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Analysis of Composite Plates Subjected to Impact Loading 
(Part II: Numerical Solution)* 

 

 
Abstract 
 

The search for a material, which is to be, light and at the same time strong, has resulted in the 

use of high strength, high modulus fibers reinforced in low strength, low modulus and low density 

matrix material which is called composite material. 

The finite element models and numerical result are presented for impact of composite plates 

using a Special Third Order Theory (HOST 7) with the parabolic distribution of the transverse 

shear strain through the thickness of the plate and rotary inertia effect are taken into account. 

The Newmark direct integration method is considered for the solution of linear dynamic 

response of the system. A typical finite element mesh of the quarter model is considered because of 

the double symmetric. A nine-noded Lagrangian element is chosen as a discretization element with 

seven degrees of freedom per node.  

The effect of the velocity and mass of the impactor, number of layers, degree of orthotropy 

(E1/E2), lamination angle   , aspect ratio (a/b) and the boundary conditions on the dynamic 

response of the laminated plate is considered. 

The results show that the orthotropic ratio, velocity and mass of impactor have a significant 

effect on the deflection of the plate under impact load. In addition, the calculation of the dynamic 

load factor is presented. 

 

 

 ةـــــــلاصـالخ
البحث عن مواد خفيفة الوزن وقوية المتانة في نفس الوقت ادى الى استتخدا  اليتاع عاليتة المتانتة فتي وست  لتتيع المتانتة 

والحل الرقمي لتحليل  (Finite Element)نسبيا" وهو مايدعى بالمواد المركبة. أستخدمت في هذا البحث  ريقتي التناصر المحددة 
 د  على المواد المركبة. تأثير احمال الص

تت  أستتخدام ا متو توزيتو اج تادات القتا ختلال الستمل علتى  تكل ق تو    (HOST7)النظرية الخامسة من الدرجتة الثالثتة
 مكافىء، كذلل ت  اختبار تأثير كتلة الواح المواد المركبة كما ت  اخذ تأثير القصور الدوراني. 

المبا تر. أستتخدمت اجتزاء محتددة رباعيتة ال تور  (Newmark)أستتخدا  تكامتل الاستجابة الديناميكية الخ يتة تت  تحليل تا ب
 من تسو عقد وبسبو درجات حرية لكل عقدة. (Lagrangian)بسبب التناظر المزدوج للاجزاء مو عنصر

ونستبة وزاويتة متيلان الاليتاع  (E1/E2)ت  دراسة تأثير السرعة والكتلة للجس  الصاد  مو عدد ال بقتات ودرجتة التتامديتة 
 ابتاد الالواح بالالافة الى  ريقة تثبيت الالواح. 

والسرعة وكتلة الجس  الصاد  ل ا تأثير ملحوظ على أنحناء الالواح المترلة  (E1/E2)أظ رت النتائج ان درجة التتامدية 
 للصد  ،كذلل ت  حساب متامل الحمل الديناميكي.
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1. Introduction 
 

Finite element procedures are very widely used in engineering analysis, and their 

applications are expected to increase significantly in the coming years. These procedures are 

employed extensively in the analysis of solids structures, heat transfer and fluids. Moreover, 

finite element methods are becoming more and more useful in virtually every field of 

engineering analysis.  

The standard formulation for the finite element solution of solids is the displacement-

based finite element method, which is widely used in the solution of practical problems. 

Practically, all major general-purpose analysis programs have been written using this 

formulation, because of its simplicity, generality and good numerical properties. 

This work presents a special third order theory (HOST 7) for the dynamic analysis of 

unsymmetrically laminated multi-layered plates. A nine-nodded Lagrangian element is chosen 

as a discretization element with seven degrees-of-freedom per node. 

C.T. Sun and S. Chattopadhyey 
[1]

 investigated the central impact of a mass on a simply 

supported-laminated composite plate under initial stress. B. V. Sanhar and C. T. Sun 
[2]

 used 

Finite element procedures to compute the impact response of graphite-epoxy laminated beam 

subjected to tensile initial stresses. H. Aggour and C. T. Sun 
[3]

 used in their study, a two 

dimensional finite element analysis for a fiber-reinforced composite laminate subjected to 

circularly distributed impact load. C. T. Sun and W. J. Liou 
[4]

 analyzed a laminated 

composite plate subjected to central small area impact loading. The Hertzian impact law was 

modelled to describe the contact force between the projectile and the laminated plate.  

A. Nosier et. al. 
[5]

 studied the low velocity impact response of laminated plates by using 

a layer-wise theory. Six different modals were introduced for the representation of the impact 

pressure distribution. I. Smojver and I. Alfirevid 
[6]

 studied the problem of impact on layered 

composite and found that the behavior of composite laminates under impact loading depends 

not only upon the velocity but also on the mass and geometry of the impactor.  

 

2. Theory Development of Impact 
 

For the most general case the target is assumed to be a multilayer, generally orthotropic 

solid, whereas, the impactor is assumed to be a body of revolution. Moreover it is assumed 

that (1) the target and the impactor are linear elastic, (2) impact duration is long compared to 

stress-wave transit time in the impactor, (3) the impact is normal to the target surface, and   

(4) the area of contact is very small.  

The rate of change of velocity during impact (as the two bodies come in contact) is: 

 

p
dt

dV
m 1

1  …………………………………………………………………... (1) 

 

If we denote by the same distance that the impactor and target approach one another 

because of local compression at the point of contact, the velocity of this approach is: 
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21 VV   ………………………………………………………………….. (2)      

 

If the contact duration between the impactor and the target is very long in comparison 

with their natural periods, vibrations of the system can be neglected. Therefore, the Hertzian 

theory is applicable: 

 

2
3

1np  ………………………………………………………………………. (3) 

 

The term n1 defined as: 

 

 
21

1

1
kk2

R4
n


  ……………………………………………………………… (4) 

 

where:  

k1, k2: depend on the elastic constants of impactor and target and defined in 
[7]

: 
 

Differentiating (2), combining it with (1), and substituting (3) into the resulting equation 

yields: 

 

2
3

1

1

m

n



  ………………………………………………………………….. (5) 

 

If both sides of equ.(5) are multiplied  by   and the resulting equation is integrated then 

we get: 

 

 
1

2
5

122

m

n

5

4
V


  ………………………………………………………... (6) 

 

where:  

V: is the approach velocity of the two bodies at t=0, that is, at the beginning of impact. 
 

Maximum deformation, 1 , occurs when 0  and is: 

 

5
2

1

2

1
1

n4

Vm5








 ………………………………………………………………. (7) 

 

Substituting of equ.(7) in to equ.(3) gives the  following final relationship: 
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5
3

2

15
2

1
4

Vm5
np 








 …………………………………………………………….. (8) 

 

For the case of the Hertzian contact problem involving a sphere pressed onto a flat 

surface by a force p, the area of contact is very small circle. Therefore, it may be assumed that 

the impact force is concentrated at that circle. 

The maximum force po occurs at a time of 0.5to where to is the impact duration. The 

latter can be determined using an approach similar to that described by 
[8]

.  

Solving equ.(6) for  , yields: 

 

2
1

1

2
5

12

m

n

5

4
V













 
  ………………………………………………………….. (9) 

Substituting dt/d   into equ. (9) and solving for dt: 

 

2
1

1

25

12

m5

n4
V

d
dt








 



  ………………………………………………………. (10) 

 

Combining equ.(10) with equ.(7) and integrating to get: 

 








 




x

0
2

1

2
5

1

x1

dx

v

2
t  ………………………………………………………… (11) 

 

where:  

 1/x  .  
 

The total impact duration, to, is obtained by the integration between the limits x=0 and 

x=1: 

 

5
2

2
1

1

11
o

Vn4

m5
94.2

V
94.2t

















  …………………………………………….. (12) 

 

The variation of impact force P with time can be determined numerically by integrating 

equ.(11) and expressing 1/   as a function of time t/to. The resulting curve can be 

approximated fairly accurately by the equation: 
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o

1
t

t
sin


  ………………………………………………………………… (13) 

 

Substituting equ.(12) for to, to give: 

 

1

1
94.2

Vt
sin




  .............................................................................................. (14) 

 

Combining equs.(14) and (3) yields the following expressions for p as a function of 

time, t: 

 

 
2

3

1

o
94.2

tV
sinptp 












 ……………………………………………………... (15) 

 

where: 

5
3

2

15
2

1o
4

Vm5
np 








  

 

3. Special Third-Order Theory (HOST 7) 
 

The special third-order theory, which presents displacement components, is given in the 

form 
[9]

: 

 

u(x,y,z,t)=uo(x,y,t)+z x(x,y,t)+z
3
 x(x,y,t) 

v(x,y,z,t)=vo(x,y,t)+z y(x,y,t)+z
3
 y(x,y,t)   ……………………………... (16) 

w(x,y,z,t)=wo(x,y,t) 

 

where:  

(uo, vo, wo): denote the displacement of a point on the mid-surface of the plate(z=0),  

 x and  y: are the rotations of the transverse normal in the xz and yz planes.  

 

The term  x, y can be interpreted as the stretching of the transverse normal, for the 

remaining higher-order term.  

The strain-displacement relations, using the above displacement forms, may be written 

as: 
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 

 
x

2o
xxz

y

2o
yyz

yx3yxoo
xy

z

y3yo
y

x3xo
x

3z
x

w

x

w

z

u

3z
y

w

y

w

z

v

xy
z

xy
z

x

v

y

u

x

v

y

u

0
z

w

y
z

y
z

y

v

y

v

x
z

x
z

x

u

x

u
















































































































































   …………. (17) 

 

or: 

 













































































































































x

y2

o
x

o
y

xz

yz

xy

y

x

3

xy

y

x

o

xy

o

y

o

x

xy

y

x

z3

x

w

y

w

S

S

S

z

R

R

R

z  ……… (18) 

 

where, 

 

































































































































































































xy

y

x

S

S

S

,

xy

y

x

R

R

R

,

x

v

y

u

y

v
x

u

yx

y

x

xy

y

x

yx

y

x

xy

y

x

oo

o

o

o

xy

o

y

o

x

 ........... (18) 

 

Substituting equs.(18) in the stress-strain relation of the lamina, the constitutive relations 

for any layer in the (x, y) system are in the form 
[7]

: 

 


















































































































xy

y

x

3

y

o

xy

o

y

o

x

k
662616

262212

161211

xy

y

x

S

S

S

zz

QQQ

QQQ

QQQ

xy

x

k

R

R

R

 …………………. (20 a) 

 












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
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

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
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


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


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











































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o
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kxz
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 …………………………... (20 b) 
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where: 

 

      TQTQ
T

  ………………………………………………………………. (21) 

 

[T]: Transformation matrix given by: 

 

 































cs000

sc000

00scsc2sc2

00sccs

00scsc

T 22

22

22

 

 

where:  

c: cos  ,  s =sin   

Q11=E1/(1-v12v21),  Q12=v12E1(1-v12v21),  Q22=E2/(1-v12v21), 

Q33=G12,  Q44=G23,  Q55=G13                                     
 

The transformation equ.(3.52) can be represented in the following form: 

 

Q 11=Q11c
4
+2(Q12+2Q33)s

2
c

2
+Q22s

4
       

Q 12=(Q11+Q22-4Q33)s
2
c

2
+Q12(s

4
+c

4
) 

Q 22=Q11s
4
+2(Q12+2Q33)s

2
c

2
+Q22c

4
       

Q 16=(Q11-Q12-2Q33)sc
3
+(Q12-Q22+2Q33)s

3
c    …………………………….. (22)                                                     

Q 26=(Q11-Q12-2Q33)cs
3
+(Q12-Q22+2Q33)sc

3
                                                                       

Q 66=(Q66+Q22-2Q12-2Q33)s
2
c

2
+Q33(s

4
+c

4
) 

Q 44=Q44c
2
+Q55s

2
               

Q 45=(Q55-Q44)sc                       

Q 55=Q44s
2
+Q55c

2
 

 

All other elements of [Qij] and [Q ij] are zero. 

 

4. Formulation of Elasticity Matrix of Composite Laminated Plates 
 

In the following procedure, the elasticity matrix [D] is evaluated based on the special 

third order shear deformation theory [equs.(16)]. The following definition for stress-strain is 

resultant expressions appropriate to the special third order shear deformation theory: 
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 …………………….. (23 a) 
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
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










 ………………………………… (23 b)              

 

By substituting equs.(20) for stresses vectors in equs.(23) and integrating with respect  

to z, the stress-resultants are obtained in terms of the seven generalized displacements as 
[9]

: 

 

     D  ………………………………………………………………. (24 a) 
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In the above relations, N is the number of layers and 

 

)hh(
i

1
H

i

L

i

1Li   , i = 1, 2, 3, 4, 5, 7 …………………………………… (24 d) 

 

… (24 b) 
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5. Element Stiffness Matrix 
 

The element under consideration is a nine-node Lagrangian quadrilateral isoparametric 

element. At any point, the continuum displacement vector within the element is discretized 

such that: 





NN

1i

ii }{N}{  …………………………………………………………….. (25) 

 

where:  

Ni: is the shape function associated with node i,  

NN: is the number of nodes in an element and: 

 

T

yixiyixioioioii },,,,w,v,u{}{  …………………………………………. (26) 

 

The generalized strain   at any point within an element can be expressed by the 

following relationship: 

 



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li
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 …………………….. (27 b)                                                                           

 

Elements of non-zero terms of strain-displacement matrix [B] are given as 
[9]

: 
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i
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 ………………………… (28) 

 

Upon evaluating the D and Bi matrices as given by equs.(24) and (28) respectively, the 

element stiffness matrix can be readily computed using the standard relation: 

 

      
A

T
dABDBK  ………………………………………………………… (29) 
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6. Element Mass Matrix 
 

A mass matrix of fiber-reinforced laminated plate is derived from a consistent matrix. It 

is called “Consistent” because the same displacement model, used for deriving the element 

stiffness matrix, is used for the derivation of mass matrix. The mass 
e]M[ is given by 

[9]
, 

 

Ad]N][m[]N[]M[
T

A

e

  …………………………………………………….. (30) 

where: 

 

[N]=[N1, N2…NNN] ………………………………………………………... (30 a) 
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In which, 
 

dz)z,z,1()I,I,I(
L62

h

h

n

1L
321

1L

L

 



 …………………………………………….. (31) 

where:  

L : is the material density of the L
th
 layer,  

I1, I2 and I3: are normal inertia, rotary inertia and higher-order inertia terms respectively. 

 

7. Solution of Equilibrium Equations in Dynamic Analysis 
 

The equations of equilibrium governing the linear dynamic response of a system of 

finite elements are derived: 

 

RKUUM  ……………………………………………………………….. (32) 

 

where:  

M and K: are the mass and stiffness matrices;  

R: is the vector of externally applied loads;  

U and U : are the displacement and acceleration vectors of the finite element assemblage.  
 

It should be recalled that equ.(32) is derived from static considerations at time t;         

i.e., equ.(32) may be written as: 
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FI (t) + FE (t) = R (t) ………………………………………………………... (33) 

 

where:   

FI (t) are the inertia forces,         

FI (t) = UM   

FE (t) are the elastic forces,        

FE (t) = KU  
 

In this work the direct integration methods namely the Newmark method is considered 

for the solution of equ.(32). 

 

8. Results and Discussion 
 

In finite element discretization of laminated plates only one quarter of the plate was 

considered in most of the studied cases, due to double symmetry about x- and y- axes. 

In the following it is assumed that the material is fiber- reinforced and remains in the 

elastic range. 

The material properties are: 

E2=6,62x10
9
 N/m

2
, E1=40E2, G12=G13=0.5E2,G23=0.6E2,v12=0.25 

Dimensions of plate: 

a=1 m ,   b=1 m  , h= 0.02 m 

Properties of impactor:  

E=200 x 10
6
 N/m

2
, v=0.3, mass =0.1 kg, Radius=0.01 m 

 

From Figs.(1) and (2), it can be seen that the deflection predicted in the present study 

using HOST 7 agrees very well with the numerical solution 
[5]

 and experimental studying 
[10]

 

respectively. 
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Figure (1) Comparison the present work with the numerical solution of [5]  

of simply supported plate  
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Figure (2) Comparison the present work with the experimental study of [10]  

of simply supported plate 

 
Figure (3) shows the effect of velocity of impactor on the impact force history. It can be 

seen that as the velocity of impactor increases the impact force increases and the impact 

duration decreases. 
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Figure (3) Effect of variation the velocity of impactor on the contact  

force histories (mass=0.1 kg) 

 
Figure (4) shows the effect of mass of impactor on the impact force history. It is seen 

that both of the impact force and the duration increases with the increase of the impactor’s 

mass. 
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Figure (4) Effect of variation the mass of impactor on the contact 

force histories (V=20 m/sec) 

 
Form Figs.(3) and (4) it can be seen that increasing mass or velocity of impactor results 

in an increase in the impact force due to the increase of energy absorbed from the plate. With 

the increase of impactor mass the duration of impact increases because of the high inertia of 

impactor. 

From Fig.(5) it can be seen that the coupling has a noticeable influence on the response 

of the two-layer plate, while the coupling dies out as the number of layers increases. The 

central deflection decreases with the increase in the number of layers. This trend, again, is 

observed for antisymmetric cross-ply laminates in Fig.(6). 
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Figure (5) Effect of number of layers on a transient response of a square 

antisymmetric angle-ply laminated plate (V=10 m/sec) 
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Figure (6) Effect of number of layers on a transient response of a square 

antisymmetric cross-ply laminated plate (V=10 m/sec) 

 
Figure (7) presents the effect of the degree of orthotropy (E1/E2). It can be seen that an 

increase in the material orthotropy ratio (E1/E2) results in a decrease in the central deflection 

due to the increase in the plate stiffness. 
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Figure (7) Effect of orthotropic ratio on a transient response of a square 

antisymmetric cross-ply laminated plate (V=10m/sec) 

 
Figure (8) shows the effect of the lamination angle (

o ) on the transient response of 

antisymmetric square plate. It is apparent from the results that the transverse deflection 

decreases with the increase in the angle of lamination from 
o = 0 to 45 due to the increase in 

plate stiffness. The relation is symmetric about (
o  = 45

o
) i.e. central deflection reduces at 

the same rate when (
o ) increases from 45

o
 to 90

o
. 
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Figure (8) Effect of lamination angle on a transient response of a square 

antisymmetric angle-ply laminated plate   ,,, (V=10 m/sec) 

 
Figure (9) illustrates the effect of the aspect ratio (a/b) on the transient response of the 

antisymmetric cross-ply (90
o
/0

o
/90

o
/0

o
). It is clear that the aspect ratio (a/b) is noticeable, and 

the maximum deflection occurs when the plate is square, otherwise the deflection decreases. 
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Figure (9) Effect of aspect ratio on a transient response of a square 
antisymmetric cross-ply laminated plate (area=1m2) (V=30 m/sec) 

 
Figure (10) indicates the effect of boundary conditions on the central deflection for 

antisymmetric cross-ply (90/0/90/0) laminated plate. As it is seen in this figure, the minimum 

deflection occurs when the plate is clamped along all edges due to the increase in the plate 

stiffness. 
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Figure (10) Effect of boundary conditions on a transient response of  

a square antisymmetric cross-ply laminated plate (V=30 m/sec) 

 
Finally, from the dynamic analysis, the dynamic load factor (D.L.F) can be calculated 

from: 
 

)IPart(staticindeflection.Max

dynamicindeflection.Max
F.L.D   

 

The range of (D.L.F) was between (1.9 2.2) which depending on the properties of 

target, mass, velocity and properties of impactor. 

 

9. Conclusions 
 

The main conclusions of this work for dynamic analyses of multilayer composite plates 

may be summarized as: 

1. Increasing the velocity of impactor increases impact force and reduces impact duration. 

2. Increasing mass of impactor increases impact force and duration. 

3. The central deflection decreases with the increase in the number of layers. 

4. An increase in orthotropy ratio (E1/E2) results in a decrease in the amplitude. 

5. For an angle-ply laminated plate, it is found that,  o45  represents the best lamination 

angle at which minimum deflection is achieved. 

6. Maximum amplitude occurs when aspect ratio is equal to one. 

7. The clamped boundary conditions for all plate edges give minimum deflection. 

8. The range of dynamic load factor for composite plate under impact loading is between 

(1.9 2.2). 
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List of Symbols 
 

A Area integral indicator. 

E1,E2 Modulus of elasticity in 1 and 2 directions (N/m2) respectively. 

G12,G23,G13 Modulus of rigidity in 1-2 ,2-3 and 1-3 planes (N/m2) respectively. 

H Laminated thickness (m).  

hL,hL-1 Distance from plate middle surface to the lower and upper surface 
of ith layer respectively. 

m1 Mass of impactor (kg). 

Mx, My, Mxy Resultant Moments per unit length (N. m / m) respectively. 

xyyx M,M,M  High-order stress-resultants (N m).  

Mx, My, Mxy Resultant Moments per unit length (N. m / m) respectively. 

xyyx MMM ,,  High-order stress-resultants (N m).  

Nx,Ny,Nxy Resultant forces per unit length (N/m). 

P Impact load (N). 

po Maximum impact force during impact duration (N). 

Qij Element of elasticity matrix (N/m2).  

ijQ  Transformed stress-strain relation (N/m2). 

Qx, Qy Shear forces per unit length  (N/m). 

yx Q,Q  High-order shear forces (N. m). 

R1 Radius of a spherical impactor (m). 

S, F, C Simply supported, free, and clamped edge respectively. 

T Time (s). 

u, v, w Displacement in the x, y and z directions (m) respectively. 

V1 , V2 Initial velocity of impactor and target (m/sec) respectively. 

yx ,  Rotations of the transverse normal in xz and yz plane. 

ij  Poisson’s ratio giving the strain in j direction caused by a strain in   
i direction.  

  Normal strain. 

  Angle of layer lamination (degree). 
  Normal stress (N / m2). 

  Shearing stress (N / m2). 
  Local indentation (m). 

1  Maximum deformation (m). 

i  Higher-order transverse cross section deformation modes. 

 

 

 

 

 

 


