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Elastic Critical Load of Tapered Members 
 

 

 

 

 

 

 

 

 

 

Abstract 
 

The elastic critical load for a non-prismatic member is derived using the equations of 

the modified stability functions for a wide range of tapering ratio having rectangular and 

square cross sectional shapes bent about the major axis and any other solid cross sectional 

shape tapered in depth only.  

The effective length of members at any support conditions is obtained with respect to 

the hinged-hinged supports. The elastic critical load is obtained by using the finite elements 

method as an approximate solution to verify the results.  

This study can be used as a reference to obtain the elastic critical load and effective 

length of columns.  
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1. Introduction 
 

Historically the critical-load formula for elastic buckling was originated with Euler in 

1744 
[2]

. Very little additional progress was made for a hundred years, and then in 1845, 

Lamarle 
[2]

 pointed out that Euler’s formula should be used only for slenderness ratios beyond 

a certain limit and that experimental data should be relied upon for smaller ratios.   

To derive the elastic critical load of columns, this study begins by considering a slender 

column with pinned ends. This column is loaded axially by axial force Q that is applied 

through the centroid of the cross section (no eccentricity). When the axial load has a small 

value, the column remains straight and undergoes only axial compression. This straight form 

of equilibrium is stable, which means that the column returns to the straight position if it is 

disturbed. For instance, if a small lateral load is applied which causes the column to bend, the 

deflection will disappear and the column will return to the original position when the lateral 

load is removed. As the axial load is gradually increased, it reaches a condition of neutral 

equilibrium in which the column may have a bent shape. The corresponding value of the load 

is the critical load. At this load the ideal column may undergo small lateral deflections with no 

change in the axial force, and a small lateral load will produce a bent shape that does not 

disappear when the lateral load is removed. To determine the critical load and the deflected 

shape of the buckled column, one of the differential equations of the deflection curve of a 

beam is used. This equation should be applicable to a column because, when buckling occurs, 

bending moments are developed in column, which bends as though it were a beam. Also the 

second order differential equation in terms of bending moment is used to derive the modified 

stability functions.      

Two conditions, opposite in their effect upon column strength under axial loading, must 

be considered. If enough axial loads are applied to the columns in unbraced frames dependent 

entirely on its own bending stiffness for resistance to lateral deflection of the tops of the 

columns with respect to the bases, the effective length of these columns will exceed the actual 

length. On the other hand, if the same frame were braced to resist such lateral movement, the 

effective length would be less than the actual length, due to the restraint provided by the 

bracing of other lateral support.  

 

2. Modified Slope-Deflection Equations 
 

The modified slope-deflection equations of the column can be arranged in matrix form 

as given in Equation (1), which is the slope-deflection equation modified by Al-Sarraf 
[5]

. 

These equations are available for evaluating the stability of the non-prismatic columns, 

subjected to axial load and bending moments as shown in Fig.(1). 
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The column itself is assumed to be perfectly straight and made of a linear elastic 

material that follows Hooke’s law.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1) Non-prismatic beam-column element 

 
The above matrix represents the relation between member end forces of the column and 

the stability functions multiplied by the member ends deformations
 [3]

. 

The corresponding equations of the modified stability functions are given below as 

derived in references (1) and (5) and the values of these equations are tabulated for different 

tapering ratio as given in Table (A-1) in the Appendix. 
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)(Y)(J)(J)(Yf 22221   

)(Y)(J)(J)(Yf 11112   

)(Y)(J)(J)(Yf 21213   

)(Y)(J)(J)(Yf 21214   

)(J)(Y)(Y)(Jf 21215   

)(Y)(J)(J)(Yf 21216   

)x(J1
, )x(J 2

, )x(Y1
and )x(Y2

: are the Bessel functions 
[4]

 of the first and second kinds.
 

 

3. Derivation of the Elastic Critical Load 
 

 

The elastic critical load of a column with various support conditions can be obtained for 

different tapering ratios such as a column that is fixed at the base and pinned at the top, fixed 

at the base and free at the top, fixed at two ends with side-sway, pinned at the base and fixed 

at the top with side-sway, each case can be determined by using the stiffness matrix of the 

modified stability functions. The non-dimensional axial load parameter at critical load making 

the stiffness matrix to vanish is obtained by trial and error with interpolation. The Elastic 

critical load of the beam-column member mathematically can be obtained by multiplying the 

non-dimensional axial force parameter with the Euler’s load. 

A non-prismatic beam-column member, which has length L, cross sectional area A2 at 

smaller end, moment of inertia I2 at smaller end and E is the modulus of elasticity is 

considered with the properties described below: 

 

3-1 First Model 

A beam column member is hinged at two ends, and loaded axially. The elastic critical 

load is obtained by substituting the boundary condition which is δ= 0, the stiffness matrix 

becomes as the relation below after omitting the third row and column of the matrix in 

Equation (1): 
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The non-dimensional axial load parameter making the stiffness matrix to vanish is 

obtained by trial and error with interpolation when equating Equation (9) to zero, as given in 

Table (1) for different tapering ratios. 
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3-2 Second Model  

A beam column member is fixed from one end and the other is hinged, and loaded 

axially. The elastic critical load is obtained by substituting the boundary conditions which are       
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2  = 0 and δ  = 0, the stiffness matrix becomes as the relation below after omitting the second 

and third rows and columns of the matrix in Equation (1): 
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The non-dimensional axial load parameter making the stiffness matrix to vanish is 

obtained by trial and error with interpolation when equating Equation (2) to zero, as given in 

Table (1) for different tapering ratios. 

 

3-3 Third Model  

A beam column member is fixed at one end and the other is free, and loaded axially. 

The elastic critical load is obtained by substituting the boundary condition which is 2 = 0, the 

stiffness matrix becomes as the relation below after omitting the second row and column of 

the matrix in Equation (1): 

 





































L

θ

.
ASCS

SCSS

L

EI

VL

M 1

1

1121  ………………………………………….. (11)          

 

The non-dimensional axial load parameter making the stiffness matrix to vanish is 

obtained by trial and error with interpolation when equating Equation (12) to zero, as given in       

Table (1) for different tapering ratios. 
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3-4 Fourth Model  

A beam column member is fixed at two ends, and loaded axially with side-sway at the 

top. The elastic critical load is obtained by substituting the boundary conditions which are    

1 = 0 and 2 = 0, the stiffness the matrix becomes as the relation below after omitting the 

first and second rows and columns of the matrix in Equation (1): 
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The non-dimensional axial load parameter making the stiffness matrix to vanish is 

obtained by trial and error with interpolation when equating Equation (14) to zero, as given in       

Table (1) for different tapering ratios. 
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3-5 Fifth Model  

A beam column member is fixed at the top and pinned at the base, and loaded axially 

with side-sway. The elastic critical load is obtained by substituting the boundary condition 

which is 1θ = 0, the stiffness matrix becomes as the relation below after omitting the first row 

and column of matrix in Equation (1): 
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The non-dimensional axial load parameter making the stiffness matrix to vanish is 

obtained by trial and error with interpolation when equating Equation (16) to zero, as given in       

Table (1) for different tapering ratios. 
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Table (1) Coefficients-C for elastic critical load for different  
support conditions 

 

 
From the above table, the elastic critical load of the prismatic and non-prismatic 

members can be calculated by using the suggested equation below: 
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1.00 1.000000 2.045752 0.250000 1.000000 0.250000 

1.25 1.403221 2.686418 0.305275 1.408521 0.400397 

1.50 1.861839 3.799353 0.359792 1.884961 0.588814 

1.75 2.374610 4.835264 0.413758 2.430482 0.816179 

2.00 2.940594 5.973663 0.467305 3.046091 1.083267 

2.25 3.559051 7.212586 0.520523 3.732678 1.390733 

2.50 4.229384 8.550445 0.573474 4.491039 1.739143 

2.75 4.951100 9.985920 0.626206 5.321891 2.128983 

3.00 5.723784 11.517898 0.678754 6.225885 2.560683 

3.25 6.547083 13.145426 0.731146 7.203613 3.034618 

3.50 7.420691 14.867678 0.783404 8.255618 3.551121 

3.75 8.344343 16.683930 0.835545 9.382400 4.110491 

4.00 9.317802 18.593542 0.887584 10.584418 4.712994 
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4.50 11.413338 22.690629 0.991402 13.215834 6.048330 

4.75 12.535063 24.877132 1.043199 14.645992 6.781574 
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This equation can be used as a general equation, where:  

k: is the effective length factor (equals to 1.0 for prismatic members with pinned ends, and equal to 

0.69916 for member fixed at one end and pinned at the other), 

u: is taper ratio, =b/a= d1/d2 

I: is the moment of inertia at any section of the prismatic member when u=1, and the moment of 

inertia at the smaller end of the non-prismatic member when u >1, (I = I2). 

C: is the non-dimensional axial force parameter  . 

 

4. Deflected Mode Shape of Pinned-Ends Column 
 

The second order differential equation in terms of bending moments is given in 

Equation (18), which represents the differential equation of the tapered members’ pinned-ends 

having rectangular or square cross section bent about the major axis, and subjected to axial 

load. 

The solution of Equation (18) is given below in Equation (19), which is the deflected 

mode shape of the column in terms of Bessel functions
 [1, 5, 6]

. 
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5. Effective Length 
 

The effective length is defined as the length of the equivalent pinned-end column, or the 

distance between points of inflection in the deflection curve. The effective length concept is 

one method for estimating the interaction effect of total frame on a column. This concept uses 

k-factors to equate the strength of frame compressed element of length L to an equivalent  

pin-ended member of length kL subject to axial load only. The critical load for columns with 

various support conditions can be related to the critical load of a pinned-ends column through 

the concept of an effective length. 

The ratio, effective column length to the actual braced or unbraced length, may be 

greater or less than 1.0, therefore the effective length can be determined using Equation (20): 
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C

C
k 1  ……………………………………………………………………… (21)     

 

where: 

C:   is obtained from Table (1) for any support conditions. 

C1: is the Coefficients-C obtained from Table (1) for hinged-hinged support conditions. 
 

The effective length values with respect to the different support conditions are tabulated 

at the tapering ratios from u=1 up to u=5 as given in Table (2), this table can be used as a 

reference to obtain the effective length for any support case. 

From Table (2), the effective length of the non-prismatic columns for any tapering ratio 

is determined in five support conditions. The effective length is equal to 1.0 in any tapering 

ratio at hinged-hinged supports, while the effective length is less than 1.0 in fixed-hinged 

supports and it is very close to 1.0 for different tapering ratios in fixed-fixed with side-sway 

between supports. The effective lengths of the non-prismatic members in different tapering 

ratios are more than the effective lengths of prismatic shapes in case of fixed-free supports, 

but it is less than the effective length of prismatic shapes in fixed-hinged with side-sway 

between supports. 

 

Table (2) Effective length for different support conditions 
 

Tapering  

ratio, u 
Fixed-hinged Fixed-free 

Fixed-fixed with 

side sway 

Fixed-hinged with 

side sway 

1.00 0.699155 2 1 2 

1.25 0.699738 2.143964 0.998117 1.872051 

1.50 0.700029 2.274811 0.993848 1.778206 

1.75 0.700787 2.395648 0.988439 1.705703 

2.00 0.701612 2.508519 0.982531 1.647592 

2.25 0.70246 2.614852 0.976465 1.599725 

2.50 0.703306 2.715699 0.970432 1.559448 

2.75 0.704136 2.811851 0.964535 1.524982 

3.00 0.704945 2.903925 0.958829 1.495078 

3.25 0.705727 2.992415 0.953342 1.468831 

3.50 0.706481 3.077721 0.948085 1.445571 

3.75 0.707208 3.160175 0.94306 1.424785 

4.00 0.707906 3.240052 0.93826 1.406074 

4.25 0.708578 3.317587 0.933679 1.389127 

4.50 0.709223 3.392981 0.929307 1.37369 

4.75 0.709844 3.466408 0.925132 1.359559 

5.00 0.710442 3.538019 0.921145 1.346566 
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6. Verification 
 

Non-prismatic members are solved by using the finite elements method by dividing this 

non-prismatic members into different number of equivalent prismatic elements as shown in 

Fig.(2) under increasing axial load until the stiffness K-Kg vanishes, where the flexural 

stiffness matrix is given in Equation (22), and geometric stiffness matrix is given in Equation 

(23) as defied below 
[7]

: 

 

 





































L

4

L

6

L

2

L

6
L

6

L

12

L

6

L

12
L

2

L

6

L

4

L

6
L

6

L

12

L

6

L

12

EIK

22

2323

22

2323

 …………………………………………….. (22) 

 

 





































30

L4

10

1

30

L

10

1
10

1

L30

36

10

1

L30

36
30

L

10

1

30

L4

10

1
10

1

L30

36

10

1

L30

36

QKG

 …………………………………………….. (23)     

 

The boundary conditions for the non-prismatic beam-column member have been 

applied to the system stiffness matrix K-Kg. The buckling load has been obtained for a 

specific discretization by increasing the compressive axial load incrementally until the 

stiffness K-Kg vanishes. 

 

 

 

 

 

 

 

 

 
 

Figure (2) Non-prismatic member divided into large number  
of equivalent prismatic elements 
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7. Application 
 

A beam-column member loaded axially is shown in Fig.(3), it has 5m length, 

rectangular cross sectional shape with 0.025 m depth and 0.01 m widths at smaller end, 

0.0375 m depth and 0.01 m widths at larger end, the modulus of elasticity is 200 GPa. The 

elastic critical load for this model is obtained as below: 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

Figure (3) Properties of model 
 

By substituting the five sets of boundary conditions in the stiffness matrix, the elastic 

critical loads are given in Table (3) with respect to the support conditions: 

 

Table (3) Elastic critical load in different support conditions 

 

The coefficient C making the stiffness matrix to vanish is obtained from Table (1), and 

the effective length is obtained by using Table (2), where the critical load is equal to: 
 

Ecr C.QQ    

 

The Euler load for members with pinned ends is equal to: 
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length Exact  

Method 

Finite Elements 

Method 

Hinged-hinged 1.861839 1.028084 1.914127 1.856 1.000000 

Fixed-hinged 3.799353 1.028084 3.906054 3.788 0.700029 

Fixed-free 0.359792 1.028084 0.369896 0.358 2.274811 

Fixed-fixed with 

side sway 
1.884961 1.028084 1.937898 1.879 0.993848 

Fixed-hinged 

with side sway 
0.588814 1.028084 0.605350 0.587 1.778206 

Q 
M1 

1 

2 

L
 =

 5
 m

 

GPa200E   

I2 = 1.302083x10
-8

 

5.1
025.0

0375.0
u   

 

M2 
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By using the finite element method the elastic critical load is calculated with different 

number of equivalent prismatic elements, the value of elastic critical load at the large numbers 

of elements is converged to that obtained from exact method. 

 

8. Conclusion 
 

The exact values of the elastic critical load of non-prismatic members with different 

support conditions are obtained by using the modified stability functions.  

The elastic critical load increased with the increasing of tapering ratio in different 

support conditions. Also the ratio of the elastic critical load of the non-prismatic members 

with respect to that of prismatic members ranged between 438% in hinged-hinged support 

case and 3024% in fixed-hinged support with side-sway when the tapering ratio is equal to 5. 

The effective length of the non-prismatic columns is obtained with respect to the 

hinged-hinged support that is equal to 1.0. The values of the effective length increased with 

the increasing of the tapering ratio in fixed-fixed and fixed-free supports while it decreased in 

fixed-fixed and fixed-hinged supports case with side-sway. The ratios of the effective length 

of the non-prismatic members to that of the prismatic members between 67.3% at fixed-fixed 

with side-sway and 176.9% at fixed-free support when tapering ratio is equal to 5. 

The approximate elastic critical load by using the finite elements method is not more 

than 97% of the exact method when dividing the non-prismatic member into 250 elements. 

This study enabled any engineer to estimate the elastic critical load and effective length 

for different support conditions with any value of tapering ratios by using Table (1) and 

Table (2). 
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Symbols 
 

1M  & 
2M  : are the clockwise moments in strut at end 1, and end 2 respectively 

V : is the end shear force 

1θ  & 2θ  : are the clockwise rotations in strut at end 1, and end 2 respectively 

  : is the clockwise displacement of end 2 perpendicular to strut 

/LEIk 2  : is the stiffness of the strut with respect to end 2 

E : is Young’s modulus of column material 

I1 & I2 : are the moment of inertia at end 1, and end 2 respectively 

L : is the column length 

S1 & S2 : are the modified stiffness factor at end 1, and end 2 respectively 

SC : is the modified moment carry-over factor 

A : is the modified shear stiffness factor equal to  2

2

21 ρπ2SCSS   

u : Taper ratio, =b/a= d1/d2
 

2  : is the non-dimensional axial force parameter with respect to the smaller 

end depth (
EQ

Q ) 

Q  : is the axial force  

QE : is the Euler load for any member and equal to 22 L/EI . 

 

 
 


