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Abstract

A new model for embedded bar formulation in the finite element analysis is presented,
this new model differs from the conventional models, that it can represent the bar in more
accurate way, also it can deal with curved and/or complicated bar geometry.

The current formulation is made using finite element analysis by considering the
degenerated assumed strain eight-noded shell finite element with each node having five
degrees of freedom and nonlinear material properties and solution techniques.

The validity of the current formulation is proved through comparing the results
obtained from the generated computer program with that of experimentally tested slabs by
different researches.
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1. Introduction

In the nonlinear finite element analysis of reinforced thin plate structures, the steel
reinforcement is usually represented as a smeared layer. Alternatively, when there is a lumped
area of steel at a certain location, like the main steel bars in beams or prestressing tendons, the
reinforcement is usually represented as a single discrete bar element connected to the nodes of
the adjacent concrete elements. The discrete modeling of the steel reinforcement is the first
approach used in the finite element analysis of reinforced concrete structures, which was
originally suggested by Ngo and Scordelis ™.

When shell elements are used to model reinforced concrete structures, the discrete bar
representation of steel suffers from the following drawbacks:

1. In the case of curved or complicated bar geometry a distorted shell element needs to be
used to match the bar geometry.

2. The bar must be assumed to lie in the mid-surface of the shell element, as shown in
Fig.(1), where the nodes of the parent element are located. So the finite element mesh
patterns are restricted by the location of reinforcement and consequently the increase in
the number of concrete elements and degrees of freedom .

In order to achieve the advantages of a regular mesh, and at the same time model
complicated reinforcing details, an embedded representation of reinforcement appears to be
the desirable approach. Even so, the present embedded reinforcement models, when applied to
problems with curved or draped reinforcement and prestressing tendons impose significant
constraints on the selection of the overall mesh. A need therefore exists, for curved embedded
representation of reinforcement that allows the choice of mesh to be somewhat independent of
the reinforcement geometry and location.

Embedded bar

bar

Figure (1) Embedded and discrete bar element in shell element

Over the past decades, a number of embedded representations for reinforcement have
been published B ¢,

Phillips and Zienkiewicz ™, introduced the embedded representation of reinforcement.
In their derivation, the reinforcing bar is restricted to lie along the local coordinates, & or m
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of the parent element. Ranjbaran !, modified the representation adopted above to account for
inclined bars, using one-dimensional bar element with two nodes embedded in 8-noded two-
dimensional concrete element. The current formulation is based on modifying the above
representation by using three-noded one-dimensional bar element embedded in the
degenerated concrete shell element shown in Fig.(2), which can represent inclined and/or
curved tendons, using two Gaussian points.

Figure (2) Three-noded bar element embedded
in the degenerated shell element

2. Assumptions

The following assumptions are made:
1. Full bond occurs between the tendons and the concrete, i.e. slip of tendons relative to
concrete is ignored.
2. Compatibility of tendons and concrete deformations necessitates that the strain of concrete
and tendons at common points to be the same.

3. Basic Formulation

In the degenerated shell elements, it is assumed that, the strain energy corresponding to
stresses perpendicular to the middle surface is disregarded, i.e. the stress component normal to
the shell mid-surface is constrained to be zero in the constitutive equations. In order to more

easily deal with the shell assumption of zero normal stress in the z'-direction ¢,» =0, the
strain components should be defined in terms of the local system of axes x; (wherex3 =z"is
perpendicular to the n-plane).The local system of axes is also the most convenient system

for expressing the stress components (and their resultants) for shell analysis and design. The
five significant strain components are:
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where, u’,v' and w' are the displacement components in the local system Xj. These local
derivatives are obtained from the global derivatives of the displacements u, v, and w by the
following operation:

[ou’ v ow'] u v ow
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where, [0] is a transformation matrix defined as:
[O] = IR Y Z' ] et (3.a)

where, X’,y'and Z' are unit vectors in the direction of x’,y'and z'axes, respectively.

ox Ox OX
ox' oy o7
Y A A (3.b)
ox' oy oz
0z 0z 0z
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Since only the longitudinal strain &} in the embedded bar is considered, this is the first

term in the matrix of Equation (2):

[} ’
IO (4)

Expansion of the above Equation yields:
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Rewriting the direction cosine matrix in the following form:
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The definition of u, v, and w at node k in the degenerated shell element are given by the

following Equation:

Uy
h X h X
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Substituting these values of u, v, and w into Equation (9) yields:

rui 3
\&
€. =[Boss Briz Bris Bos Bris] {Wi b vovveeeiisssesssseseneeeeeeesessssooee s (11)
B,
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A dimensionless coordinate t is defined along the embedded bar in the parent element
(-1 <t<1). Since x' coincides with t© except for a coefficient, then:
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So the Jacobian may be evaluated as:
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The terms (Bpll, Bp1o...
displacement matrix [Bp].

Bpis) represent the

Now, it is important to evaluate the values of (cs, Co, ...

first row of the embedded bar strain-

.Cs) and ¢ =|Jp|. Noting that:
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The shape functions of the embedded bar element are:
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The embedded bar stiffness can be determined as:

[Kol= [ BelEelBel v oo (55)

dv =A.dl = A, |3,

. ettt ettt ettt ettt ettt e e (56)

where:
[K p]: is the stiffness matrix of embedded bar element,

Ep: is the modulus of elasticity of the embedded bar,
Ap: is the cross-sectional area of the embedded bar.

4. Applications and Result

A nonlinear finite element computer program based on the degenerated shell element
has been developed to include the above formulation in the representation of reinforcing steel
bars in reinforced concrete members or prestressing tendons in prestressed concrete members.
The program developed and used in this research work is based on the computer program
PLAST by Huang .

In order to show the validity of the current formulation, the reinforced concrete plate
tested experimentally by Duddeck et. al. ® and numerically by Hinton and Owen ® who used
layered approach for steel modeling is considered using the embedded bar representation. A
square reinforced concrete slab simply supported at four corners and loaded by a concentrated
force at the center was tested by Duddeck et. al. !, two slabs with different amounts of
reinforcement in each direction (S1 and S2) are examined here. The slabs’ geometry, amount
of reinforcement and finite element discretization are shown in Fig.(3), whereas, the material
properties are presented in Table (1).
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i_ ———————————— 2 Top Steel Layers

6x0.91

------------------ 8 Concrete Layers

|

___________ - —|2 Bottom Steel Layers
4

All dimensions in centimeters
Figure (3) Details and finite element idealization of Duddeck's square slab

Table (1) Materials properties used by Duddeck et. al. ®

Concrete Reinforcing steel
Young's modulus, E. (MPa) 16400
. , Young's modulus, Es(MPa) 201000
Compressive strength, f((MPa) 43.0
Tensile strength, f{ (MPa) 3.0
: : Yield stress, fsy (MPa) 600
Poisson's ratio, v 0.0

Ultimate compressive strain, €, | 0.0035 | Hardening parameter, H' (MPa) | 7250

By taking advantage of symmetry of loading and geometry, one quarter of the slab is
modeled by a mesh of eleven degenerated shell elements, as shown in Fig.(3). These elements
are divided into eight-equal thickness concrete layers. Steel in the numerical analysis of Ref.
[9] was modeled by four steel layers, as shown in Fig.(3), whereas, in this investigation, the
steel is modeled as embedded bars in the concrete elements. The numerical results for this
slab have been obtained by applying the concentrated load on a small central area of
100x100 mm?,

The computed load-deflection curve of the central point of slab S; is shown in Fig.(4),
along with the computed results of Ref. [9]. From this figure, it is seen that good agreement is
obtained between the two results throughout the loading levels.

70
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$ wl} s
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20 ma A Computed
10 _ I Hintonand Owen [ 9]
[} PR R PR N P B SR R |

6 8 10 12 14 16 18
Mid-Point deflection (mm)

o
~
~

Figure (4) Comparison of computed load-central deflection curves for slab S,
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Comparison between the present computed deflections for slab S, and the experimental
results by Duddeck et al.l® and the numerical results of Ref. [9] is shown in Fig.(5), which
shows good agreement. The present computed ultimate loads of 58.5 kN and 41 kN for slabs
Si1 and Sy, respectively, compared to the experimental ultimate load values of 61.25 kN and
43.5 kN also shows good agreement, in which the ratios of the predicted ultimate load to the
experimental ultimate load are 0.955 and 0.953, respectively.

50

40 =

30 A

20 - A
Experimental [ 8 ]
A Computed
10 -
] Hinton and Owen [ 9]

0 " 1 " 1 " 1 " 1 " 1 " 1 " 1
0 2 4 6 8 10 12 14 16

Mid-Point deflection (mm)

Load P (kN)

Figure (5) Comparison between computed and experimental central
load-deflection curves for slab S,

The proposed computer program is also used to analyze a two-way simply supported
prestressed concrete slab, previously analyzed by Roca and Mari ™ and Van Greunen ™, this
slab was originally tested experimentally by Ritz et. al. 2 The slab has a uniform thickness
of 200 mm, the prestressing tendons have a parabolic profile reaching a maximum
eccentricity of 65 mm at mid-span, and zero eccentricity at the ends. The geometry of the
square simply supported slab and the layout of the prestressing tendons is shown in Fig.(6),
while material properties used in the analysis are given in Table (2).

Also taking advantage of symmetry, one quarter of the slab is modeled using nine
degenerated shell elements the slab is subjected to a uniformly distributed vertical load.

3600 mm

____________ - — X

3800 mm

200 mm
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5 tendons at 400 mm

Figure (6) Details, geometry and layout of prestressing tendons
of Ritz's et. al. " slab

Table (2) Materials properties used by Ritz et. al. I'%

Concrete Prestressing tendons
Young's modulus, E. (MPa) 31920 | Yield stress, fp, (MPa) 979
Compressive strength, f¢ (MPa) 35 | Ultimate stress, fp, (MPa) 1160
Tensile strength, ft' (MPa) 3.5 | Area of a prestressing tendon, A, (mm?) 92.9
Poisson's ratio, v 0.18 | Effective prestressing stress, opg (MPa) 780
Ultimate compressive strain, ¢, | 0.002 | Curvature friction coefficient p (rad™) 0.1
Unit weight, v (KN /m?) 25 | Wobble friction coefficient k¥ (m™) 0.00157

Figure (7), shows the computed and the experimental load-deflection curve for the
center of the slab, from which, it is seen that good agreement between the two curves are
obtained through most loading levels.

100

80 =

o
o
I

~
o

Load (kN/m )

[ —@— Experimental [ 12 ]
20 —A— Computed
Y S T R R R S B |

0 5 10 15 20 25 30 35 40
Mid-Span deflection (mm)

Figure (7) Comparison of computed and experimental
load-deflection curves
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Previous numerical results obtained by Roca and Mari % and Van Greunen ™! are
drawn in Fig.(8) for comparison. The figure indicates that the present solution is the best in
comparison with the experimental results.

100

80 =

2

Load (KN/m")

60 =

Experimental [ 12 ]

40 = A
Computed

Roca and Mari [10]
20

n>+

Van Greunen [11]

0 M 1 M 1 M 1
0 10 20 30 40

Mid-Span deflection (mm)

Figure (8) Comparison of computed load-central deflection curve
with other numerical results

5. Conclusions

A new numerical formulation for representing of steel reinforcement bars and
prestressing tendons as embedded bars in the degenerated shell element using finite element
method is shown here in the present study. From the results of the finite element analysis
carried out for both reinforced concrete and prestressed concrete slabs good agreement is
found and proved that the used development for modeling prestressing tendons as embedded
bars within the parent concrete element gave good results in comparison with the
experimental results. Therefore, applying the prestressing force to each tendon is more
realistic than considering the bar to be smeared.

However, the input file in the current case needs a little more effort in comparison with
the other types of steel representations, i.e. smeared layer and discrete modeling, it is noticed
from the analysis that, the bars positions within the concrete members must be located
accurately, since their modeling as embedded bars in the present investigation need the
correct location of each tendon with respect to the concrete parent element in the three
coordinates of x, y, and z.
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Notations

Ap = Cross-Sectional area of prestressing tendon

[Bp]= Strain-Displacement matrix of prestressing tendon
E.= Modulus of elasticity of concrete

Ep = Modulus of elasticity of prestressing tendon

Es= Modulus of elasticity of reinforcement steel

hy = Shell thickness at node k

[Jpl= Jacobian matrix of prestressing tendon

[Kp] = Prestressing tendon stiffness matrix

Mi, Mz, M3 = Shape functions of the embedded bar

Nk = Shape function at node k

u,v,w= Displacement in global x, y, z-direction
Vik,Vok,V3k =  Nodal Cartesian coordinate system at node k

X, Y,Z= Global Cartesian coordinate system

xX\y',z'= Local Cartesian coordinate system

€= General strain

T = Dimensionless coordinate along the embedded bar element
EnC = Natural coordinate system
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