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Digital Image Compression Using Fourier Transform  
and Wavelet Technique 

 
 

 

 

 

 

 

 

 

 

Abstract 
 

Fourier analysis and wavelet analysis have often been used in time series analysis. 

Fourier analysis can be used to detect periodic components that have sinusoidal shape. 

However, it might be misleading when the periodic components are not sinusoidal. The 

resulting Fourier analysis is more difficult to interpret compared with classical Fourier 

analysis. Wavelet analysis is very useful in analyzing and describing time series with 

gradual frequency changes. Wavelet analysis also has a shortcoming by giving no exact 

meaning to the concept of frequency because wavelets are not periodic functions. In 

addition, the two analysis methods above require equally-spaced time series observations.  

In this paper, by using a sequence of periodic step functions, a new analysis method, 

adaptive Fourier analysis, and its theory are developed. These can be applied to time series 

data where patterns may take general periodic shapes that include sinusoids as special 

cases. Most importantly, the resulting adaptive Fourier analysis does not require       

equally-spaced time series observations. To do statistic test for periodic components, the 

adaptive Fourier analysis are needs. People can approximate a function by polynomials, 

sinusoid, step functions, and we used wavelets and apply the approximate to nonparametric 

regression, nonparametric regression by the step function. 

In this work we used adaptive Fourier analysis would be applied for many image to 

compared data observation will be take fewer degree of foredoom. 
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إن تحليل فورير وتحليل تقنية المويجة في اغلب الأحيان تستعمل في تحليل دالة زمنية . أن تحليل فورير يمكن أن 
بي، ولكن عندما تكون المكونات غير جيبية فأن الناتج يكون يستعمل لاكتشاف المكونات الدورية التي لها الشكل الجي

مظلل. إن تحليل فورير كلاسيكي وأن تحليل تقنية المويجة مفيد جدا في وصف المتوالية الزمنية مع التردد التدريجي يكون 
غير دورية،  متغير غير أن له عيبا بوجود أخطاء غير مضبوطة. ويقصد بمفهوم التردد لأن في تقنية المويجة تكون

 بالإضافة إلى أن الطريقتين تتطلب ملاحظات المتوالية الزمنية المتباعدة إلى حد سواء. 
في هذا البحث سيتم تعريف نظرية جديدة سميت )بتحليل فورير المتطور( حيث يمكن أن يقدم بيانات زمنية 

الات الخاصة. والاهم من ذلك أن  النتائج متوالية في أنماط قد تتخذ أشكال دورية عامة التي تتضمن موجات جيبية للح
  .وكما أن فحص النماذج يتم بهذه الطريقةلملاحظتها،  المحللة بطريقة فورير لا تتطلب فاصل زمني متتالي

                                                                            أن كثير من الطرق المعروفة من التحليل يكون اقل كفاءة من طريقة انحسار الأجزاء في تطبيق
Adaptive Fourier Analysis) ) والتي طبقت على كثير من الصور في هذا العمل والتي كانت نتائجها أكثر دقة

 ودرجة اقل من الحرية وفاصل زمني قليل للمعالجة.
 

1. Introduction 
 

The digital cameras, scanners and camera phones have made the capture, display, 

storage and transmission of images, a routine experience. In addition, imaging is extensively 

used in medicine, law enforcement, Internet gaming and 
[1]

 data collected by satellites. 

Despite rapid improvements in data storage
 
processing speeds, and digital communication 

system performance, this proliferation of digital media often outstrips the amount of data 

storage and transmission capacities. Thus, the compression of such signals has assumed great 

importance in the use, storage and transmission of digital images. For still images, the JPEG 

and the GIF standards have been the prevailing norms for lossy and lossless compression. 

Recently, wavelet-based lossy compression schemes have been gaining popularity over 

discrete cosine transform (DCT) due to their lower complexity and better image quality      

vis-a-vis compression ratio. For image compression applications, it is vital that a               

non-expansive (i.e. the total number of input samples is equal to the total number of wavelet 

coefficients at any point during the decomposition process) discrete wavelet transform (DWT) 

be employed; If orthogonal wavelets were able to employ symmetric extension, then perhaps 

their unique advantages (energy preserving, decorrelating, simple inverse) would outweigh 

advantages of the biorthogonal wavelets (linear phase). Thus, some unresolved questions may 

now be addressed. This paper presents and compares different DWT implementation 

techniques as well as compares the performance of orthogonal and biorthogonal wavelets with 

symmetric extension 
[2]

. 
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2. Theory of Data Analysis Method 

 

2-1 Fourier Analysis 

The basic idea of a Fourier series is that any function ].0[)( 2 TLtx  can be decomposed 

into an infinite sum of cosine and sine functions: 
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This is due to the fact that { } form a basis for the space L
2
 

[0,T]. The summation in (1) is up to infinity, but x(t) can be well approximated in the L
2 

sense 

by a finite sum with K cosine and sine functions: 
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This decomposition shows that x(t) can be approximated by a sum of sinusoidal shapes 

at frequencies kkTkk ,...,1,0,/2   . In addition, the variability in x(t) as measured by 


t

0

2
dt)t(x

 can be approximately partitioned into the sum of the variability of the sinusoidal 

shapes: 
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A standard technique of time series analysis is to treat the partition in equation (5) as an 

analysis of variance (ANOVA) for identifying sinusoidal periodicities in a time series data set 

{ x(t), 0< t  x(t) has sharp discontinuities or a non-sinusoidal waveform, such as 

a rectangular waveform, then we would require a very large number, K, of terms in its Fourier 

series in order to get an adequate approximation 
[3]

. 
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2-2 Discrete Fourier Transform (DFT) 

For an arbitrary time series data set, x = ( x(t1 ), x(t2 ), …, x(tN )), if the observation times 

are equally spaced, at interval t, then the data set x can be simply written as  x = ( x(1), x(2), 

…, x(N) ) by taking t =1 and t j =j; and there is an orthogonal system   

}ddoisnif
2

1N
k

2

1N
andevenisnif

2

N
k1

2

N
:

wkit
e{







 , so that the Discrete 

Fourier Transform of x can be defined by: 

 







N

1t

itw* ke)t(x
N

1
)k(X  ………………………………………………………... (6) 

 

where: the frequencies wk =2k/N, k=0,1, …, [N/2], are called the Fourier frequencies; and  

[r] is the largest integer no larger than r. The Fourier series of x(t) can be written as: 
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Corresponding to (5), we have the ANOVA 

 

2
]2/N[

]2/)1N(N[k

*
N

1t

2
|)k(X|N)t(x 



  ……………………………………… (8) 

 

This representation provides an ANOVA for revealing how well the periodicities in x 

may be described by the sinusoidal shapes kk itwitw
ekXekX )()( **   . The ANOVA 

decomposition in (8) holds only if the DFT, X
*
 (t), is evaluated only at a fixed set of N/2 

equally-spaced frequencies wk, and the data set must be equally-spaced. 

 

2-3 Image Compression Using Fast Fourier Transform (FFT) 

In the JPEG image compression algorithm, the input image is divided into 8-by-8 or   

16-by-16 blocks, and the two-dimensional DCT is computed for each block. The DCT 

coefficients are then quantized, coded, and transmitted. The JPEG receiver (or JPEG file 

reader) decodes the quantized DCT coefficients, computes the inverse two-dimensional DCT 

of each block, and then puts the blocks back together into a single image. For typical images, 

many of the DCT coefficients have values close to zero; these coefficients can be discarded 

without seriously affecting the quality of the reconstructed image. The computes of           

two-dimensional DCT of 8-by-8 blocks in the input image is done by discards (sets to zero) 

all but 10 of the 64 DCT coefficients in each block; and then reconstructs the image using the 

two-dimensional inverse DCT of each block. Although there is some loss of quality in the 
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reconstructed image, it is clearly recognizable, even though almost 85% of the DCT 

coefficients were discarded. To experiment with discarding more or fewer coefficients, and to 

apply this technique to other images 
[1]

. The image compression is shown in Fig.(1). 

 

     

 

                     Image before compression                                                      Image after compression 
 

Figure (1) The image before and after compression 

 
2-4 Wavelet Analysis 

Wavelet analysis is to decompose a given function x(t) L2 into a sum of wavelet 

functions. It involves a mother wavelet ψt), which may be any real or complex continuous 

function that satisfies certain conditions, such as 
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. Wavelets are 

themselves derived from their mother wavelet ψ(t) by translations and dilations. The Haar 

function can be a mother wavelet defined by: 
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Another commonly used wavelet is Morlet wavelet defined as: 

 

)t885.2(cose)2ln/2t(cose)t(
22

tt    …………………………... (10) 

 

Four different mother wavelets: Haar, Daublet, Symmlet, and Coiflet are shown in 

Fig.(2), where the first letter of the wavelet indicates the name: d for Daublet, s for Symmlet, 

and c for Coiflet; the number of the wavelet indicates its width and smoothness 
[2]. Given a 

mother wavelet ψ(t), an infinite sequence of wavelets can be constructed by varying 

translations b and dilations a as below: 
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By defining the continuous wavelet transform W(a,b) as: 
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where: 

 

 
 

 
Figure (2) Four different mother wavelets 
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When a and b take on discrete sets of values, we can similarly obtain the discrete 

wavelet transform as: 
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For an equally spaced time series data x =(x(1), x(2), …, x(N)), we can take approximate 

wavelet transforms by replacing (13) by an estimate such as: 
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It follows that a class of discrete wavelet transform (DWT) for equally spaced time 

series data can be implemented by using an efficient computational algorithm
 [2,3]

.  

An example of wavelet is given in Fig.(2). In the example, the signal is                          

ss =10*cos ( *t/15)+3*cos( *t/10), which is plotted in Fig.(3). 

 

 

Figure (3) The signal ss =10*cos (*t/15)+3*cos(*t/10) 
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2-4-1 Image Compression Using Wavelet Transform 

This research is based on the Image Wavelet Compression C code, which is provided by 

Honeywell Technology Center 
[4]

. The IWC code contains all the routines required for a 

simple wavelet-based image compression of a 512x512 8-bit pixel image in PGM format. The 

compression process consists of four basic steps: wavelet transform, quantization, run-length 

encoding, and entropy coding. This is shown in Fig.(4). The IWC code accepts an optional 

compression-factor parameter specifying how aggressively the image should be compressed. 

A compression factor indicates minimal compression and maximum image quality. The 

compression factor of 255 indicates maximum compression with higher degradation to the 

image quality. If the compression factor is not indicated, a default compression rate of 128 

will be used. The compressed output image file format is specific to this program
 [4]

. 

 

 

Figure (4) Image wavelet compression 

 
2-4-2 Wavelet Transform Routine 

The first step, the wavelet transform routine process, is a modified version of the 

biorthogonal Cohen-Daubechies-Feuvear wavelet. Wavelet transforms have received 

significant attention and are widely used for signal and image processing. For example, they 

are widely used in image coding, image compression, and speech discrimination. The basic 

concept behind wavelet transform is to hierarchically decompose an input signal into a series 

of successively lower resolution reference signals and their associated detail signals. At each 

level, the reference signal and the detail signal contain the information needed to reconstruct 

the reference signal at the next higher resolution level 
[5]

. 

 

2-4-3 One-Dimensional Wavelet Transform 

The one-dimensional discrete wavelet transform can be described in terms of a filter 

band as shown in Fig.(5). An input signal x[n] is applied to the low pass filter l[n] and to the 

analysis high-pass filter h[n]. The odd samples of the outputs of these filters are then 

discarded, corresponding to a decimation factor of two. The decimated outputs of these filters 

constitute the reference signal r[k] and the detail signal d[k] for a new-level of 

decomposition. During reconstruction, interpolation by a factor of two is performed, followed 
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by filtering using the low pass and high-pass synthesis filters l[n] and h[n]. Finally, the 

outputs of the two synthesis filters are added together 
[6]

. 

 

 
 

Figure (5) One-dimensional wavelet transforms 

 
The above procedure can be expressed mathematically in the following equations: 
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2-4-4 Multilevel Decomposition Wavelet Transform 

For a multilevel decomposition, the above process is repeated. The previous level’s 

lower resolution reference signal ri[n] becomes the next level sub-sampling input, and its 

associated detail signal di[n] is obtained after each level filtering. Figure (6) illustrates this 

procedure. The original signal x[n] is input into the low-pass filter l[n] and the high-pass filter 

h[n]. After three levels of decomposition, a reference signal r3[n] with the resolution reduced 

by a factor of 2
3
 and detail signals d3[n], d2[n], d1[n] are obtained. These signals can be used 

for signal reconstruction. 

 

 
 

Figure (6) Three-level decomposition for wavelet transforms 
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The wavelet transform routine in the IWC code employs a shifting scheme to simplify 

the wavelet implementation. Therefore, it only requires integer adds and shifts, which make it 

easier to implement on hardware. The computation of the wavelet filter is performed 

according to the following equations. 

 

00000 SSDDD   …………………………………………………….. (20) 

 

)8/D*2(SS 000   ………………………………………………………… (21) 

 

1iiiii SSDDD   …………………………………………………….. (22) 

 

)8/)DD((SS i1iii   …………………………………………………… (23) 

 

In the above equations, Di and Si are odd and even pixels taken from one row or column. 

For every row or column do: 

So Do S1 D1 S2 D2 S3 D3 ... respectively. In image compression, one row or column of an 

image is regarded as a signal. 

Calculation of the wavelet transform requires pixels taken from one row or column at a 

time. In Equations (20) (23). iD  should be calculated before processing iS . Therefore, the 

odd pixel should be processed first, then the even pixel due to the data dependency. There are 

a total of three levels based on the 3-level decomposition wavelet transform algorithm 

discussed above. In each level, the rows are processed first then the columns. Each level’s 

signal length (amount of each row/column pixels) is half of the previous level. Equations 

(20) (23) are grouped into a function called image compression by MATLAB program.  

Figure (7) illustrates the three levels of wavelet transform implementation, and Fig.(8) 

shows compressed image by Haar class. 

 

 

Figure (7) Wavelet transforms implementation 



Journal of Engineering and Development, Vol. 10, No. 4, December (2006)            ISSN 1813-7822 
 

 163 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (8) Image compression (200*200) analyzed at level 2 with Haar 

 
2-5 Quantization Routine 

After the three levels of the wavelet transform, the quantization routine follows. During 

the quantization routine, the original image is divided into 10 blocks; the first four will be 64 

x 64 pixels (4096 pixels), then three will be 128 x 128 (16384 pixels), and the remaining three 

of 256 x 256 pixels (65536 pixels). Every block executes the same quantization process. 

Figure (9), illustrates this as a block diagram. Before processing each block, some parameters 

should be prepared. First is the blockthresh, which should be provided by the developer. An 

array is used to hold these 10 block 
[7]

. 
 

Blockthresh [10] = {0, 39, 27, 104, 79, 51, 191, 99999, 99999, 99999} 

 

 

Figure (9) Output of 1-level 2-D decomposition 

Compress 
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thresh1~thresh16; the formula to calculate these values are as follows: 

 

16~1:n,
2

8nmin).(max
minthresh

4n


  …………………………... (24) 

 

The threshn is the nth thresh value in a block, and n value is from 1 to 16. Values min 

and max are the minimal and maximum pixel values within this block. After these numbers 

are computed, each block can run the quantization process. First, each input pixel’s absolute 

value is compared with its corresponding blockthresh [n], if it is smaller than the blockthresh 

value, the original pixel value is assigned to a constant value ZERO_MARK, which should be 

defined by the user. In this work, this is assigned a value of 16. If the abs (pixel) value is not 

smaller than the blockthresh value, the pixel will be passed called “image compression”. The 

original pixel value will then be changed into its corresponding threshn value after this call. 

The pseudo code to represent the above calculation is shown in Fig.(10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure (10) Represent compression by DWL 
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3. Conclusion 
 

This work has identified and explained new parameters and techniques that are critical 

to high quality image compression performance. Although this work illustrates improved 

image compression performance for orthogonal wavelets, the develop theory and methods can 

be applied to equally and unequally-spaced time series in which the frequency components of 

time series may take general periodic shapes that include sinusoidal as special case.   
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