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Abstract

The elastic critical load for a non-prismatic member is derived using the equations of
the modified stability functions for a wide range of tapering ratio having rectangular and
square cross sectional shapes bent about the major axis and any other solid cross sectional
shape tapered in depth only.

The effective length of members at any support conditions is obtained with respect to
the hinged-hinged supports. The elastic critical load is obtained by using the finite elements
method as an approximate solution to verify the results.

This study can be used as a reference to obtain the elastic critical load and effective
length of columns.
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1. Introduction

Historically the critical-load formula for elastic buckling was originated with Euler in
1744 2 Very little additional progress was made for a hundred years, and then in 1845,
Lamarle pointed out that Euler’s formula should be used only for slenderness ratios beyond
a certain limit and that experimental data should be relied upon for smaller ratios.

To derive the elastic critical load of columns, this study begins by considering a slender
column with pinned ends. This column is loaded axially by axial force Q that is applied
through the centroid of the cross section (no eccentricity). When the axial load has a small
value, the column remains straight and undergoes only axial compression. This straight form
of equilibrium is stable, which means that the column returns to the straight position if it is
disturbed. For instance, if a small lateral load is applied which causes the column to bend, the
deflection will disappear and the column will return to the original position when the lateral
load is removed. As the axial load is gradually increased, it reaches a condition of neutral
equilibrium in which the column may have a bent shape. The corresponding value of the load
is the critical load. At this load the ideal column may undergo small lateral deflections with no
change in the axial force, and a small lateral load will produce a bent shape that does not
disappear when the lateral load is removed. To determine the critical load and the deflected
shape of the buckled column, one of the differential equations of the deflection curve of a
beam is used. This equation should be applicable to a column because, when buckling occurs,
bending moments are developed in column, which bends as though it were a beam. Also the
second order differential equation in terms of bending moment is used to derive the modified
stability functions.

Two conditions, opposite in their effect upon column strength under axial loading, must
be considered. If enough axial loads are applied to the columns in unbraced frames dependent
entirely on its own bending stiffness for resistance to lateral deflection of the tops of the
columns with respect to the bases, the effective length of these columns will exceed the actual
length. On the other hand, if the same frame were braced to resist such lateral movement, the
effective length would be less than the actual length, due to the restraint provided by the
bracing of other lateral support.

2. Modified Slope-Deflection Equations

The modified slope-deflection equations of the column can be arranged in matrix form
as given in Equation (1), which is the slope-deflection equation modified by Al-Sarraf .
These equations are available for evaluating the stability of the non-prismatic columns,
subjected to axial load and bending moments as shown in Fig.(1).
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The column itself is assumed to be perfectly straight and made of a linear elastic

material that follows Hooke’s law.

Y

Figure (1) Non-prismatic beam-column element

The above matrix represents the relation between member end forces of the column and
the stability functions multiplied by the member ends deformations !,

The corresponding equations of the modified stability functions are given below as
derived in references (1) and (5) and the values of these equations are tabulated for different

tapering ratio as given in Table (A-1) in the Appendix.
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f, =Y, (a)J,(B) - I, () Y, (B)
f, =Y (a)J,(B)— I, ()Y (B)
s =Yi(a)I,(B)— I, ()Y, (B)
£, =Y.i(B)I. () - I, (B)Y; ()
fs =J3,(B)Y.(B) — Y1(B)J.(B)
fo = Yy (a)d, () — I, ()Y, (o)
J,(x),3,(x), Y, (x)and v,(x): are the Bessel functions 4] of the first and second kinds.

3. Derivation of the Elastic Critical Load

The elastic critical load of a column with various support conditions can be obtained for
different tapering ratios such as a column that is fixed at the base and pinned at the top, fixed
at the base and free at the top, fixed at two ends with side-sway, pinned at the base and fixed
at the top with side-sway, each case can be determined by using the stiffness matrix of the
modified stability functions. The non-dimensional axial load parameter at critical load making
the stiffness matrix to vanish is obtained by trial and error with interpolation. The Elastic
critical load of the beam-column member mathematically can be obtained by multiplying the
non-dimensional axial force parameter with the Euler’s load.

A non-prismatic beam-column member, which has length L, cross sectional area A; at
smaller end, moment of inertia I, at smaller end and E is the modulus of elasticity is
considered with the properties described below:

3-1 First Model

A beam column member is hinged at two ends, and loaded axially. The elastic critical
load is obtained by substituting the boundary condition which is 6= 0, the stiffness matrix
becomes as the relation below after omitting the third row and column of the matrix in
Equation (1):

{ml} _ %[5810 S:Hgl} ........................................................... ®)

The non-dimensional axial load parameter making the stiffness matrix to vanish is
obtained by trial and error with interpolation when equating Equation (9) to zero, as given in
Table (1) for different tapering ratios.

3-2 Second Model
A beam column member is fixed from one end and the other is hinged, and loaded
axially. The elastic critical load is obtained by substituting the boundary conditions which are
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0, =0and & =0, the stiffness matrix becomes as the relation below after omitting the second
and third rows and columns of the matrix in Equation (1):

[M,]= % [S.H0.) vvvvereeveeereteeeesee e sse e see et sanen (10)

The non-dimensional axial load parameter making the stiffness matrix to vanish is
obtained by trial and error with interpolation when equating Equation (2) to zero, as given in
Table (1) for different tapering ratios.

3-3 Third Model
A beam column member is fixed at one end and the other is free, and loaded axially.
The elastic critical load is obtained by substituting the boundary condition which is 6,= 0, the

stiffness matrix becomes as the relation below after omitting the second row and column of
the matrix in Equation (1):

0
Mil Bl | St St el et (11)
vif T Ls,+sc A 17

The non-dimensional axial load parameter making the stiffness matrix to vanish is
obtained by trial and error with interpolation when equating Equation (12) to zero, as given in
Table (1) for different tapering ratios.

3-4 Fourth Model

A beam column member is fixed at two ends, and loaded axially with side-sway at the
top. The elastic critical load is obtained by substituting the boundary conditions which are
0,= 0 and 0,= 0, the stiffness the matrix becomes as the relation below after omitting the
first and second rows and columns of the matrix in Equation (1):

[vL]=E- [A]{S} ....................................................................... (13)

L YL
The non-dimensional axial load parameter making the stiffness matrix to vanish is
obtained by trial and error with interpolation when equating Equation (14) to zero, as given in

Table (1) for different tapering ratios.

S, 45, +2SC TP, =0 tevrrerererreeesireeeesinreeesiareeessreeesnaaeeesnareeessnneeas (14)
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3-5 Fifth Model
A beam column member is fixed at the top and pinned at the base, and loaded axially
with side-sway. The elastic critical load is obtained by substituting the boundary condition

which is 6, = 0, the stiffness matrix becomes as the relation below after omitting the first row
and column of matrix in Equation (1):

0
Ml Bl L S Sat S et e e (15)
VLT L ls,;+sc A 17

The non-dimensional axial load parameter making the stiffness matrix to vanish is
obtained by trial and error with interpolation when equating Equation (16) to zero, as given in
Table (1) for different tapering ratios.

153



Journal of Engineering and Development, Vol. 12, No. 1, March (2008)

support conditions

Table (1) Coefficients-C for elastic critical load for different

ISSN 1813-7822

=) = gl z sl
2 < = X = o = D
£° g 3z g 83 T3
2 g X i = <5
— T L = Lz
1.00 1.000000 2.045752 0.250000 1.000000 0.250000
1.25 1.403221 2.686418 0.305275 1.408521 0.400397
1.50 1.861839 3.799353 0.359792 1.884961 0.588814
1.75 2.374610 4.835264 0.413758 2.430482 0.816179
2.00 2.940594 5.973663 0.467305 3.046091 1.083267
2.25 3.559051 7.212586 0.520523 3.732678 1.390733
2.50 4.229384 8.550445 0.573474 4.491039 1.739143
2.75 4.951100 9.985920 0.626206 5.321891 2.128983
3.00 5.723784 11.517898 0.678754 6.225885 2.560683
3.25 6.547083 13.145426 0.731146 7.203613 3.034618
3.50 7.420691 14.867678 0.783404 8.255618 3.551121
3.75 8.344343 16.683930 0.835545 9.382400 4110491
4.00 90317802 | 18593542 | 0887584 | 10584418 | 4.712994
4.25 10.340863 20.595945 0.939533 11.862098 5.358870
4.50 11.413338 22.690629 0.991402 13.215834 6.048330
4.75 12.535063 24.877132 1.043199 14.645992 6.781574
5.00 13.705886 27.155038 1.094931 16.152913 7.558780
2

=

>

©

O

[T

o

(«B]

o

©

e

(p)

©

D

~

(&)

>

m

From the above table, the elastic critical load of the prismatic and non-prismatic
members can be calculated by using the suggested equation below:

ch=C

=
L2
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This equation can be used as a general equation, where:

k: is the effective length factor (equals to 1.0 for prismatic members with pinned ends, and equal to
0.69916 for member fixed at one end and pinned at the other),

u: is taper ratio, =b/a= d,/d,

I: is the moment of inertia at any section of the prismatic member when u=1, and the moment of
inertia at the smaller end of the non-prismatic member when u >1, (I = I,).

C: is the non-dimensional axial force parameter p.

4. Deflected Mode Shape of Pinned-Ends Column

The second order differential equation in terms of bending moments is given in
Equation (18), which represents the differential equation of the tapered members’ pinned-ends
having rectangular or square cross section bent about the major axis, and subjected to axial
load.

The solution of Equation (18) is given below in Equation (19), which is the deflected
mode shape of the column in terms of Bessel functions 1.

x\’ d’y M M

| == =—1(x- — 2 (X =) ceeerrertetteiiiiiiiiiiiiniiitenitttennnnns 18
Elz[aj dx2+Qy 3 (x a)+ C ( b) (18)

- Jx ) 200 M e Mo ) e 19
y(x) = X|:AJ1(\/;]+BY1(\/;J:|+QL(X a)+QL(x b) (19)

where:

MZ'\E'Y{\Z/OB)} Ml'Yl(xz/g] and g_ M: '\m'Jl(\z/%jJr Ml"]l[\z/%))

A=- zQAb zQo+b

5. Effective Length

The effective length is defined as the length of the equivalent pinned-end column, or the
distance between points of inflection in the deflection curve. The effective length concept is
one method for estimating the interaction effect of total frame on a column. This concept uses
k-factors to equate the strength of frame compressed element of length L to an equivalent
pin-ended member of length KL subject to axial load only. The critical load for columns with
various support conditions can be related to the critical load of a pinned-ends column through
the concept of an effective length.

The ratio, effective column length to the actual braced or unbraced length, may be
greater or less than 1.0, therefore the effective length can be determined using Equation (20):

n’El n’El
C, (k L)Z = R R R S
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where:
C: is obtained from Table (1) for any support conditions.
C,: is the Coefficients-C obtained from Table (1) for hinged-hinged support conditions.

The effective length values with respect to the different support conditions are tabulated
at the tapering ratios from u=1 up to u=5 as given in Table (2), this table can be used as a
reference to obtain the effective length for any support case.

From Table (2), the effective length of the non-prismatic columns for any tapering ratio
is determined in five support conditions. The effective length is equal to 1.0 in any tapering
ratio at hinged-hinged supports, while the effective length is less than 1.0 in fixed-hinged
supports and it is very close to 1.0 for different tapering ratios in fixed-fixed with side-sway
between supports. The effective lengths of the non-prismatic members in different tapering
ratios are more than the effective lengths of prismatic shapes in case of fixed-free supports,
but it is less than the effective length of prismatic shapes in fixed-hinged with side-sway
between supports.

Table (2) Effective length for different support conditions

TEREIG | ixechinged | FixecHfree | FXOSbedwit | Fixed-tinged it
1.00 0.699155 2 1 2
1.25 0.699738 2.143964 0.998117 1.872051
1.50 0.700029 2.274811 0.993848 1.778206
1.75 0.700787 2.395648 0.988439 1.705703
2.00 0.701612 2.508519 0.982531 1.647592
2.25 0.70246 2.614852 0.976465 1.599725
2.50 0.703306 2.715699 0.970432 1.559448
2.75 0.704136 2.811851 0.964535 1.524982
3.00 0.704945 2.903925 0.958829 1.495078
3.25 0.705727 2.992415 0.953342 1.468831
3.50 0.706481 3.077721 0.948085 1.445571
3.75 0.707208 3.160175 0.94306 1.424785
4.00 0.707906 3.240052 0.93826 1.406074
4.25 0.708578 3.317587 0.933679 1.389127
4.50 0.709223 3.392981 0.929307 1.37369
4.75 0.709844 3.466408 0.925132 1.359559
5.00 0.710442 3.538019 0.921145 1.346566

156



Journal of Engineering and Development, Vol. 12, No. 1, March (2008) ISSN 1813-7822

6. Verification

Non-prismatic members are solved by using the finite elements method by dividing this
non-prismatic members into different number of equivalent prismatic elements as shown in
Fig.(2) under increasing axial load until the stiffness K-Kg vanishes, where the flexural
stiffness matrix is given in Equation (22), and geometric stiffness matrix is given in Equation
(23) as defied below [

12 6 =12 6
[T
6 4 -6 2
_ T T T T (22)
[K]=& -12 -6 12 -6
L 2 B
6 2 -6 4
L L L* L

[ 36 1 -36 1

30 10 30L 10
1 4L -1 -L

Al 10 B0 10 30 | ceceveeerrneeerneeeerneeeenneeeenneeeeneeenneesanns (23)
[KG]_Q—SG -1 36 -1

30L 10 30L 10
1 -L -1 4L

|10 30 10 30

The boundary conditions for the non-prismatic beam-column member have been
applied to the system stiffness matrix K-Ky. The buckling load has been obtained for a
specific discretization by increasing the compressive axial load incrementally until the

stiffness K-Kg vanishes.

Figure (2) Non-prismatic member divided into large number
of equivalent prismatic elements
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7. Application

A beam-column member loaded axially is shown in Fig.(3), it has 5m length,
rectangular cross sectional shape with 0.025 m depth and 0.01 m widths at smaller end,
0.0375 m depth and 0.01 m widths at larger end, the modulus of elasticity is 200 GPa. The
elastic critical load for this model is obtained as below:

1 _—
E = 200GPa 1
I, =1.302083x10®
,_ 00375 _ . E
0.025 f
|
2
M,

Figure (3) Properties of model

By substituting the five sets of boundary conditions in the stiffness matrix, the elastic
critical loads are given in Table (3) with respect to the support conditions:

Table (3) Elastic critical load in different support conditions

Support Coefficient | Euler’s Qer L k_N Effective
Conditions C Load kN Exact Finite Elements | - jonqth
Method Method
Hinged-hinged 1.861839 1.028084 1.914127 1.856 1.000000
Fixed-hinged 3.799353 1.028084 3.906054 3.788 0.700029
Fixed-free 0.359792 1.028084 0.369896 0.358 2.274811
Fixed-fixed with | ) 957951 | 1028084 | 1.937898 1.879 0.093848
side sway
Fixed-hinged | ) 5aa01/ | 1028084 | 0.605350 0.587 1.778206
with side sway

The coefficient C making the stiffness matrix to vanish is obtained from Table (1), and
the effective length is obtained by using Table (2), where the critical load is equal to:

ch = CQE
The Euler load for members with pinned ends is equal to:

2 2 -8
Q.= ﬂ:LI;j _m X200,000,00§;(1.302083X10 —1.028084KkN
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By using the finite element method the elastic critical load is calculated with different
number of equivalent prismatic elements, the value of elastic critical load at the large numbers
of elements is converged to that obtained from exact method.

8. Conclusion

The exact values of the elastic critical load of non-prismatic members with different
support conditions are obtained by using the modified stability functions.

The elastic critical load increased with the increasing of tapering ratio in different
support conditions. Also the ratio of the elastic critical load of the non-prismatic members
with respect to that of prismatic members ranged between 438% in hinged-hinged support
case and 3024% in fixed-hinged support with side-sway when the tapering ratio is equal to 5.

The effective length of the non-prismatic columns is obtained with respect to the
hinged-hinged support that is equal to 1.0. The values of the effective length increased with
the increasing of the tapering ratio in fixed-fixed and fixed-free supports while it decreased in
fixed-fixed and fixed-hinged supports case with side-sway. The ratios of the effective length
of the non-prismatic members to that of the prismatic members between 67.3% at fixed-fixed
with side-sway and 176.9% at fixed-free support when tapering ratio is equal to 5.

The approximate elastic critical load by using the finite elements method is not more
than 97% of the exact method when dividing the non-prismatic member into 250 elements.

This study enabled any engineer to estimate the elastic critical load and effective length
for different support conditions with any value of tapering ratios by using Table (1) and
Table (2).

9. References

1. Yossif, W. V., “Modified Stability Functions with Shear Effect for Non-Prismatic
Members in Steel Plane Frames and Member Inside Soils”, Ph.D. Thesis,
University of Baghdad, Baghdad, April 2006.

2. Timoshenko, S., and Gere, J. M., “Theory of Elastic Stability”, 2nd Edition, New York,
McGraw Hill Book Co., Inc., 1961.

3. Al-Damarchi, H. T., “Large Displacement Elastic-Plastic Analysis of Non-Prismatic
Members”, Ph.D. Thesis, University of Technology, Iraq, 1999.

4. McLachlan, N. W., “Bessel Functions for Engineering”, Clarendon Press Oxford,
1961.

5. Al-Sarraf, S. Z., “Elastic Instability of Frames with Uniformly Tapered
Members”, The Structural Engineer, March 1979, 18 pp.

159



Journal of Engineering and Development, Vol. 12, No. 1, March (2008) ISSN 1813-7822

6. Al-Sarraf, S. Z., and Yossif, W. V., “Elastic Instability of Frames with Non-Linear
Tapered Members”, Journal of Babylon University, Vol. 13, No. 5, 2005.

7. lyengar, N. G. R., “Structural Stability of Columns and Plates”, India, 1986.

Symbols

M, & M, : are the clockwise moments in strut at end 1, and end 2 respectively

Vv . is the end shear force
0, & 0, : are the clockwise rotations in strut at end 1, and end 2 respectively

0 . is the clockwise displacement of end 2 perpendicular to strut

k=El,/L :is the stiffness of the strut with respect to end 2

E . is Young’s modulus of column material

I, &1,  :are the moment of inertia at end 1, and end 2 respectively

L . is the column length

S; & S, : are the modified stiffness factor at end 1, and end 2 respectively

SC : is the modified moment carry-over factor

A . is the modified shear stiffness factor equal to (S, +$, +25C - 7%,

u : Taper ratio, =b/a= di/d,

P2 . is the non-dimensional axial force parameter with respect to the smaller

end depth (5)

E

Q . is the axial force
Qe . is the Euler load for any member and equal to =?El / 2.
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