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Abstract

The search for a material, which is to be, light and at the same time strong, has resulted in the
use of high strength, high modulus fibers reinforced in low strength, low modulus and low density
matrix material which is called composite material.

The finite element models and numerical result are presented for impact of composite plates
using a Special Third Order Theory (HOST 7) with the parabolic distribution of the transverse
shear strain through the thickness of the plate and rotary inertia effect are taken into account.

The Newmark direct integration method is considered for the solution of linear dynamic
response of the system. A typical finite element mesh of the quarter model is considered because of
the double symmetric. A nine-noded Lagrangian element is chosen as a discretization element with
seven degrees of freedom per node.

The effect of the velocity and mass of the impactor, number of layers, degree of orthotropy
(E1/E2), lamination angle (9) aspect ratio (a/b) and the boundary conditions on the dynamic
response of the laminated plate is considered.

The results show that the orthotropic ratio, velocity and mass of impactor have a significant

effect on the deflection of the plate under impact load. In addition, the calculation of the dynamic
load factor is presented.
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1. Introduction

Finite element procedures are very widely used in engineering analysis, and their
applications are expected to increase significantly in the coming years. These procedures are
employed extensively in the analysis of solids structures, heat transfer and fluids. Moreover,
finite element methods are becoming more and more useful in virtually every field of
engineering analysis.

The standard formulation for the finite element solution of solids is the displacement-
based finite element method, which is widely used in the solution of practical problems.
Practically, all major general-purpose analysis programs have been written using this
formulation, because of its simplicity, generality and good numerical properties.

This work presents a special third order theory (HOST 7) for the dynamic analysis of
unsymmetrically laminated multi-layered plates. A nine-nodded Lagrangian element is chosen
as a discretization element with seven degrees-of-freedom per node.

C.T. Sun and S. Chattopadhyey ™ investigated the central impact of a mass on a simply
supported-laminated composite plate under initial stress. B. V. Sanhar and C. T. Sun ! used
Finite element procedures to compute the impact response of graphite-epoxy laminated beam
subjected to tensile initial stresses. H. Aggour and C. T. Sun B! used in their study, a two
dimensional finite element analysis for a fiber-reinforced composite laminate subjected to
circularly distributed impact load. C. T. Sun and W. J. Liou ™ analyzed a laminated
composite plate subjected to central small area impact loading. The Hertzian impact law was
modelled to describe the contact force between the projectile and the laminated plate.

A. Nosier et. al. P! studied the low velocity impact response of laminated plates by using
a layer-wise theory. Six different modals were introduced for the representation of the impact
pressure distribution. I. Smojver and 1. Alfirevid ! studied the problem of impact on layered
composite and found that the behavior of composite laminates under impact loading depends
not only upon the velocity but also on the mass and geometry of the impactor.

2. Theory Development of Impact

For the most general case the target is assumed to be a multilayer, generally orthotropic
solid, whereas, the impactor is assumed to be a body of revolution. Moreover it is assumed
that (1) the target and the impactor are linear elastic, (2) impact duration is long compared to
stress-wave transit time in the impactor, (3) the impact is normal to the target surface, and
(4) the area of contact is very small.

The rate of change of velocity during impact (as the two bodies come in contact) is:

av,
m, E et © 1)

If we denote by the same distance that the impactor and target approach one another
because of local compression at the point of contact, the velocity of this approach is:
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If the contact duration between the impactor and the target is very long in comparison
with their natural periods, vibrations of the system can be neglected. Therefore, the Hertzian
theory is applicable:

where:
k1, k2: depend on the elastic constants of impactor and target and defined in [

Differentiating (2), combining it with (1), and substituting (3) into the resulting equation
yields:

If both sides of equ.(5) are multiplied by 4 and the resulting equation is integrated then
we get:

where:
V: is the approach velocity of the two bodies at t=0, that is, at the beginning of impact.

Maximum deformation, s, , occurs when £=0 and is:

2
5m,V° %
e e e (7)

4an,

Substituting of equ.(7) in to equ.(3) gives the following final relationship:
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2( 5m,V? %
P=nl——

For the case of the Hertzian contact problem involving a sphere pressed onto a flat
surface by a force p, the area of contact is very small circle. Therefore, it may be assumed that
the impact force is concentrated at that circle.

The maximum force p, occurs at a time of 0.5t, where t, is the impact duration. The
latter can be determined using an approach similar to that described by .

Solving equ.(6) for 4, yields:

- 2_&”1”
u—[V 5 m, ] .................................................................... 9)

Substituting & =dg/ dt into equ. (9) and solving for dt:

d
dt = & [ et (10)
V2 _ 4nlp‘5/2 ?
om,
Combining equ.(10) with equ.(7) and integrating to get:
2u, ¢ d
o o [ et (11)

v 0(1_)(%)%

where:
x=(ul ).
The total impact duration, t,, is obtained by the integration between the limits x=0 and
x=1:
c %
t = 2.94% _ 2.94[ mly] ..................................................... (12)
4n, V72

The variation of impact force P with time can be determined numerically by integrating
equ.(11) and expressing 4/ 44 as a function of time t/t,. The resulting curve can be
approximated fairly accurately by the equation:
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Combining equs.(14) and (3) yields the following expressions for p as a function of
time, t:

mtV %
t)= I
p(t) po{smz_g%} ............................................................... (15)
where:
%[Smlvz}%
po = nl 4

3. Special Third-Order Theory (HOST 7)

The special third-order theory, which presents displacement components, is given in the
form ©:

U(GY,Z)=Uo(XY ) +Z§ (XY, 0)+Z° B (XY, 1)
VOGY,ZD)ZVo0GYDFZ 0y (XY D+Z2 0 (X, Y11)  cevenveieneeienieeeeeeneeeaenns (16)
W(X,Y,Z,5)=Wo(X,y,t)

where:
(ue, Vo, Wo): denote the displacement of a point on the mid-surface of the plate(z=0),
@ and @ are the rotations of the transverse normal in the xz and yz planes.

The term 84,6 can be interpreted as the stretching of the transverse normal, for the
remaining higher-order term.

The strain-displacement relations, using the above displacement forms, may be written
as:
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Szza—zz
............. 17
_au ov_(ou, ov,), fo, 0b), (%, 0, 0
Y=y Tax oy T ax oy | ox oy | ox
ov ow ow )
=—+——=0¢,+—>+2°(30
YVZ az ay ¢y 6y ( y)
ou ow ow )
=—+—=¢, +—>+2°(30
YXZ az ax ¢X ax ( X)
or:
&x 83 RX Sx (I) +6W0
Yy Yoy 0
g, r=18) (+29R, r+72°9S, = +32% Th (18)
YXZ aWO eX
Txy Yiy Ry Sy P + X
where,
[ a, [ o (o,
g, OX R, a6x S, aaé<
g = N, AR, P =3 o, 5 ,9S. =4 —L b (18)
’ oy ’ oy ’ oy
Vo) [ou, ov | (Ro) |op, 20, (o) oo, o8,
[0y  Ox | oy O | | oy  ox |

Substituting equs.(18) in the stress-strain relation of the lamina, the constitutive relations
for any layer in the (x, y) system are in the form [");

Oy 911 §12
O, r = 912 922
T Qi Qg

Qus
Q55

l

Q.
926
Q66 K

¢y+

o, +

8)0( RX SX

€ r+Z3R, t+2Z°3S, Pt e, (20 a)
ng RXY Sxy
ow,

0

N g2l e (20 b)
aWO eX

OX
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where:

[QI=ITTIQIT] cvvveveeveee e (21)

[T]: Transformation matrix given by:

[ 2 §? sc 0 0]
s> ¢ -sc 0 O
[T]=]-2sc 2s¢ c?=s? 0 o0
0 0 0 c -5
| O 0 0 s ¢ |
where:
c: cos 4, s =sin @
Qu=Ex/(1-v12v21), Q12=V12E1(1-Vi2Va1), Q22=E2/(1-V1,V21),
Q33=C12, Q44=Gg3, Qs5=C13

The transformation equ.(3.52) can be represented in the following form:

Q 1:=Q11*+2(Q12+2Qs3)s’C*+Qp5"

Q 12=(Qu1+Q2-4Q33)s’c’+Qyp(s+¢”)

Q 22=Q115"+2(Q12+2Q33)s’c’+Qsc"

Q 16=(Q11-Q12-2Q33)SC+(Q1-Q2+2Q33)S°C vvvevevenrenerierieieieereneee (22)
Q 26=(Q11-Q12-2Qa3)cs™+(Q12- Q22+ 2Qg3)sC

Q 66=(Qee+Q22-2Q12-2Q33)s°C’+Qa(s™+¢")

Q 44=QusC’+Qsss”

Q 45=(Qs5-Quaa)sC

— _ 2 2
Q 55=Q448"+QssC

All other elements of [Q;;] and [6 ij] are zero.

4. Formulation of Elasticity Matrix of Composite Laminated Plates

In the following procedure, the elasticity matrix [D] is evaluated based on the special
third order shear deformation theory [equs.(16)]. The following definition for stress-strain is
resultant expressions appropriate to the special third order shear deformation theory:
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N, M, M| o,
N, M, M =X []s, L, 2, M e (23 a)
[Ny My, My o Oy
—Qx Q‘)“( N Ny sz )
= 1, ZO)Z e,
_Qy Q;:I ; F[ |:Tyz:|( Z )jz (23 b)

By substituting equs.(20) for stresses vectors in equs.(23) and integrating with respect
to z, the stress-resultants are obtained in terms of the seven generalized displacements as

G DKE} e (24 a)
au.
QuHp Qi2H; Qi3H; QuH, Qi2H, Qi3H, QuH, Qi2H, QizH, é‘?\;(
522H1 623H1 512H2 522H2 523H2 612H4 522H4 523H4 oy
T T TR T T T T e, v,
NX QazH; Qi3H, Q23H, Qa3H, QizH,; Q23H,; Qa3H, || dy  ox
y 64)
Nxy 511H3 512H3 513H3 511H5 512H5 513H5 -
My | T e s e S, | - (24D)
My |= = Q22H3z Q23H3 Qu2Hs Qp2H5 Qa3Hs v
iy = oy
< Surte oute S ou || O, Oy
My Qs33H3 Qi3Hg5 Qp3Hg Qa3Hs EJFE
M.
y _ _ _
M SYMMETRIC Q1 H; Qi2H; Qi3Hy @
LXY ] OX
522H7 623H7 %
L 633H7_ aex_l_%
L oy  ox |
Q, QssH, QusH, QssH;  QuH, b, +0w, /Ox
Al QuHi  QuHe QuH|| & +ow./oy| oy
Q5 L=1 Q55H5 Q45H5 Sex
QJ SYMMETRIC QuHs 30, |
In the above relations, N is the number of layers and
1, iy -
Hi:_(hL+l_hL)!|:1’ 2, 3, 4, 5,7 .......................................... (24d)
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5. Element Stiffness Matrix

The element under consideration is a nine-node Lagrangian quadrilateral isoparametric
element. At any point, the continuum displacement vector within the element is discretized
such that:

{8}=ZNi{8i} ....................................................................... (25)

where:
Ni: is the shape function associated with node i,
NN: is the number of nodes in an element and:

{83 =1{U4i Vi Woi s 0 By 06,04 3 e (26)

The generalized strain & at any point within an element can be expressed by the
following relationship:

{€}=§N:Bi{8i} ......................................................................... (27 a)

where:

o _[ou, v, ou, v, b, 09, 29, 09,
Ox 'Oy 0y oOx ox oy oy ox

PO (27 b)
00 00
By By By By 0, + oW, b, + oW, ,30,.,30,
oX oy oy ox oX oy
Elements of non-zero terms of strain-displacement matrix [B] are given as
ON.
1,1 3,2 4,4 6,5 7,6 9,7 10,3 ax
B10,4 = Bll,S =N,
BN, e (28)

Bz,z = B3,l = Bs,s = Be,4 = Bs,7 = Bg,e = B11,3 = EI

812,6 = B13,7 = 3Ni

Upon evaluating the D and Bi matrices as given by equs.(24) and (28) respectively, the
element stiffness matrix can be readily computed using the standard relation:

[K]= [[BITPIBIUA oo (29)
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6. Element Mass Matrix

A mass matrix of fiber-reinforced laminated plate is derived from a consistent matrix. It
is called “Consistent” because the same displacement model, used for deriving the element

stiffness matrix, is used for the derivation of mass matrix. The mass [M]Cis given by ¥,

[MT = [IND TMIINIOA <cevvveeeennneeeeenneessneeeeesessesssseessesssenn (30)
where:
[N]:[Nl, NZ---NNN] .................................................................. (30 a)
i i
Il
I, 0
[m]= I, [ e (30 b)
0 1,
|3
I3_
In which,
(I,1,,1,) = Lzl Tl(l,zz,ze)pLdZ ..................................................... (31)
where:

pL: is the material density of the L" layer,

I3, I, and I3 are normal inertia, rotary inertia and higher-order inertia terms respectively.

7. Solution of Equilibrium Equations in Dynamic Analysis

The equations of equilibrium governing the linear dynamic response of a system of
finite elements are derived:

where:
M and K: are the mass and stiffness matrices;
R: is the vector of externally applied loads;

Uand U are the displacement and acceleration vectors of the finite element assemblage.

It should be recalled that equ.(32) is derived from static considerations at time t;
i.e., equ.(32) may be written as:

78



Journal of Engineering and Development, Vol. 11, No. 2, September (2007) ISSN 1813-7822

FL (D) Fi () T R (£) vvveeeereeeeeeeeeeeeeeeseseseeessseesesessesesessssesseseseseon (33)

where:
Fi (t) are the inertia forces,
F ()= MU
Fe (t) are the elastic forces,
Fe (t) = KU

In this work the direct integration methods namely the Newmark method is considered
for the solution of equ.(32).

8. Results and Discussion

In finite element discretization of laminated plates only one quarter of the plate was
considered in most of the studied cases, due to double symmetry about x- and y- axes.
In the following it is assumed that the material is fiber- reinforced and remains in the
elastic range.
The material properties are:
E»=6,62x10° N/m?, E;=40E,, G1,=G13=0.5E,G23=0.6E,v1,=0.25
Dimensions of plate:
a=1lm, b=1m ,h=0.02m
Properties of impactor:
E=200 x 10° N/m?, v=0.3, mass =0.1 kg, Radius=0.01 m

From Figs.(1) and (2), it can be seen that the deflection predicted in the present study
using HOST 7 agrees very well with the numerical solution ™ and experimental studying *°!
respectively.

0.077 -
0.070 —
0.063 —
0.056 —
0.049 —
0.042 —
0.035 —{ .
0.028 —| |
0.021 — |
0.014 —|;
0.007 —f
0.000 T T T T T T T T

00 01 02 03 04 05 06 07 08

Present Work

............................ HOST 7 [24]

Max.deflection (mm)

Time (milisecond)

Figure (1) Comparison the present work with the numerical solution of 1
of simply supported plate
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0.40 ’ Present
— 0.35
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£ o030
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= 0.20
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S 0.15
©
= o0.10
0.05
0.00 T T T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
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Figure (2) Comparison the present work with the experimental study of ['”
of simply supported plate

Figure (3) shows the effect of velocity of impactor on the impact force history. It can be
seen that as the velocity of impactor increases the impact force increases and the impact
duration decreases.

10.4
\Velocity

91 ] OOt 0000 3 m/sec

7 8 AO000. 0000 10 m/sec
~~~ . ] —l— 15 m/sec
s 6 5 —@—— 20 m/sec
'S . I —h— 25 m/sec
:)/ 52 30 m/sec
(&)
S 39
LL

2.6

1.3

0.0

00 02 03 05 06 08 09 11 12 14 15 17
Time ( milisecond )

Figure (3) Effect of variation the velocity of impactor on the contact
force histories (mass=0.1 kg)

Figure (4) shows the effect of mass of impactor on the impact force history. It is seen
that both of the impact force and the duration increases with the increase of the impactor’s
mass.
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30
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24
21
18
15
12

Force (KN)

o w o ©

00 03 06 09 12 15 18 21 24 27 30

Time ( milisecond )

Figure (4) Effect of variation the mass of impactor on the contact
force histories (V=20 m/sec)

Form Figs.(3) and (4) it can be seen that increasing mass or velocity of impactor results
in an increase in the impact force due to the increase of energy absorbed from the plate. With
the increase of impactor mass the duration of impact increases because of the high inertia of
impactor.

From Fig.(5) it can be seen that the coupling has a noticeable influence on the response
of the two-layer plate, while the coupling dies out as the number of layers increases. The
central deflection decreases with the increase in the number of layers. This trend, again, is
observed for antisymmetric cross-ply laminates in Fig.(6).

2.0
18
1.6
14
12
1.0
0.8
0.6
0.4
0.2
0.0
V2 7711 T T T 1 T T 1

00 02 04 06 08 1.0 12 14 16 18 2.0 22 24

Angle-ply (45/-45/..)

—ufu— 2-Layers
—4— 4-Layers
—&— 6-Layers

Max.deflection (mm)

Time (milisecond)

Figure (5) Effect of number of layers on a transient response of a square
antisymmetric angle-ply laminated plate (V=10 m/sec)
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Cross-ply (90/07/...)

—ufe— 2-Layers
—@— 4-Layers
—&— 4-Layers

00 02 04 06 08 10 1.2 14 16 18 2.0 22 24

Time(milisecond)

Figure (6) Effect of number of layers on a transient response of a square
antisymmetric cross-ply laminated plate (V=10 m/sec)

Figure (7) presents the effect of the degree of orthotropy (Ei/E>). It can be seen that an
increase in the material orthotropy ratio (E1/E2) results in a decrease in the central deflection

due to the increase in the plate stiffness.

4.5
4.0
3.5
3.0
25
2.0
1.5
1.0
05
0.0

Max. deflection (mm)

[
= o
o ol

Cross-ply (90/.0/90/0)

—a— EL/E2=10

—4@— ELE2=20
—A—  E1/E2=40

00 02 04 06 08 10 1.2 14 16 1.8 2.0 22 24

Time (milesecond)

Figure (7) Effect of orthotropic ratio on a transient response of a square
antisymmetric cross-ply laminated plate (V=10m/sec)

Figure (8) shows the effect of the lamination angle (8°) on the transient response of
antisymmetric square plate. It is apparent from the results that the transverse deflection

decreases with the increase in the angle of lamination from @° = 0 to 45 due to the increase in

plate stiffness. The relation is symmetric about (@° = 45°) i.e. central deflection reduces at

the same rate when (6°) increases from 45° to 90°.
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Figure (8) Effect of lamination angle on a transient response of a square
antisymmetric angle-ply laminated plate (9,—9, 9,—9)(V=10 m/sec)

Figure (9) illustrates the effect of the aspect ratio (a/b) on the transient response of the
antisymmetric cross-ply (90°/0°/90°/0°). It is clear that the aspect ratio (a/b) is noticeable, and
the maximum deflection occurs when the plate is square, otherwise the deflection decreases.

6.8
6.0
5.3
4.5
3.8
3.0
2.3
15
0.8
0.0
-0.8
-1.5

Cross-ply (90:/0/90/0)

—=f— - a/b=0.1
—@— a/b=0.4
—&— a/b=1
—h— a/b=3
—@— a/b=10

Max.deflection (mm)

00 02 04 06 08 10 12 14 16 18 20 22

Time (milisecond)

Figure (9) Effect of aspect ratio on a transient response of a square
antisymmetric cross-ply laminated plate (area=1m?) (V=30 m/sec)

Figure (10) indicates the effect of boundary conditions on the central deflection for
antisymmetric cross-ply (90/0/90/0) laminated plate. As it is seen in this figure, the minimum
deflection occurs when the plate is clamped along all edges due to the increase in the plate
stiffness.
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Cross-ply (90/0/90/0)

SSSS:

SsCC

SSFF

ccce

Max.deflection (mm)
RPOOORPNWWAMUIUIOOO N
MO ®UIw O 0w oL

00 02 04 06 08 10 1.2 14 16 18 20 22 24

Time (milesecond)

Figure (10) Effect of boundary conditions on a transient response of
a square antisymmetric cross-ply laminated plate (V=30 m/sec)

Finally, from the dynamic analysis, the dynamic load factor (D.L.F) can be calculated
from:

Max .deflection in dynamic

D.LF= — -
Max .deflection instatic (Part 1)

The range of (D.L.F) was between (1.9— 2.2) which depending on the properties of
target, mass, velocity and properties of impactor.

9. Conclusions

The main conclusions of this work for dynamic analyses of multilayer composite plates

may be summarized as:

1. Increasing the velocity of impactor increases impact force and reduces impact duration.

2. Increasing mass of impactor increases impact force and duration.

3. The central deflection decreases with the increase in the number of layers.

4. An increase in orthotropy ratio (E1/E;) results in a decrease in the amplitude.

5. For an angle-ply laminated plate, it is found that, (0 :450) represents the best lamination
angle at which minimum deflection is achieved.

6. Maximum amplitude occurs when aspect ratio is equal to one.

7. The clamped boundary conditions for all plate edges give minimum deflection.

8. The range of dynamic load factor for composite plate under impact loading is between
(1.9-2.2).
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List of Symbols

A Area integral indicator.

E{ E> Modulus of elasticity in 1 and 2 directions (N/mz) respectively.

G12,G23,G13 Modulus of rigidity in 1-2 ,2-3 and 1-3 planes (N/m?) respectively.

H Laminated thickness (m).

h,,hi 1 Distance from plate middle surface to the lower and upper surface
of i layer respectively.

m1 Mass of impactor (kg).

My, My, Myy Resultant Moments per unit length (N. m / m) respectively.

M3, M}, M, High-order stress-resultants (N m).

My, My, Myy Resultant Moments per unit length (N. m / m) respectively.

M M}, M, High-order stress-resultants (N m).

Ny, Ny, Nyxy Resultant forces per unit length (N/m).

P Impact load (N).

Po Maximum impact force during impact duration (N).

Qijj Element of elasticity matrix (N/m?).

qj Transformed stress-strain relation (N/m?).

Qx Qy Shear forces per unit length (N/m).

Qi,Q; High-order shear forces (N. m).

R1 Radius of a spherical impactor (m).

S,F,C Simply supported, free, and clamped edge respectively.

T Time (s).

u, v, w Displacement in the x, y and z directions (m) respectively.

Vi, V2 Initial velocity of impactor and target (m/sec) respectively.

Oy Oy Rotations of the transverse normal in xz and yz plane.

Vji Poisson’s ratio giving the strain in j direction caused by a strain in
i direction.

€ Normal strain.

0 Angle of layer lamination (degree).

o Normal stress (N / m?).

T Shearing stress (N / m?).

[ Local indentation (m).

1y Maximum deformation (m).

0; Higher-order transverse cross section deformation modes.
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