate the suitable size of load increments and 

the used iterative strategies are efficient for enabling the program to change the load 

level and rapidly achieve the convergence. 

2. Using one element analysis for structures with gusseted members produces higher 

advantage of the software facilities due to the use of single precision in analysis of 

gusseted structures which makes full benefit of the software memory storage capacity 

for matrices dimensions required in the program.  

3. The increase of gusset ratio produces high structure stiffness, which leads to higher 

elastic critical load of the structure, and it produces lower structure deformations due 

to the opposite increase in the structure stiffness. The increase in elastic critical load 

and the amount of deformation decrease varies from a structure to another depending 

on the structure geometry.  

4. The gusseted plate increases the load capacity of the frame and this is   dependent on 

the gusset length and the varying sections of the member.             

 

 

 

 

 

 

 

Rotational ratio of point B, rotation/6.28  
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