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Abstract

In this study, a theoretical analysis is presented for estimating the in-plane large
displacement elastic stability behavior of steel frames having prismatic and non-prismatic
members (Tapered and non-linearly tapered) with end gusseted plates subjected to
increasing static loads.

The analysis adopts the beam-column approach and models the structural members
as beam-column elements. The formulation of the beam-column element is based on
Eulerian approach allowing for the influence of the axial force on bending stiffness. Also,
changes in member chord length due to axial deformation and flexural bowing are taken
into account.

The effect of gusseted plate is taken and the modified stability and bowing functions
are derived for gusset plate with prismatic and non-prismatic members (Tapered and
Non-linearly tapered).

The post-buckling analysis is studied, and the incremental load control with different
load increment strategies and the modified Newton-Raphson method with different iterative
strategies are used to obtain the complete load-displacement curve.

As a result, the beam column approach can be used in the analysis of plane frames
with and without gussets and with any varying section. The ultimate load capacity can be
increased with gusset-plate members.
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+—ntroduction

It is usually convenient to work to frame centerlines, so that the ends of members dealt
within a structural analysis actually lie with the boundaries of the joints. Although the joints
cannot be absolutely rigid, it is more accurate to assume complete rigidity than to assume an
effective rigidity equal to that of the rest of the member. Complete flexural rigidity over given
lengths at the ends of members may be allowed for in the calculations by introducing
modified values of the various stability functions.

The present study allows to analyze structures consisting of members (prismatic and
non-prismatic members of varying sections) with gusset plates by treating it as a single
member, then the results of analysis are compared with exact solution by considering each
member to consist of three elements, one of inner part with classical properties of the member
and two terminal parts with infinite rigidity.

The effect of gusseted plate with prismatic and non-prismatic member is taken and the
modified stability and bowing functions are derived in this study, and it is presented in this

paper.

2. Modified Force-Displacement Relationships for Members with
End Gusset Plates (Non-Prismatic Member)

The member (A’'B") of length (L) shown in Fig.(1) is completely rigid over the length
ends (A'A=glandBB’'=g2). The central length AB=L, has uniform or non-uniform
flexural rigidity (E. I).

1 B' L,
N
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Figure (1) Relative forces in local coordinates for a member with gusset plates

In this study, the non-prismatic member force-deformation relations, obtained from an
application of the conventional beam- column theory by expressing the terminal bending
moments (M1) and (M2) by rotations of 8, and 6, at A’and B’ respectively :

E1 _ _
M1=L—(719A+7293) ................................................................. (§))
o
E1 _ _
M2=L—(Y29A+’Y3GB) ................................................................. (2)
o
u —
L O —— 3)
o

in which (y, and y,) are stability functions for non-prismatic members (tapered or

non-linearly tapered) with end gusset plates expressed in terms of (S1,Sc and S2) as shown in
the following, and A,: is equivalent area of non-prismatic member.

Tm o A T AG" et (4)
UL L

_ Sc  ,S1+Sc,,gl+g2, 2glg2 «

= N R 5
V2= m (g X L, )+ B ()
7= ot 20 O G e (6)

=0 L YL,

where:

. (S1+Sc) =°
el © [N 7
o 5 d ()
while U is the depth factor (U=d1/d2) and m is the shape factor.
where S1, Sc and S2 are modified stability function for non-prismatic member, which are

shown as following:
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3. Modified Stability Function-Approximate Formula (Tapered
Member)

AL-Sarraf @ proposed an approximate formula for the modified stability functions.
These functions are:

ST U L SRR URRRRRRPRt (8)
SC = UM O ittt e e eeaeeessrteessreeessseesssnnee 9)
S, =UMHDMZC e (10)

where: C; and C, are stability functions of prismatic members having load parameter (q):

_ 9 _ Qv
q—U¢—r]r'1/2 , ql_anll ............................................ (11)
The value of (®) depends on the shape factor as follows:
For M4 D ] iiiiiiiiiieiiieeeietereteacncesescnsesassasesassasnsassnsesnns (12)
For M<3 D=1.04+0.08(3-M) ceieiiiininiiiiiiinieieeirneeceeeecncnceesnnen (13)

4. Estimation of Stability Functions using Approximate Method
(Non-Linearly Tapered Member)

To facilitate the estimation of the elastic critical load of structures with non-prismatic
members, it is necessary to tabulate the stability functions. These functions are dependent on
three parameters g, U, and m 11,

It is noticed that the modified stability functions for members with non-linear variation
of sections can be estimated using the relations &:

The value of ¢ depends on the shape factor (m):
A- For members having parabolic distribution of cross section

For M=4  P=0.825 ettt e s e (14)

For M <3 $=0.88-0.284 (3-M) wervreerereerereereneenereeeeesseeeseesseneesenessens (15)
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B- For members having cubic distribution of cross section

For m=4  ¢=0.8429

For m<3 ¢=0.8365-0.036 (m-3)

Figure (2) shows the modified axial force-deformation interaction for a member with
gusset plates. The derivation of the modified axial force-deformation relations for members
with gusset plates gives:

-a-
ot _
» e
| : L‘: - ul.;ar-_-_:@
- - ;VI
b- -c-

Lo =L —01.C0S0, —02.C0S0, veutrirernrierurnrnerarnrsesarnreesasnssssasessscnsessses (18)
¢=glﬂn:f262 ........................................................................ (19)
AU S UL = U2 eiiiiiiiniieiieiieiniinteasessnssnsoassssnsonssssssssssnssnssssnssnsasssosans (20)
Au=(g1-gl.cos8,)~(g2=02.c080,) e (21)
=gl.(1—cosB,)—g2.(1—cos0,)
V,=01.0, +02.0, ceeeiriiiiniiiiiiiiiiiiiiiieiinineenns (22)
U =U-Au=u—[g1.(1-c050,)—g2.(1—-c050,)] ceevererrrreerrreerrreereennn, (23)
U=U;.COSO—V,.SINQ cerrerurniriiniiiieiniiiierarntierurersesasassesasssesnsssasnses (24)
q QG e (25)

T QE rmlE.IL



Journal of Engineering and Development, Vol. 10, No. 3, September (2006) ISSN 1813-7822

Equation (25) can be rewritten as:

A2 U —
q = _Z(I___ Cb) ............................................................... (26)
(@]
while =0 = o e 27)

and L,=L-g1-g2

For non-prismatic member with gusset plates, assuming®, =0, and 6, =0,, then the
derivation of the length correction factor due to bowing actions is shown below:

Ch=(B,.07+2B,.0,.0, + PB5.03) ceererrreeeeeirieeeeeriereereneeeeernaeeeeeennan (28)

where: T, Cb : are the modified axial deformation in a member with gusset plate due to axial

force, and the length correction factor due to bowing action which have been derived with the
modified stability functions, respectively.

While B, is a modified bowing function for non-prismatic member with gusset plate,
which is derived in the next paragraph in this paper.
A, : is equivalent area depending on the shape factor (n) as follows:

u-1)
lLFor  n=l,  U>1, A, = (7—7*A2 ......................................... (29)
In(U
IlLFor n=l1, U>1, A, = (Uu"iz(l 1”)*A2 ................................. (30)
. For  U=1, Ap=A, O Ar=A, e (31)
o
Z . teteetesetas i s et et e st bbb bas b e s e bas e ban b s e basbenan (32)
logU
where:

Al and A2: are the areas of larger and smaller depth for non-prismatic member respectively.
The non-prismatic member is shown in Fig.(3).
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Figure (3) Non-prismatic beam-column element
5. Modified Bowing Functions for Non-Prismatic Member with End
Gusset Plates

In this study, the derivation of modified bowing functions for a non-prismatic member
which takes into account the effect of the gusset plates are shown below:

while ¥; is the first derivative of the stability function with gusset plates.

=0 (2—d).m/4 ~r
Y. =U .C,

.................................................................. (34)
Rl U O ROt (35)
T U oL (36)

where:

¢: is a factor depending on the shape factor and the degree of variation of the section
(i.e.tapered or non-linearly tapered).

C/ : is the first derivative of the modified stability function for prismatic member with gusset
plates.

The modified bowing functions for a non-prismatic member with gusset plates become:
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_y@e)m/a

Bl == 2—1t2 E{ ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo (37)
_ _ya-emia

, = 2—11:2 Gttt ettt e e e e sae (38)
y-em/4) _,

B, = o R (39)

While the modified stability functions for a prismatic member with gusset plates are [

— 201 gl
O T el (110 e 10 o 40
1 =Cy+ (1 T)Ag (40)

O O

1+92, 29192
(539 + =59 Ag

E2 = Cz + (Cl + Cz)
Lo

(e]
where: C; and Coare stability functions for a prismatic member without gusset plates.

The tangent stiffness matrix for non-prismatic member (tapered and non-linearly
tapered) with gusseted plate is derived as below:

_— Gl _ N G1.G2 G1
Y1 ’J Y2 lzl_zl E
E.l11 _ G2 G2
[t] _ 5 Vst e e R (42)
o nH H
Symetric n—z
A
where:
Gl=-2m(B,.0,+B,0,) = 71.0, + 750, weueereerrneeeerrrneeeeernneeeerenneeaeens (43)
G2=-21"(B,.0, + P5.8,) =750, 750, weeerrreerrnererrneeernerereneeernneeennns (44)
J— nz — — —
H =?+(B{.ef+2B2'.91.92+B§.9§) ................................................ (45)
I o R (46)

where (C!) is the derivation of (C, ) with respect to (q) and the derivation is shown below:
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-, ., ,201 2g1* ., ., w
C=C+(2+9 LT R —— (47)
o O
— . w . 0l+92. 291g92,., ., w
C=C,+(C +C,). 95, B L — (48)
(@] (o]
2
Cr=Cr+ (P9 L 29 (I Cl) e, (49)
(@] O
Cr=Cra(Cr+C(BE92) 20102 o omy e (50)
LO I_O

where: Cl'and C" are shown in reference [,

6. Modified Tangent Stiffness Matrices for Non-Prismatic Member with
Gusset Plates

Introducing the notation:

u=6, ,u,=6, ,u3=Li and S1=M1,52=M2,S3=Q.L,
(o]

Then making use of equation t; = ? 668 sq ............................................... (51)
u.  oq ou

J

As defined previously, the modified member tangent stiffness matrix including the
effect of gusset plates would be:

. G1 G1.G2 G1
Y, + q 2+ EZH _ﬁ
E.ll _ G2? G2
[t] — 3 Vs + e | (52)
(@]
TCZ
Symetric —
y H
where:
Gl= —2152(31.9l + BZ 0,) =710, F 750, s (53)
G2=-21"(B,.0, + B5.8,) =750, 5.0, correeeeereeeeeeee e, (54)
JR— 2 [— — —
H= ? (B;.ef +2B3,.0,.0, + B;.eg) ................................................................. (55)
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7. Post-Buckling Analysis

It is the consequence of any discrete formulation (e.g. the finite element method), that
the deformation of a given structure is described by a set of (N) deformation parameters,
which are also called generalized coordinates. In this context, the load-deformation history of
a structure presents itself as a curve in a (N+1) dimensional space spanned by the deformation
parameters and the magnitude of the applied loads. Such a curve is usually referred to as
equilibrium path or deformation path. The problem of elastic stability is intimately connected
with singularities that occur somewhere along the path under consideration. These singular
points are better known as critical points. Well known is their classification into limit points
and bifurcation points. In principle, the elastic stability formulations should be relevant to the
problem at hand and should have the capability of:

1. Computing the critical points, i.e. limit or bifurcation points
2. Tracing parts of the path or paths (branches) connected with these points.

From another point of view, the method should have the capability of computing
post-buckling.

It is clear now that there are two distinct strategies required for the successful
completion of a single load increment in an incremental- iterative method:

1. Selection of a suitable external load increment for the first iterative cycle. The chosen
increment is termed as an initial load increment and a particular strategy used to
determine it is termed a load incrimentation strategy.

2. Selection of an appropriate iterative strategy for application in subsequent iterative cycles
with the aim of restoring equilibrium as rapidly as possible. If iterations are performed on
the load parameter as well as the nodal displacement, an additional constraint equation
involving the change in the load parameter is required. It is the form of this constraint
equation that distinguishes the various iterative strategies.

7-1 Incrimentation of the External Work
The initial load increment is chosen so as to limit the incremental work AW, performed
by the applied external loads. The incremental work for the ith load step is computed by ®':
Jd
AW, = AWi_l(J—)B .................................................................... (57)

i-1

and AM is calculated by:

+ AW
AN = et e e eere e ea e ea e e aa e e aaaas (58)

F v

10
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The procedure is initiated by the computation of AW, from Eq. (58) using specified

starting load level AL .

7-2 Iteration at Constant External Work
Iteration at constant external work is an example of the general method described by

Powell and Simons '®!, and for an increment AM{F, }. of external load, the quantity:

AW, = AN F FHAVE ot (59)

is an incremental work term. If the external work is to remain unchanged during equilibrium
iterations, then AW, = 0. The expression for the iterative change in the load parameter AL,
is:

A}\,j _ {Fr };r {Avr }f (60)

S T R

A description of the incremental-iterative method for a single load increment i follows.
It is assumed that perfect convergence has been achieved at the conclusion of the (i-1)th load

increment, so that the solution (A, , {v}; ;) is known to satisfy total equilibrium. At the first
iterative cycle (j=1), the new load increment commences with the computation of the tangent
stiffness matriX[T]|, is based on the known displacements and forces at conclusion of the

previous load increment. The (tangent displacement), {Vt }i for this load increment are then

computed as the solution of !

[T]i {Vt}i = {Fr }i ..................................................................... (61)

in which {Fr }i is the reference external load vector, typically as specified in the input data for

the problem. Next, the value of the initial load increment AX’ is determined according to a
particular load incrimentation strategy.

11
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8. Results and Discussions

8-1 Elastic Large Displacement and Post-Buckling Analysis of Plane
Structure with Prismatic and Non-prismatic Varying Section
(With Gusseted Plate)

EX.1: Gusseted Williams Toggle Frame

This case study aims to examine the reliability of the modified derived tangent stiffness
matrix for members with gusset plates and to check the efficiency of the proposed modified
elastic bowing functions. It also checks the accuracy of the method with highly nonlinear
structure. Figure (4) shows the geometry and loading conditions of Williams toggle frame,
which is analyzed using the present method with post-buckling behavior. This frame is
analyzed in this study using the modified method with 2-elements compared with 6-elements
for the whole frame (i.e. each member consists of 3-elements, the medium part with the
classical properties of the member and two hug edge members represent the rigid gusset
plates). Also, the results are compared with AL-Barazanji !, who used 2-elements and
modified method for prismatic member only. Good agreements are shown for these methods
of analysis when (g/L=0.1), as shown in Fig.(5). This figure shows the complete path of
load-displacement curve in the present study when using 2 or 6 elements, as compared with
AL-Barazanji ™, since the post-buckling is used in this study. Figure (6) shows the
load-displacement relationship with and without gusset effect with post buckling in this study
(i.e. g/L=0.1 and g/L=0). In this modified method (U=1) is taken.

L=328.575mm

F=70.9064 KN/mm

1=374.77 mmi'

A=118 mm?

Ag=100.A,Ig=101
e =1.71°

Figure (4) Geometry and loading conditions

12
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500.00 —
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w Present study (6-elements)
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350.00 —

£ 30000
D_ .
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T 25000 —
— .
200.00 —|
150.00 —
100.00 —
50.00 —
0.00 — T
0.00 2.00 4.00 6.00 800 1000  12.00  14.00
Vertical displacement of point B (mm)
Figure (5) Load-displacement curves
600.00
7 present study (modified 2-elements)
500.00 — —@— with gusset (g/L=0.1)
—¥— without gusset (g=0)
400.00 —
z
a
< 30000 —
&
o
-
200.00 —
100.00 —

0.00

0.00 2.00 4.00 6.00 800 10.00 12.00 14.00 16.00 18.00 20.00
Vertical displacement of point B (mm)

Figure (6) Load-displacement curves with gusseted effect

Ex.2: Effect of Gusseted Plate Length on Member Capacity

Figure (7) shows the geometry and loading conditions of toggle frame with different
gusset lengths, g1 and g2. Figure (8) shows the load-displacement curves for vertical
displacement at point B with different gusset lengths. The post-buckling, which is taken in
this study appears in these curves. The load-capacity is increased when gusset length is
increased.

Also, it is noticed that when gusset length (g1=0.2L), the structure becomes more stiff,
and the load-capacity is increased.

13
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L.=318.575 mm
E=200KN/mm’
1=374.77 mni
A=118 mm’
=171

Figure (7) Geometry and loading

1600.00

without gusseted

with gusseted (g1=g2=0.1L)
with gusseted (g1=g2=0.2L)
with gusseted (g1=0.1L, g2=0.2L

THEYS

with gusseted (g1=0.2L, g2=0.1L)

Load P (N)

400.00

200.00

0.00 \ \ \ \

0.00 4.00 8.00 12.00 16.00 20.00
Vertical displacement of point B (mm)

Figure (8) The effect of gusseted plate length on load-displacement curves

Ex.3: Effect of using Different Types of Variation of Cross-Section (Prismatic,
Tapered and Nonlinear Tapered) with Gusseted Plate

The effect of prismatic or non-prismatic (linear and non-linear tapered) is very important
for load carrying capacity. In this problem, three cases of column are taken, prismatic (U=1),
tapered (U=2) and non-linear tapered (U=2) with parabolic distribution. The gusset ratio for
length 0.1 is taken as shown in Fig.(9), for geometry and loading conditions and one gusset
element for modified stability function is used for representing the columns. The displacement
ratio for horizontal, vertical and rotation is shown in Fig.(10) respectively. From the results
shown in Fig.(10), it is shown that for horizontal displacement ratio u/L= 0.775 for prismatic
without gusset and 0.65 for prismatic with gusset and 0.1 for parabolic member with gusset
and 0.085 for tapered with gusset for the same value of load which is 20000 kN at point B.

14
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For vertical displacement ratio, it is shown that V/L=0.567 for prismatic member
without gusset and about 0.37 for prismatic with gusset and about 0.01 for tapered and
parabolic member which gives the results with very small difference.

For rotation ratios (rot./6.28), they are equal to 0.25 for prismatic member without
gusset, 0.215 for prismatic with gusset, 0.0265 for parabolic, and about 0.026 for tapered
column with gusset.

The member with gusset gives load capacity higher than that without gusset, while the
non-prismatic gives more capacity and the tapered member gives nearly, equal stiffness to
non-linear tapered.

L=10m
p P p  E=208 KN/mm?
| ' _L m=4 (circular gec.)
r.Poeyen - Tr.P 17—L r.P A=196250 mm
B B 1B 123066406250 mm?
g/L=0.1, r=0.5
T=06.28
L
g 'I _WJW’WW‘.W ! —_ i N T i I,
Prismatic Tapered column Non-linear tapered
column U=2,D=0.5-1 m (parabolic dist.)
m=4 U=2, D=0.5-1m
m=4
[
' (O
le—>
D
Cross-sec.

Figure (9) Geometry and loading conditions of prismatic and tapered columns

15
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25000.00

22500.00 —

20000.00 —

17500.00 —

15000.00 —

12500.00 —

Load P (KN)

10000.00 —

without gusset, U=1, (prismatic)

_e—
5000.00 — —¥K— with gusset, U=1, (prismatic)
_ A
+
\

with gusset, U=2, (Tapered)

2500.00 with gusset, U=2, (parabolic variation section)

0.00

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Rotational ratio of point B, rotation/6.28
Figure (10) Continued

9. Conclusions

1.

In all the examples and case studies, the used load incrimentation strategies are
efficient for enabling the program to estimate the suitable size of load increments and
the used iterative strategies are efficient for enabling the program to change the load
level and rapidly achieve the convergence.

Using one element analysis for structures with gusseted members produces higher
advantage of the software facilities due to the use of single precision in analysis of
gusseted structures which makes full benefit of the software memory storage capacity
for matrices dimensions required in the program.

The increase of gusset ratio produces high structure stiffness, which leads to higher
elastic critical load of the structure, and it produces lower structure deformations due
to the opposite increase in the structure stiffness. The increase in elastic critical load
and the amount of deformation decrease varies from a structure to another depending
on the structure geometry.

The gusseted plate increases the load capacity of the frame and this is dependent on
the gusset length and the varying sections of the member.

16
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