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Abstract 
 

Quantum cryptography is anew branch of physics and cryptography which exploit 

quantum mechanical phenomena to guarantee the secrecy of cryptographic keys.  

This paper introduces the basic concepts, problems and methods of quantum key 

distribution. It introduces some basic knowledge of quantum mechanics and explains how 

these physical laws can be used in cryptography.  

The basic protocols of quantum cryptographic used for key distribution based on 

entangled polarization photons pair are also presented and assessed. The well known 

concepts based on entangled pairs of photons (Ekert) schemes are presented. In these 

schemes Alice and Bob perform measurements on each photon along one of two, three or 

four directions given by unit vectors i  and j (i, j = 1, 2, 3,4) respectively. Therefore the 

combinations are used from Alice and Bob is four, nine, or sixteen with respect to number 

of measurement directions (i = 2, 3 or 4) respectively. The analysis and comparative study 

between these versions are presented. 

 

 

 
 ةـــــــلاصـالخ

يعتبر التشفير الكمي فرعاً جديداً سواء بالنسبة للفيزيااء وو لعلاا التشافير والاعت يعتماد علاد اساتخداا  بروتوكاو   
 للاستفادة من ظواهر الميكانيك  الكمي لأجل ضمان سريه توزيع مفاتيح التشفير. همصمم

تناول هعا البحث المفاهيا والمشاكل والطرق المساتخدمة فاي توزياع المفتااك الكماي وتاا تنااول بعاة المعرفاة فاي 
 الميكانيك  الكمي  وتوضيح استخداا قوانين الفيزياء في التشفير. 

كو   التشفير الكمي العت تعتمد علد توزيع المفتااك الكماي باساتخداا  وزوال الفوتوناا  تا دراسة وتحليل  بروتو
وفي هعا البروتوكول  Ekert)التي تعتمد علد وزوال الفوتونا  المتعاقدة هي  بروتوكول )  المتعاقدة من وها البروتوكو 

(Bob, Aliceاتجاها )لكشف الفوتونا  وعلد هعا الأساس يكون عادد (  يستخدمون عدة اتجاها  )اثنان،ثلاثة،وو وربعة  
تضامن البحاث  دراساة  .( وربعة، تسعة، ستة عشر مجموعاه تبعااً لعادد ا تجاهاا  Bob, Alice)المجاميع المؤتلفة( بين )
 التي تعتمد علد وزوال الفوتونا  المتعاقدة.  Ekert))  مقارنة وتحليل لبروتوكو 

 

1. Introduction 
 

Classically, key distribution can be practically secure by some wise cryptographic 

systems, including symmetric cryptographic algorithm, Public Key Cryptography (PKC), etc. 
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Practically secure mean that, the required computational time and resources of breaking the 

key are simply beyond the human’s capability and means. However, almost all the most 

cryptographic schemes can not be proven to be secure, that means those schemes may be 

broken theoretically. In 1994, Shor described a polynomial time quantum for factoring 

integers, which can be applied to break the public key cryptography, although the algorithm 

could not be implemented unless the quantum computer is invented 
[1]

. Agrawal claimed an 

algorithm to distinguish prime number from composite numbers in polynomial time, which 

may lead to an efficient factoring method later to break the public key cryptography 
[2]

. 

Quantum cryptography ensures perfect security based on accepted nature laws of 

quantum mechanics, while these wisest systems of classical cryptography can only assure 

unproven practical security. Thus quantum cryptography brings a new hope and will change 

aspects about cryptography and security. 

Quantum cryptography offers several advantages over conventional key distribution 

schemes, these include: 

i. It avoids the insider threat because key material does not exist before the quantum 

transmission takes place. 

ii. It avoids the cumbersome physical security aspects of conventional key distribution 

methods. 

 

2. Quantum Mechanics and Message Expression 
 

Two aspects of knowledge of quantum mechanics need to be explored. One is the 

quantum state, which will be used to represent messages transferred in quantum channel. The 

other is how to apply quantum mechanics to ensure security in communication. Both of them 

are talking about the fundamental problems in quantum cryptographic key distribution. 

Classically, analog/digital signals are used to represent each bit of the message, high 

voltage for 1, and low voltage for 0. However, in the case of quantum mechanics, other forms 

(Photon Polarization with orthogonal states), are used. To describe a photon, its property, 

such as polarization can be used. The experiment of photon polarization can be done only 

with a light source, a projection screen, and some polarization filters. 

Suppose now we have two filters A and B. Filter A is polarized horizontally and filter B 

is polarized vertically, A and B have orthogonal direction of polarization. By inserting filter A 

between the light source and the screen (assume photons of incoming light are polarized  

randomly), the intensity of the outgoing light decrease to half of the incoming light while all 

the outgoing photons become horizontals  polarized, which is the same direction of filter A as 

shown in Fig.(1). 

 

 

 



Journal of Engineering and Development, Vol. 11, No. 1, March (2007)                 ISSN 1813-7822 

 

 47 

 

Figure (1) Photon polarization with horizontal state by using filter A 

 
If filter A replaced by filter B then the outgoing photons become vertically polarized. 

Finally, by inserting filter B between filter A and the screen, the intensity of output drops to 

zero, which implies no photon from filter A would pass through filter B as shown in the 

Fig.(2). 

 

 
 

Figure (2) Photon polarization using two orthogonal filters 

 
From the above experiments, the following can be summarized: 

1. A polarized filter will absorb the photon with orthogonal direction of polarization; 

2. A polarized filter will let the photon with the same direction of polarization pass through.  

3. A photon, randomly polarized, will either annihilated by the filter, or pass through the filter 

with the same direction of the polarization as the filter.                  
 

Based on these facts, two photons with orthogonal direction of polarization can be 

distinguished, and represent the bits of messages by these orthogonal quantum states. A 

quantum state can be represented as a linear combination of the base states.  For example, let 

 and  denote the two base states of polarized photon. When filter A rotated at an angle θ 

to the position A', the polarization of photons passing through A would shift the same angle θ.  

Such a state can be represented as: 

 

 sincos  ……………………………………………… (1) 

 

 

Thus any quantum state can be represented in the combination of base states. Moreover, 

the quantum states can be represented by polarization, positions, energies, spins, momentums, 

and so on, in terms of vectors and matrices or in the more compact bra/ket notation developed 

by Dirac 
[3]

. 
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The state of the Hilbert space H will be called kets. lable , where lable denotes some 

lable. 

Suppose the base state of H is { 1,0 }, then the state S | in H can represent as: 

10 baS   

where:  

a and b are two complex number and ( .122  ba ) 

The two orthogonal states  and  can be regarded as two base states 

10 and  in the quantum system. The matching bra, denoted as lable , represents the 

conjugate transpose of lable , combining yandx as written as yxandyx are 

the inner product and outer product of the two vectors, respectively.  
 

Since 1,0  are unit vectors i.e: 

100     (inner product of 00 and ) 

010  (inner product of two orthogonal states  10 and  

00   is mapping from  00 to  and from 01 to . 

0)10(01)00(

0)00(00)00(





 

The bra ( 00 ) can be used to represent the filter A, and the bra ( 11 ) to represent the 

filter B, i.e: 

1)11(11)11(

0)01(10)11(





  

Furthermore, for any state 1b0aS   ,  the state  after operation  by  00  

becomes: 
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0

00

)100()000(

)1(00)0(00

)10(0000

a

a

ba

ba

baS











 

Suppose 1,0  are two basic orthogonal states in quantum system H, then state 1,0  

can be used to represent the classical bit values 0 and 1 respectively. Thus the message M 

with L bits can be represented by L quantum states, in the form of 
1n10 x...........xx 

 . 

When sending M, the sender can use the operator 00  and 11  to generate 

states 10 and , respectively. The receiver can use 00 or 11  to distinguish each bit of 

M. Figure (3) represents the message expression and its transfer in a noiseless quantum 

channel. 

 

 
 

Figure (3) Message expression and its transfer in a noiseless channel 

 

3. Communication Security 
 

The classical way of security is unproven to be absolute secure, and more over, it is 

even difficult to detect whether or not the message has been accessed by eavesdropper 

without authority. This kind of eavesdropping detection can be achieved in the way of 

quantum mechanics. The non orthogonal quantum states can be used instead of orthogonal 

ones to express the transferring messages. This may introduce uncertainty into measurements, 

which can force Eve to leave disturbance for being detected. In practical experiment shown in 

Fig.(2), two filters with orthogonal polarizations were used. Now filter C will be used, which 

is polarized at 45 . Thus C is neither orthogonal to A nor to B. After placing C between filter 

A and B, a small amount of light on the screen can be observed, exactly 1/8 of the original 

amount of light. This result is different from the result of practical experiment shown in 

Fig.(2) in which nothing is observed on the screen. 
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Figure (4) Message transfer expression by non orthogonal states 

 
3.1 Probability Amplitude and Measurement 

Suppose { 1,0 } is the base state then 1b0aS    (Linear combination 

of base states). 

In fact the quantum mechanics claims that the probability of transforming               

2
ais00by0toS   observing that: 

a

aS



 )0(00
 

This probability actually equals to  
2

0 S  while the probability of 1   to be the final 

state is 
2

1 S . 

 

3.2 Eavesdropping Detection 

In quantum system the eavesdropper can be detected because any measurement of 

quantum state in the channel will transform state and lead disturbance with a special 

probability. Based on this fact, the message transferred in quantum channel can be protected.  

In Figure (5), Alice sends a message M with L bits to Bob. Alice and Bob can choose one of 

the two orthogonal states, },{and},{  , to represent the messages. Suppose 

they choose },{  securely, then for each bit valued ’0’, Alice sends photons through the  

filter A, while for ’1’ through filter B. Bob still places a filter A before screen to see whether 

light can be observed. If light is observed on the screen, Bob will know that ’0’ is received; 

otherwise ’1’ is received. This time, Eve tries to eavesdrop by measuring photons before its 

arrival at Bob’s filter. 

 

 

Figure (5) The disturbance that introduced  from Eavesdropping  
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Now a simple situation, can be considered in which  Eve  does not  know  which  

orthogonal  states  Alice  and  Bob’s  chose  to  represent  the  messages.   Thus, Eve have to 

guess which filter should be used. To measure },{  , Eve should choose filter A; whereas 

to measure },{   Eve should choose filter C. Suppose for each bit, Eve choose one of the 

two filters in the same probability. Thus, if Eve chooses filter A, the state of photon will be 

observed without any disturbance because Eve’s filter is the same Bob’s filter. However if 

Eve chooses the wrong filter, i.e. C, then Eve will disturb the observation of Bob. Suppose  

Alice use filter A to send a photon P with state  for transferring bit valued ’1’, and Eve  

uses a filter C. The filter C can be represented as the projection operator  Thus P can 

pass through Eve’s filter C with probability 1/2. Afterward, P will be transformed to the 

state  , and can pass through Bob’s filter A with probability 1/2 too. Thus the probability 

that the photon can not arrive at Bob’s screen is 3/4, this will make Bob’s think to receive ’0’, 

while Alice sending ’1’. For a similar reason, when Alice sending ’0’, 1/4 photons will arrive  

at Bob’s screen, then Bob will think to receive ’1’. Thus, in the case of Eve choosing a filter C 

for measurements, if Alice send ’0’ and ’1’ with the same probability, the average error rate  

between Alice and Bob will become (3/4 + 1/4)*1/2=1/2. Since Eve choose the two filters, A 

and C, will the same possibility, the average error rate between Alice and Bob will be 1/4, 

unlike in the case without eavesdropping, where the error rate is always zero. 

Based on this fact, Alice and Bob can detect eavesdropping by checking a set of their 

bits, if they find a number of errors, they should not trust their message as secure, because 

eavesdropping may be happened with high probability. Thus the security is ensured. 

However, the following three assumptions of the above scheme may not be reasonable in real 

case. 

i. Alice and Bob can securely determine the base state they used. 

ii. Eavesdropping is restricted to use simple measurement to steal the information; 

iii. There is no noise in the channel such that Bob can receive the photon Alice sends exactly. 

 

4. Analysis of Quantum Key Distribution Based Entangled Photons 
 

Quantum cryptography can be classified into two major categories: QC based on single 

photons and QC based on photon pairs. The well-known concept for quantum key distribution 

based on single photon is the BB84 scheme. The BB84 scheme 
[4]

 uses single photons 

transmitted from Alice to Bob, who are prepared at random in four partly orthogonal 

polarization states: 0
◦
, 45

◦
, 90

◦
, and 135

◦
. If Eve tries to extract information about the 

polarization of the photons she will inevitably introduce errors, which Alice and Bob can 

detect by comparing a random subset of the generated keys. 

The other well-known concept for quantum key distribution that is based on entangled 

pairs of photons is the Ekert scheme 
[5]

. In this scheme the channel consists of a source that 

emits pairs of spin 1/2 particles, in a single state. The particles fly apart along the z axis, 

towards the two legitimate users of the channel, say Alice and Bob. After the particles have 
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separated, Alice and Bob perform measurements on spin components along one of three 

directions given by unit vectors αi and βj (i,j=1,2,3) , respectively.  For simplicity, both αi  and 

βj vectors lie in the x-y plane, perpendicular to the trajectory of the particles, and are 

characterized by azimuthally angles : α1=0
◦
, α2=45

◦
, α3=90

◦
 and β1=45

◦
, β2=90

◦
, β3=135

◦
. The 

angles are measured from the vertical x-axis. Alice and Bob choose the orientation of the 

analyzers randomly and independently for each pair of incoming particles. Each 

measurement, in 1/2 h unit, can yield two results, +1 (spin up) and -1 (spin down), and can 

potentially reveal one bit of information. The quantity is the correlation coefficient of the 

measurements performed  by Alice along αi and by Bob along βj. 

 

),(P),(P),(P),(P)(E jijijijij,i    ………... (2) 

Here ),( jiP   denotes the probability that the result ±1 has been obtained along αi 

and ±1 along βj. For the two pairs of analyzers of the same orientation (α2, β1 and α3, β2) 

quantum mechanics predicts total anti correlation of the results obtained by Alice and Bob, 

i.e. 

 

1),(E)(E 231,2  ………………………………………………………. (3) 

 

Which then constitute the quantum cryptographic key. As indicated in Table (1), the result of 

other combinations (different orientation) are revealed and used in test of Bell inequalities, to 

check the presence of the eavesdropper ("Eve"). 

 

),(E),(E),(E),(ES 33133111   ………………………………... (4)  

 

Again, quantum mechanics requires 22S  

 
Table (1) Distribution of data dependent on Alice's and Bob's respective 

phase setting  αi and βj 
 

 

 

Alice 

01   
4

2


  
2

3


  

Bob 

4
1


  S Key S 

2
2


  -------- -------- Key 

4

3
3


  

 

S -------- S 
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As seen in Table (1), only 2/9 of the data actually contribute to the row cryptographic 

key; 4/9 of the data used to test Bell's inequalities; and 3/9 are not used at all. The 

eavesdropper cannot elicit any information from the particles while in transit from the source 

to the legitimate users, simply because there is no information encoded there. The information 

"comes into being" only after the legitimate users perform measurements and communicate in 

public after words. 

P.G. Kwiat investigates other version of the Ekert protocol 
[6]

. In this protocol "Alice 

and Bob each receive one photon of a polarization-entangled pair in the 

state 2/)VVHH( 2121  , where H (V) represents horizontal (vertical) polarization. 

Each, respectively, measures the polarization of there photons in the bases    

)VeH(andVeH( 2

i

21

i

1

  , where α and β randomly take on the values: 

.
4

3
,

2
,

4
,0;,

4

3
,

2
,

4
43214321

















  they then disclose by 

public discussion which bases used are disclosed by public discussion, but not the 

measurement results. For the state  , the probabilities for a coincidence between Alice's 

detector 1 (or 1', which detects the orthogonally polarized photons) and Bob's detector 2(2') 

are given by 
[6]

, 

 

4/)]cos(1[),(P),(P

4/)]cos(1[),(P),(P

2'1'12

'2'112




  …………………………………….. (5) 

 

When α + β = π, a completely correlated results will be available, which then constitute the 

quantum cryptographic key. As indicated in Table (2), the results from other combinations 

are revealed and used in two independent tests of Bell's inequalities, to check the presence of 

eavesdropper ("Eve"). 

 
Table (2) Distribution of data dependent on Alice's and Bob's respective     

phase setting αi and βj 
 

Alice 

4/1   2/2   4/33   4  

Bob 

01   S ----- S Key 

4/2   ----- S' Key S' 

2/3   S Key S ----- 

4/34   Key S' ----- S' 
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As shown in Table (2), only 1/4 of the data actually contribute to the raw cryptographic 

key; 1/2 of data are used to test Bell's inequalities; and 1/4 of data are not used at all. In this 

version the authors used elliptical polarization analysis (i.e. on the plane containing the 

circularly polarized poles of the sphere and the ± 45
◦
 linearly polarized states), instead of 

using linear polarization analysis (i.e. in the equatorial plane of the Poincar'e sphere). In 

particular, the Bell parameters 
[7]

. 

 

),(E),(E),(E),(E'S

),,(E),(E),(E),(ES

44244222

33133111




 …………………………… (6) 

 

where: 

 

),(R),(R),(R),(R

),(R),(R),(R),(R
),(E

2'1'12'2'112

2'1'12'2'112




  ……………………... (7) 

 

And the R's are the various coincidence counts between Alice's and Bob's detectors. For any 

local realistic theory 2'S,S  , while for the combinations of α and β indicated in Table (2), 

the quantum mechanically expected values of 22are'S,S . In fact if the eavesdropper 

measures one photon from every pair, then 2Seve   
[6]

. Because high values of 

'S,S have been observed in this system, the presence of an eavesdropper could thus be 

detected in ~1 sec of data collection. The simulated eavesdropper thus makes the projective 

measurement XX . The effect on the measured value of S and S' and BER depend strongly 

on what eavesdropping basis X  is used 
[8]

. Theoretical predications and results for bases in 

two orthogonal planes in the Poincare sphere are shown in Fig.(6). 
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                                                                             (b) 

 

Figure (6) Shows the effect of the eavesdropper on S and BER  
for various  attacks  bases: 

 

(a)  VeH
i ,   (b)  VsinHcos   
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Anton Zeilinger investigates other scheme utilizes Wigner's inequality 
[9]

, for 

establishing the security of the quantum channel, based on polarization entangled photon pairs 

in the single state: 
 

 
2121

2

1
HVVH    

 

where, photon 1 is sent to Alice and photon 2 is sent to Bob, H and V are the horizontal and 

vertical linear polarization, respectively. This state shows perfect anti correlation for 

polarization measurements along parallel but arbitrary axes. However, the actual outcome of 

an individual measurement on each photon is inherently random. These perfect anti 

correlations can be used to generate the keys, yet the security of the quantum channel remains 

to be ascertained by implementing a suitable procedure. In order to implement quantum key 

distribution, Alice and Bob vary the analyzers randomly between two settings, Alice 

( )0,30 21

   and Bob (   30,0 21 ), This allows the generation of keys via the 

perfect anti correlations, with the possible results +1 and -1 on photon 1, 2. Polarization 

parallel to the analyzer axis corresponding to a +1 result, and polarization orthogonal to the 

analyzer axis corresponds to -1. The probabilities for obtaining +1 on both sides, P  must 

obey Wigner's inequality;   

 

0),(P),(P),(PW 212221    …………………………. (8) 

where,  )(sin
2

1
),(P

2qm   is the quantum prediction for probabilities. 

The analyzer setting at ( )0,30 21

   and (   30,0 21 ) leads to a maximum 

violation of Wigner's inequality: 

0
8

1

8

3

8

1

8

1
)30,30(P)30,0(P)0,30(P

qmqmqm  









  

Because Alice and Bob operate independently, four possible combinations of analyzer 

setting will occur, of which three oblique settings allow a test of Wigner's inequality and the 

remaining combination of parallel settings (α=0, β=0) allows the generation of keys via the 

perfect ant correlations, where either Alice or Bob has to invert all bits of the key to obtain 

identical keys. As seen in Table (3), 1/4 of the data actually contribute to the raw 

cryptographic key; 3/4 of the data are used to test Wigner's inequality; there is no data that are 

not used. 
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Table (3) Distribution of data dependent on Alice's and Bob's respective 
phase setting αi and βj 

 

 
Alice 

 301  .  02  

Bob 

 01  W Key 

 302 . W W 

 

5. Conclusion 
 

In summary, the paper presented the first implementation of Ekert quantum 

cryptography protocol using entangled photon pairs, with different numbers of combinations 

depending on the analyzer setting of Alice and Bob. These systems are secure even though no 

rapid switching is employed, since only one photon pair event is used for any particular α – β 

setting. From the analysis presented, it is believed that this work demonstrates that 

entanglement based cryptography can be a tomorrow's technology.  
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