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Bowing Effect on Elastic Stability for Members 
 Having Concave Configuration Shapes 

 

 

 

 

 

 

 

 

 
 

Abstract 
 

The Non-linear analysis of members having concave configuration shapes is 

considered using stability functions. The accuracy of results has been verified by using the 

finite element method by discretizing the beam-column member into different numbers of 

an equivalent prismatic element. 

The change of member lateral stiffness and change of member length are considered 

by using the stability and bowing functions after deriving them here.  

The axial deformation of concave beam-column including the effect of bowing is 

compared with the same of that without bowing effect to estimate the exact deformation of 

the beam-column under the same boundary condition and applied load. 

 

 

 
 

 ةـــــــلاصـالخ
تمت دراسة التحلٌل اللاخطً للعتبات ذات الأشكال المقعرة باستخدام دوال الاستقرارٌة. ومن ثم دققت النتائج 

 باستخدام طرٌقة العناصر المحددة بواسطة تقسٌم العتبة الى عتبات موشورٌة مكافئة.
ستخدام دوال الاستقرارٌة والتحدب بعد تمت دراسة تغٌر قٌمة الصلابة للعتبة و تغٌر طول العتبة من خلال ا

 اشتقاقها. 
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1. Introduction  
 

The nonlinear effect is considered for slender beam-column members loaded axially. 

The member bends and deflects laterally under the increase of axial load until buckling 

occurs, the member stiffness is considered as a function of axial load which is expressed 

mathematically by deriving the stability functions. 

The effect of flexural bending on axial stiffness and the effect of axial force on the 

flexural stiffness produce an additional stiffness expressed mathematically by the bowing 

functions.  

In most previous studies, the research developments had dealt with prismatic          

beam-column members and little attention had been paid to buckling load of non-prismatic 

members. The effect of pre-buckling deformations in the stability analysis of members had 

been ignored by most researchers for simplicity, however Mansur et. al. and Hayashi (as cited 

in reference 2) studied the effect of axial strain due to flexural deformations. Oran 
[3, 4]

 

obtained the tangent stiffness matrix and studied the geometric nonlinearity of non-prismatic 

members of linearly varying depth. Goto et. al. 
[2]

 derived the closed form tangent stiffness 

equation from the consistent beam-column theory considering the change in length of the 

member axis. 

The finite element method has been used for geometric nonlinear analysis and for the 

evaluation of buckling loads for prismatic beam-column members.  

 

2. Derivation of Stability Functions 
 

The equations of slope-deflection for a prismatic member in terms of the stability 

functions s and sc are given below 
[7]

: 
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1 scs

L

EI
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2
2 ssc

L

EI
M   ……………………………………………………………. (2) 

 

Also the other two equations of slope-deflection for a non-prismatic member in terms of 

the stability functions S1, S2 and SC are given below: 
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where:  

Land,,M,M 2121  : are as defined in Fig.(1). 



Journal of Engineering and Development, Vol. 11, No. 3, December (2007)       ISSN 1813-7822 
 

 169 

The derivation of the stability functions by the exact method is presented here for a third 

degree of nonlinear concave tapered members as shown in Fig.(1) and having a rectangular 

cross section bent about major axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1) A third degree tapered beam-column element  
 

The depth d(x) may be expressed by: 

 

 3
2 axd)x(d   ………………………………………………………………….. (5) 

 

where:  

d(x): is the non-linear depth. 
 

From Equation (5), the depth at end 1 can be obtained as: 

 

 3

21 abdd   ……………………………………………………………………. (6) 

 

The moment of inertia I(x) of the strut at distance x from the origin O may be expressed 

as: 
 

 
12

)x(db
)x(I

3

o  ………………………………………………………………….. (7) 

 

By substituting Equation (5) into Equation (7), the moment of inertia I(x) is:  
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The basic differential equation of the concave beam-column subjected to constant axial 

force Q and end moments M1 and M2 is 
[1]

: 

 

)bx(
L

M
)ax(

L

M
Qy

dx

yd
)x(EI 21

2

2

  ………………………………………... (9) 

 

Substituting Equation (7) into Equation (9) yields: 

 

   bx
L

M
ax

L

M
Qy

dx

yd

a

x
EI 21

2

29

2 






  ……………………………………. (10) 

 

The right hand side of Equation (10) can be reduced to zero by substituting the term “z” 

as follows: 

 

   bx
QL

M
ax

QL

M
yz 21   …………………………………………………. (11) 

 

Thus, the differential equation becomes: 

 

0
x

z

dx

zd
9

2

2

2




  ………………………………………………………………….. (12) 

 

where: 
E: Modulus of Elasticity 

I2: The moment of inertia at end 2 of the member 

I(x): The moment of inertia at distance x from the origin O 

M1, M2: Bending moments at member ends 1 and 2 respectively 

S1, SC, S2: The stability functions of concave taper members 

Q: Axial force 

a: The distance of end 2 from the origin O 

b: The distance of end 1 from the origin O  

bo: Constant member width 

d1, d2: The depths at ends 1 and 2 as shown in Fig.(1) 

y: Lateral deflection of member 
2 : 

2

9 EIQa  

 

Equation (10) can be transformed into Bessel Equation of the following form 
[5,6]

: 
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By equating Equations (12) and (13), the constants nand,γβ,α can be obtained: 
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This equation has a general solution of 
[5]

: 

 

    



  xBJxAJxz nn  ………………………………………………… (14) 

 

Jn is the Bessel function of order n for x :  
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r2n
r

n
!rn!r

)x5.0(
)1()x(J   …………………………………………….. (15) 

 

The solution of Equation (10) can be written down in terms of Bessel functions and the 

constants  ,,  and n. 
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 …………. (16) 

 

The constants A, and B are obtained from the following boundary conditions: 
 

at     x = a ,  y = 0  and 
2dx/dy  .  

and  x = b ,  y = 0  and 
1dx/dy  . 

 

   
Q Zba

 b βJM a αJM
A 143.02143.01  
  ………………………………………... (17) 

 

   
Q Zba

 b βJM a αJM
B 143.02143.01 

  ………………………………………… (18) 

 

where: 

 

         143.0143.0143.0143.0 JJJJZ  …………………………………….. (19) 

  
b
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a
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After that the end rotations 1 and 2  can be obtained from the first derivative of 

Equation (16). In view of Equation (3) and (4), the stability functions 
[6,7]

 SCandS,S 21 are: 
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where:  

f1, f2, f3, f4, f5 and f6 : are given in Appendix A. 

 

3. Bowing Effect 
 

The total axial deformation of the beam-column is defined by U, which is the 

summation of the axial deformation due to the axial force Ua and flexural deformation Ub due 

to bending: 

 

ba UUU   ……………………………………………………………………. (24) 

 

o

a
EA

QL
U   ……………………………………………………………………… (25) 

 

LLLCU dbb   ……………………………………………………………... (26) 

 

where: 

Q: The axial force 

Ld: Deflected length of beam-column member 

L : Length of beam-column 

Cb: Length correction factor due to bowing 

Ao: Equivalent cross-section area of beam-column
 [4]

,
 
  





 


21

21
2o

d/dln

1d/d
AA  

[1] 

A2: Cross-section area at smaller depth at end 2. 
 

For prismatic members
 [4]

: 
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where:  






s
sC1   and 






sc
csC2  

 : is the non-dimensional axial force parameter for prismatic member 

 

The bowing function and length correction factor of linearly tapered non-prismatic 

members derived by Oran, which are used to derive the same functions for concave           

non-prismatic members are as below 
[1,4]

: 
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2

522 ab
PL

ZZ
hhS














 ……………………………………………….. (36) 

 

where: 

b1, b2: Bowing function of prismatic member 

321 ,,  : Bowing function of non-prismatic member 

12 S,CS,S  : First derivative of stability function of non-prismatic member 

 

where:  
h1, h2, h3, h4, h5 and h6 are as defined in Appendix A. 

 
4. Tangent Stiffness Matrix 

 

The tangent stiffness matrix is the relation between incremental forces and end 

deformations in which the end forces can be expressed from the modified slope-deflection 

equations as given in Equations (3), (4) and the relation between axial force and bowing effect 

is given in Equation (37):  
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The relations between incremental values of end forces F and end deformations 

u can be expressed in matrix form as:  

 

    uTF   ………………………………………………………………... (38) 

 

in which [T] is the tangent stiffness matrix for relative deformations 
[1]

 which are derived in 

Equations (39) for non-prismatic member: 
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This is equal to: 
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By substituting the equations given in appendix B into Equation (40), the tangent 

stiffness matrix including bowing effect can be derived in the form below 
[8]

: 
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where: 

o2 A/I

L
  

u: Taper ratio, =b/a=(d1/d2)
1/3 

m: Shape factor,   ulog/I/Ilog 21
reference (8, 9), in this study (m=9) 
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and, 
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in which, 
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Appendix A defines the symbols g1, g2, g3, g4, g5 and g6. 

 

where: 

321 ,,  : First derivative of bowing functions 

12 S,CS,S  : Second derivative of stability functions of non-prismatic member 

u
m
: Tapering ratio to the power of shape factor

 

 

The stability and bowing values with respect to non-dimensional axial force parameter 

for five different cases of tapering ratio u = 1.5, 2.0, 3.0, 4.0 and 5.0 for constant member 

length are presented graphically in Figs.(2), (3), (4), (5) and (6) for beam-column subjected to 

compressive axial force starting from zero. 
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Figure (2) Stability and bowing functions for concave configuration  
beam-column in tapering ratio u = 1.5 
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Figure (3) Stability and bowing functions for concave configuration  
beam-column in tapering ratio u = 2.0 
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Figure (4) Stability and bowing functions for concave configuration  
beam-column in tapering ratio u = 3.0 
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Figure (5) Stability and bowing functions for concave configuration  
beam-column in tapering ratio u = 4.0 
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Figure (6) Stability and bowing functions for concave configuration  
beam-column in tapering ratio u = 5.0 
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5. The Finite Element Method 

 

5-1 Stiffness Matrix 

For a prismatic beam element, Fig.(7), the displacement field may be assumed as: 

 

3

4

2

321 xaxaxaa)x(v  ………………………………………………….. (48) 

 

and in matrix form:  

 

  ax)x(v   …………………………………………………………………. (49) 

 

  ax)x()x(v   ………………………………………………………. (50) 

 

where: 

   32 xxx1x   

   2x3x210x   

 

Hence the nodal displacements {d} will be: 
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    aAd   …………………………………………………………………… (52) 

 

     dAa
1

  …………………………………………………………………. (53) 

 

By substituting Equation (53) into Equation (49) yields: 

 

    dAx)x(v
1

  ……………………………………………………………. (54) 

 

where:  
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Figure (7) Conventional beam element 

 
For a member subjected to an axial force Q, the potential energy p is: 
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which are the flexural and geometric stiffness matrices respectively for a prismatic element of 

length L, hence: 
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5-2 Solution Procedure 

In the present study a beam-column member with a concave configuration is discretized 

by equivalent prismatic finite elements, Figure (8). The system stiffness matrices [K] and 

[Kg] are first assembled from the corresponding element matrices. The boundary conditions 

for the non-prismatic beam-column member then have been applied to the system stiffness 

matrix [K-Kg]. For a specific discretization the buckling load has been obtained by increasing 

the compressive axial load incrementally until the stiffness [K-Kg] is vanished. The flow chart 

of the main program is shown in Fig.(9). 

 

 

  

 

 

 

 
Figure (8) Beam-column-idealization 



Journal of Engineering and Development, Vol. 11, No. 3, December (2007)       ISSN 1813-7822 
 

 184 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (9) Flow chart of the main finite element program 
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4. Applications 
 

Application (1): 

A beam-column member, which has 5m length, 0.25x0.25 m
 
cross sectional dimensions, 

3.2552x10
-4

 m
4
 moment of inertia and the modulus of elasticity is 200 GPa, for two models 

below, in which one end is fixed and the other is hinged and loaded axially as shown in 

Fig.(10). The elastic critical load for the two models are obtained then compared with others 

as below: 

 

 

Figure (10) Properties and boundary conditions of the fixed-hinge models 

 
By substituting the boundary condition 2  = 0 (at end 2) in the stiffness matrix [T] from 

Equations (41) the tangent stiffness matrix becomes:  
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The non-dimensional axial load parameter which is making the stiffness matrix [T] to 

vanish is obtained by trial and error with interpolation, using above Equations s=0 at 

0457.2 , 0S1   at 71804.28  from Fig.(3), 0
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The above non-prismatic members are solved with different tapering ratio from u=1 up 

to 5, then the elastic critical load of members are drawn for all tapering ratio in Fig.(11). 

The concave configuration members are solved by using the finite elements method by 

dividing these members into 50, 100, 150, 200, 250, 300, and 350 equivalent prismatic 

elements as shown in Fig.(12) under increasing axial load until the stiffness [K-Kg] is 

vanished. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure (11) Buckling load of concave members for different tapering ratio 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure (12) Critical axial force for different number of elements  
in application 1 
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Application (2): 

A beam-column member, which has the same properties of application (1), but with 

both ends being hinged. The elastic critical load for the two models are obtained then 

compared with others as shown in Fig.(13) below: 

 

 

 

Figure (13) Properties and boundary conditions of the hinge-hinge models 

 
By substituting the boundary condition in the stiffness matrix [T] from Equation (41):  
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The above non-prismatic members are solved with different tapering ratio from u=1 up 

to 5, then the elastic critical load of members is drawn for all tapering ratio in Fig.(11). 

The concave configuration members are solved by using finite elements method by 

dividing these members into 50, 100, 150, 200, 250, 300, and 350 equivalent prismatic 

elements as shown in Fig.(14) under increasing axial load until the stiffness [K-Kg] is 

vanished. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure (14) Critical axial force for different number of elements  
in application 2 

 

5. Conclusion 
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In application (1) the elastic critical load of beam-column member increased with the 
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In application (2) the elastic critical load of beam-column member increased with the 

increasing of rotations at the ends of member starting from 100.01067% to 100.1222% when 

rotations equal to 0.1 and 1.0 radian respectively, when compared with the elastic critical load 

without bowing effect. 

These functions of stability and bowing are presented graphically in five different 

tapering ratios with respect to the non-dimensional axial force parameter for beam-column 

subjected to compressive axial force.   
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Appendix A 
 

Symbol Equations 
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Symbol Equations 

 

Symbol Equations 
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Symbol Equations 
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Appendix C 

Application (1) 

1  0.1 0.2 0.4 1.0 

2  0.0 0.0 0.0 0.0 

1  0.036214 0.036214 0.036214 0.036214 

3  -0.078591 -0.078591 -0.078591 -0.078591 

1  0.785629 0.785629 0.785629 0.785629 

Ao 0.09017 0.09017 0.09017 0.09017 

  83.217 83.217 83.217 83.217 

G1 -0.07148 -0.143 -0.286 -0.7148 

G2 0.15513 0.31026 0.62052 1.5513 

H 0.0092815 0.03285 0.12713 0.78705 

H/G 22

1   0.0558 0.06307 0.0652 0.5109 

S1 -0.0558 -0.06307 -0.0652 -0.5109 

2  28.722023 28.722522 28.72267 28.75316 

% 100.01387 100.01561 100.01612 100.1222 

Difference 0.003983 0.004482 0.00463 0.03512 

 

Application (2) 

1  0.1 0.2 0.4 1 

2  0.1 0.2 0.4 1 

1  0.02209 0.02209 0.02209 0.02209 

2  0.459 0.459 0.459 0.459 

3  -.031589 -.031589 -.031589 -.031589 

1  3.91772 3.91772 3.91772 3.91772 

2  7.242 7.242 7.242 7.242 

3  14.461 14.461 14.461 14.461 

Ao 0.09017 0.09017 0.09017 0.09017 

  83.217 83.217 83.217 83.217 

G1 -0.94963 -1.89926 -3.79853 -9.49633 

G2 -0.84368 -1.68735 -3.37470 -8.43675 

H 0.3300 1.31593 5.2594 10.8575 

H/G 22

1   0.27688 0.27774 0.27796 0.84155 

H/G 22

2   0.21854 0.21922 0.21940 0.66424 

H/GG 2

21   0.246 0.2465 0.247 0.74766 

S1 175.533 175.5325 175.532 175.5304 

S2 10.009 10.009 10.009 10.0088 

SC 41.915 41.915 41.915 41.916 

2  13.27713 13.27718 13.27725 13.29222 

% 100.01067 100.01101 100.01172 100.1222 

Diff. 0.001444 0.001494 0.001564 0.016534 
 

Notice: The percent is the ratio of the non-dimensional axial force parameter including to the excluding bowing 

effects and the diff is the difference between the value of the non-dimensional axial force parameter 

including and excluding bowing effects. 


