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Abstract 
 

Investigation of eddy-current problems through a thick sheet is presented based on 

the development of a complementary formulation for electric and magnetic field intensities. 

These two types of formulation (systems) can be solved independently and the two solutions 

complement each other.  

A comparison is made using a single variational principle, which involves both 

complementary systems simultaneously. Accurate results are given for estimating the 

resistance and inductance through which the eddy current can be estimated. 
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 الاغ مهيتية و الهك يامن  ن هتهخ ا ثشم  ا ف    و اهاا    هام للآخ . 

 ههف  ل همئج قيا  قيقة ل تمب ااملا الد ائ    لاممسئدة للوتده ثمتدهخ اا مدلا  ل لدين و الهدك هاود  امتدلوب  ماود  
 لاا سة  لهيم اف  ل وااة.

Asst. Prof. Dr. Adil H. Ahmed 
Electronic and Electrical Engineering Dept. 

University of Technology, Baghdad, Iraq 

 

Asst. Prof. Dr. Essam M. Abdul-Baki 
 Electrical Engineering Dept., College of Eng. 

Al-Mustansiriya University, Baghdad, Iraq 



Journal of Engineering and Development, Vol. 10, No. 4, December (2006)            ISSN 1813-7822 
 

 54 

1. Introduction 
 

A characteristic of magnetic materials that is very significant in the energy efficiency of 

an electromagnetic device is the energy loss within the magnetic material itself. The 

theoretical description of the basic mechanism that results in magnetic material losses can be 

given as a simple explanation where the energy is used to effect magnetic domain wall motion 

as the domains grow and rotate under the influence of an externally applied magnetic field. 

When the external field is reduced or reversed from a given value, domain wall motion is 

irreversible and manifests itself as heat within the magnetic material. The rate at which the 

external field is changed has a strong influence on the magnitude of the loss, and the loss is 

generally affected by the frequency of the variation of the magnetic field and the electric 

conductivity of the magnetic material. 

Eddy current losses are caused by induced electric currents; they tend to flow in closed 

paths within the magnetic material itself. The eddy current is roughly proportional to the 

square of the lamination thickness and inversely proportional to the electric resistivity of the 

material, an empirical relationship can be expressed for this eddy current loss which 

proportional to the square for both the frequency and the maximum value of the magnetic flux 

density 
[1]

. 

Different efforts using analytical and numerical methods were focused for estimating 

eddy current losses for bounding problems 
[2-5]

. Other approaches give an estimating value for 

eddy current problems using the complementary functional for bounding formulation 

problems 
[6-9]

. 

In this work, a complementary formulation for non-bounding problems and the solution 

with error-based approach is given. This formulation includes the E-system and the H-system 

as an independently solvable complementary variational principle to be suitable for thick 

sheet analysis. A single variational principle that involves both complementary systems 

simultaneously is presented too. Computational results for the resistance and inductance and 

the energy loss associated with are demonstrated using both techniques, the single and the 

complementary solutions. 

 

2. Formulation of the Problem 
 

The considered problem is a thick conducting sheet oriented as shown in Fig.(1). It has a 

total thickness of 2b in the y-direction and extends indefinitely along the x-and z-axes. It 

carries a specified surface current density k per unit width flowing in the z-direction. There 

are two thin trips at the top and bottom of the sheet with thickness (a) due to the effect of high 

frequency; hence all fields are largely confined to these two thin trips.  
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Figure (1) Geometry of the problem 

 

For harmonic (sinusoidal) variation fields, Maxwell's equations can be expressed as: 

 

JHHCurl   ………………………………………………………….. (1) 

 

BjEECurl  ………………………………………………………. (2) 

 

Constitutive relationships relating the electric and magnetic systems are: 
 

HB  ,  EJ   

and   BH  ,           JE   
 

 : Conductivity of the sheet material,  

 : Permeability, and  

 : angular frequency.  

H,E : Electric and magnetic field intensities,  

B : Magnetic flux density,  

J : Current density. 
 

Due to the problem geometry, the fields vary with y only and each field has only one 

component, so the resulting components are; 
 

aX
)y(HH  ,  aZ

)y(EE  , and  aZ
)y(JJ  , with the aid of equations (1) and (2) 

we get: 

 

J
dy

dH
  ……………………………………………………………………… (3) 

 

  and Bj
dy

dE
  ………………………………………………………………….. (4) 

 

Using the boundary conditions: 0En  and 0Hn  at the front and rear surfaces, 

and Hn at the top and bottom surfaces is constant on each, then we get. 
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2

k
)b(H)b(H   ………………………………………………………….. (5) 

 

This relation belongs to the H-system where the H-system contains H, J and equations 

(1) and (3) while the E-system contains E, B and equations (2) and (4). 

H(y) and E(y) can be represented as polynomials in y using simple numerical     

solutions 
[1]

, 

 

   5
5

3
31

5
5

3
31 yqyqyqjyPyPyP)y(H    …………………………… (6) 

 

   4
4

2
2O

4
4

2
2O ysyssjyryrr)y(E    ……………………………... (7) 

 

Using equations (6) and (7) in equations (3) and (4) to get J and B for the H-system and 

the E-system respectively 

 

   4
5

2
31

4
5

2
31 yq5yq3qjyP5yP3P)y(J    ……………………….. (8) 

 

and: 
 

   3
42

3
42 ys4ys2

j
yr4yr2

1
)y(B 





   …………………………………. (9) 

 

Apply equation (5) for the H-system then: 

 

   
2

k
bqbqbqjbPbPbP

5
5

3
31

5
5

3
31    ……………………………… (10) 

 

Equation (8), (9) and (10) can be used for the independent H-system and E-system. 

To get the complementary variational principles we can use the variational principle in 

its general in its general relation as: 
 

0  , where:   is the complex phasor associated with the sinusoidal component. 

This principle can be split into complementary variational principles as: 

 

 































  dVE.E

j

1
B.BdVJ.J

j

1
H.H

2

1
E,H

 dsE.Hn
j

1
 


  ………………………………………………………... (11)                                                                         

 

So   )()(, 21 EkHkEH   where: 
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  dVJ.J
j

1
H.H

2

1
Hk1  











  ……………………………………………. (12)  

 

and:  
 

   dsE.Hn
jw

1
dVE.E

j

1
B.B

2

1
Ek2  











  …………………... (13) 

 

k1 and  k2 are complementary functional. All the quantities 21 ,,,,,, kkJBEH  are complex 

phasors. Therefore: 

  0Hk1       and,       0Ek2   

 

These are the complementary variational principles, which can be solved independently 

of each other. 

 

3. Complementary Solutions 
 

In this section, the complementary solutions will be described in terms of the estimated 

values of resistance and inductance. The exact solutions of R and L are given as 
[10,11]

: 

 

















coscosh

sinsinh

2

1
R  …………………………………………………….. (14) 

 

and: 
 

















coscosh

sinsinh

2

1
L  …………………………………………………... (15) 

 

where: 



b2

  and f  =Depth of penetration. These values can be compared with the 

estimated values in the complementary systems where the resistance represented as: 

 

  dV
A

J.J
HR 




         For the H-system ………………………………… (16) 

 

  dV
A

E.E
ER 




         For the E-system …………………………………. (17) 

 

While the inductance is given by: 

 

  




 dV
A

H.H
HL       and,      dV

A

B.B
EL 




    and,   
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2
IA   …………………………………......................................................... (18) 

 

at the exact solution RERHR  )()(  exact, and     LELHL   exact. 

All the numerical formulation of R and L can be evaluated once the parameters, P, q, r, s 

are obtained from the solution. 

Using equations (14-18) with equations (6-9) then a resulting numerical and exact value 

of resistance and inductance can be estimated at different values of sheet thickness and for 

any order of polynomial for both systems. 

 

4. Thick Sheet 
 

At high values of the ratio  b , the exact values for resistance and inductance approach 

are respectively, direct and inverse proportionality to  b . Using the exact relations for R and 

L, (equations (14, 15)) it is found that, at   1b  then: 

  dcRbR                     where:      



b2

1
Rdc   

and      dcLb5.1L             where:          6bLdc   

 

The high ratio is obtained from a thick sheet or, equivalently, at high frequency. The 

current, and hence all fields are largely confined to two thin strips at the top and bottom of the 

sheet. The trial function equations (6-10) should be modified at high values of  b . The 

modified trial functions to Fig. 1 as follows 
[1]

: 

 

      3
3

2
21O

3
3

2
21O yqyqyqqjyPyPyPPyH      ay0      

                                                                                                                                       …… (19) 

  0yH                                                                                    bya   

 

      3
3

2
21O

3
3

2
21O ysysyssjyryryrryE      ay0   

                                                                                                                                        …... (20) 

                    0yE                                                                                      bya   

 

Equation (19) and (20) apply in the lower half of the sheet, their counter parts in the 

upper half should make (E) symmetric and (H) anti symmetric about the mid plane. The trial 

functions for (J) and (B) are obtained as: 

 

      2
321

2
321 yq3yq2qjyP3yP2PyJ      ay0   

                                                                                                                                 ……….. (21) 

  0yJ                                                                           bya   
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and:                













 2

321
2

321 yr3yr2r
j

ys3ys2s
1

yB    ay0   

                                                                                                                                  ………. (22) 

  0yB                                                                                 bya   

 

The H-system trial functions involve eight parameters  33 , qqPP OO  . 

The boundary condition at the bottom surface   20 kH   reduces the unknown 

parameters to 6. Moreover, at (y = a) we must have   0aH  and   0aJ  which leaves only 

two unknown parameters to be determined from the H-system solution. 

The E-system trial functions also start with eight parameters  33 , ssrr OO  , the 

conditions at y = a are,   0aE  and   0aB  reduces the unknown parameters by 4 to be 

determined for the E-system solution. 

The sheet problem was solved using the complementary formulations of equations    

(11-13) with the modified trial functions described by equations (19-22). 

Figures (2) and (3) show the resulting resistance and inductance estimates obtained 

using different values of strip thickness (a). The curves indicate that the best choice for a is 

around ( 8.2 ), both complementary estimates for R and L almost coincide with the exact 

value. 

However the curves also show that beyond say a the averages of complementary 

estimates lie consistently very close to the exact values; that is, the value chosen for a is not 

critical if, rather than either estimate by itself, the average of complementary estimates is 

used. 

The complementary estimates for both R and L are non-bounding. However, resistance 

estimates exhibit apparent bounded ness beyond  4.1a . 

 

 
 

Figure (2) Complementary resistance estimates for thick sheet approximation 
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Figure (3) Complementary inductance estimates for thick sheet approximation 

 

5. A Single Solution 
 

The results of the last section was obtained using the complementary formulations 

(equation 11) which evolve from the variational principle  

(       0complexand,0imaginary,0real  ) corresponding to the complex double 

frequency Ligurian . 

The error based derivation also produces the variational principle of  0O  which 

corresponds to the real time-invariant Ligurian O  
[12]

. Minimization of  O  provides a valid 

solution formulation, although it does not split into complementary formulations. 

In this section we present the results obtained using the variational principle 0O  

with the trial variables of equations (6-9). The solution involves the variables of both 

complementary systems simultaneously; that is, minimization of O  describes a single 

solution for all unknown parameters of both H-and E-systems. 

It will be recalled that the multiplier   and the integration interval   in the general total 

Ligurian relation,
     dtttt

t

t

Cm 



, may be assigned arbitrary positive values, in the 

above relation m and c  are the magnetic and conduction constitutive errors or Ligurians. 

The product of   is acts as a weighting factor that controls the accuracy of the 

solution. Assigning it a large value causes the solution to cater for the conduction constitutive 

relationship. Conversely, assigning   a small value causes the solution to cater for the 

magnetic constitutive relationship. For a given problem, there may be an optimum choice 

for , the value of  1  and   2  can be used for good expectation. One unweighted 

error measure is the difference between complementary estimates of complex 
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energies,    EkHk 21  , where 1k  and 2k are defined in equations (12, 13). Figure (4) shows 

the variation of this error with   at two values of  b . It is clear from the figure that   

can be increased to extreme values, at the same time error is reduced at high . Also within 

a wide acceptable range, the value chosen for   is not critical. Figure (4) also shows that 

over a wide range, the accuracy of the single solution is better than of the complementary 

solution. 

 

 
 

Figure (4) Effect of  on the overall accuracy of the single solution 

 
Figure (5) compares Ligurian error c  with complementary functionless 21,kk , there is 

improvement in accuracy holds even at small values of  b . This is interesting because it 

implies that the independent complementary solutions do not yield the best values for the 

unknown parameters in the trial functions, which is in keeping with the fact that 

complementary variational principles are merely stationary, and not external. Figure (6) and 

(7) display resistance and inductance estimates obtained from the single solution at the chosen 

value of . The curves have fewer crossovers, and in general behave more uniformly than 

those obtained from independent complementary solutions behave. In sharp contrast, it is the 

inductance curves now, which exhibit apparent bounded behavior, although the resistance 

curves also exhibit such behavior up to  b  just under three. 
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Figure (5) Complementary functionals and ligurian errors at 

 

 

Figure (6) Resistance estimates from single solution at 

 

 

Figure (7) Inductance estimates from single solution at 
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6. Conclusions 
 

A numerical solution is presented based on complementary formulations for solving 

harmonic eddy current problem in a thick sheet. The two sets E-system and H-system of 

solutions complement each other about the exact solution. A good accuracy was achieved 

using Ligurian error approach. 

The associated results are obtained by either of the complementary solutions alone or by 

performing both complementary solutions. In addition, a single solution that involves both 

system variables simultaneously was considered which give better accuracy. This solution has 

the advantages of both complementary solutions plus improved accuracy, but suffers from the 

economical disadvantage of handling double-sized matrices. It is clear from results obtained 

the H-system estimates are more accurate than the E-system estimates because the boundary 

conditions of equation (5) which force the solution belong to the H-system and are enforced 

explicitly on H-system variables equation (10) they enter the E-solution only naturally 

through the last term in equation (13). 
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