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Analytical, Theoretical and Experimental Investigation of 
Linear Viscoelastic Thin Plate Deflection with Two Edges 

Fixed and the Other Two Edges Simply Supported 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract 
 

A polyester and composite polyester thin plate have been tested under a certain 

constant distributed load (q=8N/mm
2
) so as to give a linear behavior over the plane of area 

at constant temperature (T=15ºC). The plate has been tested for thickness values 

(t=2,3,4mm). The type of boundary condition used here is two sides are fixed and the other 

two sides are simply supported. For the linear behavior of the polymer, a linear finite 

element program is achieved with the aid of FORTRAN power station program. The results 

of the FEM, theoretical and the experimental were compared. A good accuracy has been 

observed between the FEM, theoretical and the experimental work. In general the 

deflection behavior depends on the creep compliance. Increasing thickness results in 

decreasing the deflection, this decreasing depend on the value of thickness increasing. The 

deflection rate decrease during time for polyester, which depend on the creep function. The 

increasing in the plate dimensions ratio results in increasing the plate surface deflection 

for both plates (polyester and composite polyester plate). A composite plate shows a small 

increasing in the deflection during increasing the plate dimension ratio as comparing with 

that of polyester. 

 
 

 ةـــــــلاصـالخ
8N/m)من )بولٌستر( و المركب من )بولٌستر( تحت تأثٌر حمل موزع ثابتت مقترار   الصفائح الرقٌقةتم اختبار 

2) 
 النهاٌتات . شروط(mm 4 & ,3 ,2)الصفٌحة لثلاث قٌم من السمك  تم اختبار و (°15C)ثابتة و تحت تأثٌر   ررجة حرارة 

تتم استتخرام ثتلاث انتواع متن نستب  بصتورة مبستطة.  بتة و الجانبٌن الآخرٌن مستنرجانبٌن من الصفٌحة مث هًالمستخرمة 
ابعار الصفٌحة. تصرّف الصفٌحة ٌكون خطً حٌث تم بناء برنامج العناصر المحررة لحالة المتارة الززجتة المرنتة و النتتائج 

النظري و العمزً. بصورة عامتة تصترف  تم ملاحظة رقة جٌرة كمقارنة البرنامج مع الجزء النظرٌة و العمزٌة تم مقارنتها.
لزصتفٌحة و هت ا النقصتان ٌعتمتر عزتى  نتاءنقصتان يتً الانح إلتىٌعتمر عزى مطاوعة الزحف. زٌارة الستمك ٌتيري  ناءالانح

ختلال التزمن )لزبولستتر( ٌعتمتر عزتى مطاوعتة الزحتف. الزٌتارة يتً معترل نستب ابعتار  نتاءمقرار زٌارة السمك. معرل الانح
 نتاءالصفائح المركبة تظهر زٌارة قزٌزتة يتً الانح لزصفٌحة لكلا )بولٌستر( والمركب. ناءزٌارة يً الانح إلىالصفٌحة ٌيري 

 خلال زٌارة نسبة الأبعار كمقارنة مع )صفائح البولستر(.
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The increasing use of polymers in engineering design is largely due to their high 

strength to weight ratio and to their corrosion resistance 
[1]

. Viscoelastic materials experience 

both viscous and elastic phenomena as the name viscoelastic implies. There are some 

phenomena which are common to many viscoelastic materials 
[2]

, as illustrated in Fig.(1). 

 

 

   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1) Phenomena common to many viscoelastic materials [2]
 

 
(a) Instantaneous elasticity. 

(b) Creeps under constant stress. 

(c) Stress relaxation under constant strain. 

(d) Instantaneous recovery. 

(e) Delayed recovery. 

(f) Permanent set. 
 

Most material exhibit linear or nearly linear behavior under small stress levels 
[3]

 .One of 

the most distinguishing features of viscoelastic materials is their response to so called a 

constant stresses (creep test). The creep test consists of measuring the time dependent strain 

resulting from the application of steady uni-axial stress as illustrated in Fig.(2). 
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Figure (2) Creep strain at various stresses 

 
These three curves are the strain measured at three different stress levels, each one twice 

the magnitude of the previous one (such that: . 

Note that in Fig.(2) that when the stress is doubled, the resulting strain is doubled over 

its full range of time. 

 

2. Theory of Linear Viscoelasticity 
 

The response of viscoelastic material is called as a linear if the following condition is 

occurred 
[4]

: 

 

a a………………………………………………………………….. (1) 

 

The ratio of strain to stress is called the compliance and in the case of time-varying 

strain, arising from a constant stress the ratio is the creep compliance, D(t): 

 

D(t)=t....................................................................................................... (2)

 

The stress-strain time relation of viscoelastic material has been analyzed with the aid of 

mechanical models where the stress and strain are used instead of force and deformation of 

model 
[2]

. All linear viscoelastic models are made up of linear springs and linear viscoelastic 

dashpot. In the linear springs shown in Fig.(3a), the following relations can be written: 

 

 R ………………………………………………………………………… (3) 
 

where: 

R: linear spring constant or young modulus. 
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The spring element exhibit instantaneous elasticity and instantaneous recovery as shown 

in Fig.(3b). A linear dashpot element is shown in Fig.(3c) where: 

 

 
.

dt

d
 


 …………………………………………………………………. (4)  

 

where:  

:
.
 strain rate during time 

 coefficient of viscoelasticity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure (3) Behavior of linear spring and linear dashpot 

 
Dashpot will be deformed continuously at constant rate when it subjected to a step of 

constant stress as shown in Fig.(3d). 

The Burgers model is shown in Fig.(4a) where the Maxwell and Kelvin model are 

connected in series 
[2]

.The total strain can be written as follows:                                                                                                                                                                                        

 

3ε2ε1εε  ………………………………………………………………… (5) 

 

in which: 

 total strain in burgers four-element model. 

the strain in spring for maxwell model. 

 the strain in dashpot for maxwell model. 

 the strain in kelvin model. 
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Figure (4) Behavior of a burger model 

 
That is: 
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From Eqs.(6-8), may obtained the following second order differential equation between 

stress and strain: 
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The Laplace transformation method is used in solving the differential equations (9) to 

illustrate the creep behavior as follows: 
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) 
2/t2R

e1(
2R

σot
1η

σo

1R

σo)t(ε


  ……………………………………... (10) 

The material constant R1, R2,can be determined from the experimental data for 

creep test in linear viscoelasticity behavior. The stress relaxation behavior of the Burger 

model for a step of strain can be obtained from Eq.(9) as follows
 [2]

: 

 

]
t2r

e)2r2q1q(
t1r

e)1r2q1q[(
A

o)t(



  …………………………… (11) 

 

where: 
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2p4
2

1pA   ……………………………………………………………… (14) 

 

Creep compliance can be obtained from Eq.(10) as: 

 

)
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  ………………………………. (15) 

 

If the material behavior is linear, the stress can be represented by: 

 

)t(Eo)t(   ………………………………………………………………… (16) 
 

 o/)t()t(E  ……………………………………………………………….. (17) 

 

The function E(t) thus obtained and called the relaxation modulus  . the equation of 

relaxation modulus can be obtained using Eqs.(11,17) as follows: 

 

]
t2r

e)2r2q1q(
t1r

e)1r2q1q[(
A

1
o/)t()t(E

  ………………… (18) 

 

Plate can be considered as thin when its thickness is about fifteen times smaller than the 

shortest span length. 
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3. Theoretical Plate Deflection 
 

The solution of the equilibrium differential  equation for bending two opposite side 

simply supported and other clamped Fig.(5), can be written as follows 
[5]

: 
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where: 

w: the plate deflection(mm) . 

q: the distributed load (N/mm^2). 

a, b: plate dimensions. 

D: the flexural rigidity of plate, given by:  
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Hence, the modulus of elasticity (E), can be represented here in the form of function of 

time as in Eq.(18).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure (5) Rectangular plate with two opposite edges simply supported  
and the other two edges fixed 
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4. Finite Element Approach for Linear Thin Viscoelastic Plate 
 

Linear viscoelastic plate equations analysis has been derived to formulate an approach 

model in (FEM) depending on standard element stiffness derived from 
[6]

. In general, the 

program gives the following data for each node: 

1. The deflection (w) and the slopes (x, y). 

2. The strains (x, y, xy). 

3. The stresses (x, y,xy). 

 

The following system of equilibrium equation for FEM has been used: 
 

   0dA]N)[y,x(qudA]B][D[
T

]B[  ………………………………….. (20) 

 

where the element stiffness [K]e is given by: 

 

 dxdy]B][D[
T

]B[e]K[  ……………………………………………………. (21) 

 

The matrix [K] for each element has been formulated from 
[7,8]

 and the vector of the 

equivalent nodal force {f}e  is: 

 

  dA]N[)y,x(qef  ……………………………………………………….. (22) 

 

Thus, the equilibrium for plate element can be expressed in the concise form: 
 

   eue]K[ef   ………………………………………………………………. (23) 
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where: 

[B]: strain matrix. 

 

The element deformed shape can be approximated with a suitable set of shape functions 

Ni (x,y): 

 

  
i

u]N[ui)y,x(Ni)y,x(w  ………………………………………………. (25) 

 

A rectangular four node element of plate (ijkl) coinciding with (xy) planes is used with 

three degree of freedom for each node (w, x,y) ,where the total degree of freedom for each 

element is (12 degree of freedom), Fig.(6). At each node displacements (an) are introduced 

and defined by (for node i): 
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The strain can be found according to the following formula: 

 

 ea]B[ …………………………………………………………………… (27) 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure (6) Rectangular plate element 

 
5. Linear Viscoelasticity Computer Program 

 

In this software the stress, strain, deflection and the rotations about the x-axis and y-axis 

have been determined for each time step according to the stress relation function, E(t). The 

program has been done for thin plate analysis for linear viscoelasticity. The program contains 

the following subroutine written in FORTRAN power station language: 
 

1. Data subroutine: the required input data can be classified as: 
 Stress relaxation function constants Eq.(18) 

 Plate element dimensions: A, B, thickness (see Fig.(6)). 

 Poisson’s ratio  

 Mesh data: number of nodes, elements and the DOF. 
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 Element number and its nodes sequence. 

 Boundary conditions. 
 Node numbers and its Cartesian (x, y). 

 Time to be read and write result. 
 

2. Loading subroutine: the job of this subroutine is to assemble the element nodal force 

evaluated from equation (23). 
 

3. Stiffness matrix assemble: in this subroutine, the element stiffness (which has been 

evaluated from Eq.(21) will be assembled to give the global 

stiffness matrix  .  

 

4. Reducer subroutine: to reduce the global stiffness matrix by applying the boundary 

conditions. 
 

5. Solver subroutine: to solve the system equations to give the nodal deflections (wx, y). 
 

6. Displacement subroutine: in this subroutine the output data (wx, y) has been written 

in the output data file. 
 

7. Stress subroutine: the strain (xyxy) which has been evaluated from Eq.(27) has been 

written in the data file as well as for each node at each time the stress 

result written here. The Fortran power station has been done with the 

aid of 
[9,10]

. 

Figure (7) shows the block diagram of this program subroutine. 
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Figure (7) Block diagram for linear viscoelatcity thin plate 
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6. Experimental Work 
 

Polyester specimen has been prepared by mixing two liquid substances. The procedure 

used to achieve the creep test is by reading the instantaneous deformation of specimen from 

the movement of dial gage pointer step by step with (mm) unit during the subsequence time. 

The compliance equation has been evaluated according to Burger four element equation (15). 

The final creep result for compliance equation can be written as follows: 
 

D(t)=3.566e-3+(1.0767e-6).t+9.535e-4.(1-EXP(-0.02123.t)) …………... (28)   

 

According to Eq.(18) the relaxation formula can be written as: 

 

E(t)=220.EXP(-r1.t) + 60.3.EXP(-r2.t) ………………………………….. (29) 

 

The same above procedure has been done for composite polyester specimen with 

volume fraction (Vf=0.3). Figure (8) shows a schematic graph of standard creep test 

specimen 
[11]

. 

The creep compliance has the following function:  

 

D(t)=1.09e-3+(1.3687e-5).t+1.835e-3.(1-EXP(-0.127.t)) ………………. (30)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure (8) Standard creep test specimen 

 
 

 

89 mm 

38.1 mm 

4.8 mm 

  

  

Ø 6.65  mm 

1.58 mm 

2
5
.4

 m
m

 



Journal of Engineering and Development, Vol. 11, No. 1, March (2007)                  ISSN 1813-7822 

 

 116 

Figure (9) and Fig.(10) show the graph of function Eq.(28) and Eq.(30) respectively. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (9) Creep compliance for linear viscoelastic polyester 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (10) Creep compliance for linear composite viscoelastic polyester 
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The secondary experimental tests, which include the deflection of thin plate for linear 

tests, will be compared with both theoretical, finite element proposed models. The equipment 

shown in Fig.(11) has been used to carry the experimental tests for the plates. The plate has 

been mounted on the stand of the equipment and the distributed load is applied by steel plate 

from which the value of the distributed load is calculated. For linear behavior the value of (q) 

must be choose so as to give the condition that the behavior of plate will be as linear 

(q=8N/mm^2). This value is tested at temperature (T=15°C.). The linear behavior of polyester 

plate has been done for three different thickness (t=2, 3, 4mm) such that the plate is thin. The 

first two sides of plate were fixed and the other two sides were simply supported Fig.(5). 

The deflection of plate has been record by dial gauge equipment and can be recorded by 

digital equipment with a strain gauge assembly but this method is cost. 

 

 
 

Figure (11) Plate deflection test equipment assembly 
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7. Result and Discussion 
 

The result of the experimental work will be explained and discuss. The comparison 

included the thickness variation, variation the plate dimensions. The plate dimension ratio 

(a/b) has been used here for three values (a/b= 0.5, 0.75, 1). 

The central deflection of plates has been analyzed for both polyester and composite 

polyester thin plates. The results have been shown in Figs.(12-17). The comparison explained 

three types of thickness so as to ensure the thin condition of plate, say, (t=2,3,4mm). The 

values of central point of thin plates deflection has been tested for nearly three hours. 

The deflection (w) is chosen for a maximum value of variation at the center point of 

plate (the mid distance of length and width). This is due to the symmetry of the tested plate 

(two opposite side fixed and the other two side simply supported); hence, the slope of the 

deflection will be zero at the middle point which give the maximum deflection. 

The constant applied distributed load (q) give a constant stresses at each node which 

results in increasing the strain in the plate (as in creep test for this material). Consequently, 

the deflection of plate increase with time for each thickness as it has been observed in 

Figs.(12-17). 

A small difference has been observed for the deflection behavior between the FEM and 

the theoretical analysis with error percentage reaches a range (3-5%). This difference between 

the calculated data represents the error between the two materials. This error may reduce by 

increasing the number of elements used for thin plate in the FEM or increasing the number of 

node for each element which required another element type with a large number of total 

degree of freedom (more than 12 degree). 

Increasing the thickness of plate results in increasing the central deflection for the same 

time period .This result is due to the fact that the deflection equation (19) depends on the 

flexural rigidity of plate which depends on the thickness of plate. 

The central deflection of plate decrease higher as increasing the thickness from (t=2mm) 

to (3, 4 mm) and this is due to the fact that the flexural rigidity depend on the cubic value of 

thickness. 

Also increasing thickness will reduce the applied stress and strain in the plane of the 

plate and consequently the deflection of plate will be reduced. 

Higher stress with small thickness (t=2mm) gives a higher deflection rate as comparing with 

small stress (3, 4 mm). 

From Figs.(12-17), comparing the results of experimental central deflection with that of 

the theoretical and FEM gives good agreements with small error. Normally, this error may 

presented for this type of equipment of plate deflection measurements and this error may 

reduce by replace the mechanical dial gauge equipment by a digital equipment to increase the 

instantaneous response for reading the deflection of plate. 

Due to the stiffer creeps compliance for composite material as comparing with that of 

polyester this results that the composite plate shows a small increasing in the deflection 

during increasing the plate dimension ratio as comparing with that of polyester. 
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Figure (12) Variation of central point deflection with thickness for linear 
polyester (q= 8N/mm^2), (a/b)= 0.5 

 

0 50 100 150 200 250
Time (minute)

0.0

3.0

6.0

w (mm) 
t=2mm

t=3mm

t=4mm

FEM

Theory

Fig.(13) Variation of central point deflection with thickness for 
                     linear polyester  (q=8 N/mm^2),(a/b)=0.75
             

Experimental

 
 

Figure (13) Variation of central point deflection with thickness for linear 
polyester (q= 8N/mm^2), (a/b)= 0.75 
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Figure (14) Variation of central point deflection with thickness for linear 
polyester (q= 8N/mm^2), (a/b)= 1 
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Figure (15) Variation of central point deflection with thickness for linear 
composite polyester (q= 8N/mm^2), (a/b)= 0.5 
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Figure (16) Variation of central point deflection with thickness for linear 
composite polyester (q= 8N/mm^2), (a/b)= 0.75 
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Figure (17) Variation of central point deflection with thickness for linear 
composite polyester (q= 8N/mm^2), (a/b)= 1 
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8. Conclusions 
 

From the present work, the following conclusions may be listed: 

1. The creep compliance behavior of polyester and composite polyester shows that the 

viscoelastic material affected by time and hence the strain increase during time.  

2. The creep behavior differs as comparing between the polyester and composite polyester. 

3. The creep rate for polyester decrease during time and the same behavior has been shown 

for composite polyester during the first short time. 

4. Nearly a constant strain rate was observed for the wide time range. 

5. A good accuracy has been shown for FEM, theoretical and experimental work for thin plate 

polyester and composite polyester. Hence the error percentage reaches a value (3-5%) as 

comparing between the FEM and the analytical. 

6. In general, increasing the plate thickness gives a decreasing in the value of the central plate.  

7. The deflection rate decrease during time.  

8. A composite plate shows a small increasing in the deflection during increasing the plate 

dimension ratio as comparing with that of polyester. 
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