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Abstract

The Non-linear analysis of members having concave configuration shapes is
considered using stability functions. The accuracy of results has been verified by using the
finite element method by discretizing the beam-column member into different numbers of
an equivalent prismatic element.

The change of member lateral stiffness and change of member length are considered
by using the stability and bowing functions after deriving them here.

The axial deformation of concave beam-column including the effect of bowing is
compared with the same of that without bowing effect to estimate the exact deformation of
the beam-column under the same boundary condition and applied load.
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1. Introduction

The nonlinear effect is considered for slender beam-column members loaded axially.
The member bends and deflects laterally under the increase of axial load until buckling
occurs, the member stiffness is considered as a function of axial load which is expressed
mathematically by deriving the stability functions.

The effect of flexural bending on axial stiffness and the effect of axial force on the
flexural stiffness produce an additional stiffness expressed mathematically by the bowing
functions.

In most previous studies, the research developments had dealt with prismatic
beam-column members and little attention had been paid to buckling load of non-prismatic
members. The effect of pre-buckling deformations in the stability analysis of members had
been ignored by most researchers for simplicity, however Mansur et. al. and Hayashi (as cited
in reference 2) studied the effect of axial strain due to flexural deformations. Oran B 4
obtained the tangent stiffness matrix and studied the geometric nonlinearity of non-prismatic
members of linearly varying depth. Goto et. al. [ derived the closed form tangent stiffness
equation from the consistent beam-column theory considering the change in length of the
member axis.

The finite element method has been used for geometric nonlinear analysis and for the
evaluation of buckling loads for prismatic beam-column members.

2. Derivation of Stability Functions

The equations of slope-deflection for a prismatic member in terms of the stability
functions s and sc are given below [

M, =%(591+5092) ...................................................................... (1)

Also the other two equations of slope-deflection for a non-prismatic member in terms of
the stability functions S;, S, and SC are given below:

M, =%(s,le1 S ) T PR 3)
M, = %(sce1 $,0,) eereerrrneerrrtiierieier et era e e e e e e aaaans (4)

where:
M,,M,,0,,0, and L : are as defined in Fig.(1).
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The derivation of the stability functions by the exact method is presented here for a third
degree of nonlinear concave tapered members as shown in Fig.(1) and having a rectangular
cross section bent about major axis.
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Non-linear (concave)

Figure (1) A third degree tapered beam-column element

The depth d(x) may be expressed by:

where:
d(x): is the non-linear depth.

From Equation (5), the depth at end 1 can be obtained as:

The moment of inertia 1(x) of the strut at distance x from the origin O may be expressed

as:
_ by[df’ 7
I(x) = Ly T @)
By substituting Equation (5) into Equation (7), the moment of inertia I(x) is:
I(x) = 1,(x/a)’
where:
_b,ds 8
l,= TR R R R R R R R R R (8)
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The basic differential equation of the concave beam-column subjected to constant axial
force Q and end moments M; and M, is I;

El (x)%+Qy=%(x_a)+%(x_b) ................................................ 9

Substituting Equation (7) into Equation (9) yields:

The right hand side of Equation (10) can be reduced to zero by substituting the term “z”
as follows:

z=y—g||i(x—a)—(l\g/lli(x—b) .......................................................... (11)

Thus, the differential equation becomes:

where:
E: Modulus of Elasticity
I,: The moment of inertia at end 2 of the member
I(x): The moment of inertia at distance x from the origin O
M;, M,: Bending moments at member ends 1 and 2 respectively
S, SC, S,: The stability functions of concave taper members
Q: Axial force
a: The distance of end 2 from the origin O
b: The distance of end 1 from the origin O
b,: Constant member width
dy, dp: The depths at ends 1 and 2 as shown in Fig.(1)
y: Lateral deflection of member

®’: Qa’/Hl,

Equation (10) can be transformed into Bessel Equation of the following form B®):

d’z (2a-1) dz (- L, o’ —n’y?
7_( )'dx+[BZYZXZ72+XZYJZ=O .................................... (13)
By equating Equations (12) and (13), the constants 6,E,y andn can be obtained:

20

=0.2870 , y=ﬂ=—3.5 , net_1_

a=05, B= 5 5
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This equation has a general solution of !:

z=x" [AJ . (Ex7)+ BJ_, (Exy )] ......................................................... (14)

Jn is the Bessel function of order n for Bx” :

(0.5Bx)™*
r!(n + r)!

3,(B%") = (1)

The solution of Equation (10) can be written down in terms of Bessel functions and the
constants o, B,y and n.

0.286 0.286 M M
y = X0A5|:AJO-143[ s m]+ B‘]—o.us( S m]]+(yi(x_a)+Qli(x_b) ............. (16)

The constants A, and B are obtained from the following boundary conditions:

at x=a, y=0 and dy/dx=6,.
and x=Db, y=0 and dy/dx=0,.

|V|13—0.143(a) ‘6 t I“IZJ—0.143(B) Vb
A= WS 2 (17)

|V|1J0.143(“) va I“IzJo.143(B) vb
B=— e gy T e (18)

where:

Z = J5105(0)7 5 105(B) = 30165 (0)T 5 15(B) v (19)

(0]

()
0=02865. , p=0286.

After that the end rotations 0,and 6, can be obtained from the first derivative of
Equation (16). In view of Equation (3) and (4), the stability functions *"' S ,S, and SC are:

4.5
S, =(oLf, +7a% | TEZRP ] i (20)
®PEl,
SC:(ml_f +Za%p* LZQAlD™ ) e, (21)
° ®PEl,

171



Journal of Engineering and Development, Vol. 11, No. 3, December (2007)  ISSN 1813-7822

s, = (oLf, + zb“-S{‘(";g(E?I"":BJ ......................................................... (22)
where:

P= z{a“[ -k ] - b“[ -k ]] COLER, crreenrreensanssesseenssaes e (23)
where:

fy, 5, f3, T4, fs @and fg : are given in Appendix A.

3. Bowing Effect

The total axial deformation of the beam-column is defined by U, which is the
summation of the axial deformation due to the axial force U, and flexural deformation U, due
to bending:

UV L (24)

2 e e e e e e e ra———————aaaaaaaaar——————aaaaan 25
Ua - EAO ( )
U o Rl e PRSP (26)

where:
Q: The axial force
Ly: Deflected length of beam-column member
L : Length of beam-column
Cy: Length correction factor due to bowing

Ao: Equivalent cross-section area of beam-column, A = A{(Idl(/d dzzj_)l} m
n 11 %2

A,: Cross-section area at smaller depth at end 2.

For prismatic members “!:

C,=b,(8, +0,F +D,(8,=0,) «eevrrrmmmmmrmriiriiiiiiiiiiiirieeeeeeen (27)

where:
__Ci+G, 28
bl_ 4752 ( )
__Ci-G 29
b, === (29)
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where:
C :s’:@ and C, =sc’=@
op op

p : is the non-dimensional axial force parameter for prismatic member

The bowing function and length correction factor of linearly tapered non-prismatic
members derived by Oran, which are used to derive the same functions for concave
non-prismatic members are as below &1;

T, = Bu02 4+ 2B,0,0, 4 BuB? crververrervereesesessessessessensessensensensensensensensan (30)
B, =— 257;22 ................................................................................. (31)
B, =— 2:2 ................................................................................. (32)
B, =— 25; ................................................................................. (33)
S = {hl h, ZE} Z“F’)p"z (@D)F ettt (34)
sc':[_h3+h6+i} Z‘;'ID_“Z (@D)* ceeeeerrree e (35)
S, = |:h2 —h, - z} Z“F))‘I’_"Z 1) (36)

where:

bi, b,: Bowing function of prismatic member
B,,B,,B5: Bowing function of non-prismatic member

S,,SC',S; : First derivative of stability function of non-prismatic member

where:
h1, hy, hs, hy, hs and hg are as defined in Appendix A.

4. Tangent Stiffness Matrix

The tangent stiffness matrix is the relation between incremental forces and end
deformations in which the end forces can be expressed from the modified slope-deflection
equations as given in Equations (3), (4) and the relation between axial force and bowing effect
is given in Equation (37):
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QL= EAOL[i—f+Eb] ............................................................... (37)

The relations between incremental values of end forces AFand end deformations
Au can be expressed in matrix form as:

{AFF=[TRAUY oot (38)

in which [T] is the tangent stiffness matrix for relative deformations ™ which are derived in
Equations (39) for non-prismatic member:

oF, oF, dp
Toom o T TPz et 39
i~ ou, " 8p, au, (39)

This is equal to:

oM, _ aM, dp, oM, , oM, dp, 6(QL)+6(QL)%
o, dp, 09, o, aép, 09, 0,  op, 06,
[r]=| M., oM., oM, , oM, dp, a@QL), aQL)op, | --- (40)
o, op, 09, o, dp, 9, %,  op, 08,
oM, oM, p, oM, oM, dp,  a(QL) a(QL) ap,
|a(u/L)  op, a(u/L) 8(u/L)  ap, a(U/L) a(U/L)  ép, a(U/L)]

By substituting the equations given in appendix B into Equation (40), the tangent
stiffness matrix including bowing effect can be derived in the form below [81;

(S, , G SC,G6, G
u™  w’H U™ n2I2-| H
[T]=&S— GG, S, | By Gy iiiiiiiiiieeieeeeeeeeeeraeneeaeesenn (41)

L |u™ =*H u™  w?H H

G, G, n

i H H H_

where:

io L
1,/A,

u: Taper ratio, =b/a=(d,/d,)"?

m: Shape factor, log(l, /1,)/ log u reference (8, 9), in this study (m=9)

2
Tc [ ! !
G, =-2n* [Blel + B292]1 G, =-2n"[,0, +P.0,], H= ?"‘ Blelz +23,6,0, + Bseg
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and,
Bl =— 5221‘;2 ............................................................................... (42)
B, = S;:j ............................................................................. (43)
B, =— 321::2 ............................................................................... (44)
in which,
" Zopn®(ab)*
Sl=(gl+g4)mp1;|£) .............................................................. (45)
Z 2 4.5
SC":(g3+ge)wn—w ........................................................... (46)
PL
. 7 2(ab 4.5
S" = (g, + gs)“’PT;If) ............................................................. (47)
Appendix A defines the symbols g1, 92, g3, 94, g5 and ge.
where:

B1,B5,B5 : First derivative of bowing functions
S;,SC”,S; : Second derivative of stability functions of non-prismatic member

u™: Tapering ratio to the power of shape factor

The stability and bowing values with respect to non-dimensional axial force parameter
for five different cases of tapering ratio u = 1.5, 2.0, 3.0, 4.0 and 5.0 for constant member
length are presented graphically in Figs.(2), (3), (4), (5) and (6) for beam-column subjected to
compressive axial force starting from zero.
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Figure (2) Stability and bowing functions for concave configuration
beam-column in tapering ratiou=1.5
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Figure (3) Stability and bowing functions for concave configuration
beam-column in tapering ratiou=2.0
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Figure (4) Stability and bowing functions for concave configuration
beam-column in tapering ratiou=3.0
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5. The Finite Element Method

5-1 Stiffness Matrix
For a prismatic beam element, Fig.(7), the displacement field may be assumed as:

V(X) = @, 8,X + 83X° F 8,X7 eeeerneerrneeernnseerneeeesnesesnneeesssessnesessneeenn (48)

and in matrix form:

where:
xJ=b x % x)
[x']=]0 1 2x 3x?]

Hence the nodal displacements {d} will be:

v, 1 0 0 O |[fa

_Je,l |01 0 o0 |a
{d}= GlTlL L o [Jaf eee———— (51)

0,] [0 1 2L 3L?||a,
{A}=[AKRY c o (52)

V) = [ XJATH0} e (54)
where:
1 0 0 0]
o3 12 g 0
-3 - -1
[A]' = To Tz | (55)
2 1 -2 1
R
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V V

0 E 0}
| > x

1, | |2

Figure (7) Conventional beam element

For a member subjected to an axial force Q, the potential energy =, is:

i' I{ Y188 d}dx—— j YIAP L) [ ) AT {d}dX e, (56)

where:
[K]= fl_BJTEl | BIOX wveveereeienienieneeneee ettt (57)
[k, ]= Qi [A}l|_x'JT|_x'j[A}1 OX wevereeeeseeeeeeseseeeeeeseseesseseseeenasaeeenen (58)

which are the flexural and geometric stiffness matrices respectively for a prismatic element of
length L, hence:

(12 6 -12 6
[E T
6 4 -6 2
el L L e (59)
[<]=& -12 -6 12 -6
L 2 L 12
6 2 -6 4
| L2 [ L |
[ 36 1 -3 1 i
30L 10 30L 10
1 4 -1 -L
_ 10 30 10 30 | eeccesccesccessccssccssscessscesscosscesscassscsscssnne
[KQ]‘Q -36 -1 36 -1
30L 10 30L 10
1 -L -1 4
| 10 30 10 30|
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5-2 Solution Procedure

In the present study a beam-column member with a concave configuration is discretized
by equivalent prismatic finite elements, Figure (8). The system stiffness matrices [K] and
[Kg] are first assembled from the corresponding element matrices. The boundary conditions
for the non-prismatic beam-column member then have been applied to the system stiffness
matrix [K-Kg]. For a specific discretization the buckling load has been obtained by increasing
the compressive axial load incrementally until the stiffness [K-Kg] is vanished. The flow chart
of the main program is shown in Fig.(9).

M;
=

Figure (8) Beam-column-idealization
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Input geometrical and material properties of column

N
( Input the number of elements=N >

l

Load counter i
i =0 to incremental applied load

A 4

P, =P +AP

v

Element Geometrical Stiffness matrix

|

Assembly of system Geometrical Stiffness
matrix and apply boundary condition

A 4

Determine the reduced Stiffness matrix, K — K,

Yes

If |K—K,|>0.001

No

Print the final result
No. of elements (N)
Buckling load

A 4

End

Figure (9) Flow chart of the main finite element program
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4. Applications

Application (1):

A beam-column member, which has 5m length, 0.25x0.25 m cross sectional dimensions,
3.2552x10* m* moment of inertia and the modulus of elasticity is 200 GPa, for two models
below, in which one end is fixed and the other is hinged and loaded axially as shown in
Fig.(10). The elastic critical load for the two models are obtained then compared with others
as below:

e e
1< —% 1 ]
E = 200GPa E =200 GPa
| =3.2552x10* m* I, =3.2552x 107 m*
Q =78.9568 kN E Q = 78.9568 kN
. u=2
- m=9
2__ . A 2
a b
Prismatic model Concave

configuration model

Figure (10) Properties and boundary conditions of the fixed-hinge models

By substituting the boundary condition 6, =0 (at end 2) in the stiffness matrix [T] from
Equations (41) the tangent stiffness matrix becomes:

[T, =%591 for prismatic member without bowing effect

[Tle, :EII_Zsle1 for concave configuration member without bowing effect

2
[Te, :E_Il_Z(sl + GZL jel for concave configuration member with bowing effect
T

The non-dimensional axial load parameter which is making the stiffness matrix [T] to

vanish is obtained by trial and error with interpolation, using above Equations s=0 at
2

p=20457 , S, =0 at p=28.71804 from Fig.(3), S, +Gz—i_| =0 at p given in Appendix-C
T

for different values of o,.
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The above non-prismatic members are solved with different tapering ratio from u=1 up
to 5, then the elastic critical load of members are drawn for all tapering ratio in Fig.(11).

The concave configuration members are solved by using the finite elements method by
dividing these members into 50, 100, 150, 200, 250, 300, and 350 equivalent prismatic
elements as shown in Fig.(12) under increasing axial load until the stiffness [K-Kg] is
vanished.

80

60 Rixed-Hinged

40

Critical non-dimensional
axial force parameter

/ Hinged-Hinged

20

T

1 1.5 2 2.5 3 3.5 4 4.5 5
Tapering ratio, u

(0]

Figure (11) Buckling load of concave members for different tapering ratio

750

Z
X
oy 740 Exact solution
—
Y *
[0 *
8 23
o 730 4 *
o
(5]
>
= 5
(75}
ot
S 720 4
e
o
o
©
© 7104 *
=
=
(&)
700 T T T T T T T
0 50 100 150 200 250 300 350 400

Number of elements

Figure (12) Critical axial force for different number of elements
in application 1
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Application (2):

A beam-column member, which has the same properties of application (1), but with
both ends being hinged. The elastic critical load for the two models are obtained then
compared with others as shown in Fig.(13) below:

Q Q
M M
1<eb —% 1 i
E =200GPa E =200GPa
| =3.2552x10°* m* I, =32552x 10" m*
Q =78.9568 kN e Q = 78.9568 kN
To) u=2
! m=9
2 2
ZA _v bA
A" M A M
Concave

Prismatic model . ;
configuration model

Figure (13) Properties and boundary conditions of the hinge-hinge models

By substituting the boundary condition in the stiffness matrix [T] from Equation (41):

[T]{91}=E'{S s¢ Hel} for prismatic member without bowing effect
0, L|sc s |6,

[T % :ﬂ_ S SC 6, for concave configuration member without bowing
0,/ L |sc s, |le,

effect

S, G sC GG,

0, EBl,| mt 2y Ttz |0 : : _

[TR *i==zf u” =°H U nH 0 "tL for concave configuration member with
0,/ L|SC GG, S, G2
u™  m*H  u™  nH

2
bowing effect

The non-dimensional axial load parameter making the stiffness matrix [T] to vanish is
obtained by trial and error with interpolation, when s®-sc?*=0 at p=1,

S5, ~SC?=0at p=13.2757 from Fig.(3), [S+GIS , G ] (SC+6162]2 %

u™  w*H Au™  w%H u™  w%H

at p given in appendix-C for different values of 6, and o, .
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The above non-prismatic members are solved with different tapering ratio from u=1 up
to 5, then the elastic critical load of members is drawn for all tapering ratio in Fig.(11).

The concave configuration members are solved by using finite elements method by
dividing these members into 50, 100, 150, 200, 250, 300, and 350 equivalent prismatic

elements as shown in Fig.(14) under increasing axial load until the stiffness [K-Kg] is
vanished.
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Figure (14) Critical axial force for different number of elements
in application 2

5. Conclusion

The pre-buckling forces and deformations are considered until the beam-column buckles
under load named the critical axial force. This consideration is done by deriving the stability
and bowing functions for concave configuration of beam-column then compared with
prismatic one.

The elastic critical load depends on the stiffness of member and support type as
explained in the two previous applications, which increased in the concave shape to 1404%
and 1328% when compared with the prismatic shape at the supporting type of member fixed-
hinged and hinged-hinged respectively. The bowing effects physically represent the apparent
shortening and bowing chord of beam-column element that produced an additional stiffness.

In application (1) the elastic critical load of beam-column member increased with the
increasing of rotations at the ends of member starting from 100.01387% to 100.1222% when

rotations equal to 0.1 and 1.0 radian respectively, when compared with the elastic critical load
without bowing effect.
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In application (2) the elastic critical load of beam-column member increased with the
increasing of rotations at the ends of member starting from 100.01067% to 100.1222% when
rotations equal to 0.1 and 1.0 radian respectively, when compared with the elastic critical load
without bowing effect.

These functions of stability and bowing are presented graphically in five different
tapering ratios with respect to the non-dimensional axial force parameter for beam-column
subjected to compressive axial force.
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Application (1)
0, 0.1 0.2 0.4 1.0
0, 0.0 0.0 0.0 0.0
B, 0.036214 0.036214 0.036214 0.036214
B, -0.078591 -0.078591 -0.078591 -0.078591
! 0.785629 0.785629 0.785629 0.785629
Aq 0.09017 0.09017 0.09017 0.09017
A 83.217 83.217 83217 83.217
1 -0.07148 -0.143 -0.286 20.7148
Gy 0.15513 0.31026 0.62052 1.5513
H 0.0092815 0.03285 0.12713 0.78705
G:/n*H 0.0558 0.06307 0.0652 0.5109
S -0.0558 -0.06307 -0.0652 05109
P, 28.722023 28.722522 28.72267 28.75316
% 100.01387 100.01561 100.01612 100.1222
Difference 0.003983 0.004482 0.00463 0.03512
Application (2)
. 0.1 0.2 0.4 1
, 0.1 0.2 0.4 1
B, 0.02209 0.02209 0.02209 0.02209
B, 0.459 0.459 0.459 0.459
B, -031589 -031589 -.031589 -031589
! 3.91772 3.91772 3.91772 3.91772
A 7.242 7.242 7.242 7.242
A 14.461 14.461 14.461 14.461
Ag 0.09017 0.09017 0.09017 0.09017
A 83.217 83.217 83.217 83.217
G, -0.94963 ~1.89926 -3.79853 -9.49633
& -0.84368 -1.68735 -3.37470 -8.43675
H 0.3300 1.31593 5.2504 10.8575
G?/n’H 0.27688 0.27774 0.27796 0.84155
G2/n’H 0.21854 0.21922 0.21940 0.66424
G,G,/n’H 0.246 0.2465 0.247 0.74766
S 175.533 175.5325 175.532 175.5304
S, 10.009 10.009 10.009 100088
sC 41.915 41.915 41.915 41.916
P, 1327713 1327718 13.27725 13.20222
% 100.01067 100.01101 100.01172 100.1222
Diff, 0.001444 0.001494 0.001564 0.016534

including and excluding bowing effects.
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Notice: The percent is the ratio of the non-dimensional axial force parameter including to the excluding bowing
effects and the diff is the difference between the value of the non-dimensional axial force parameter
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