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Abstract 

A new model for embedded bar formulation in the finite element analysis is presented, 

this new model differs from the conventional models, that it can represent the bar in more 

accurate way, also it can deal with curved and/or complicated bar geometry. 

The current formulation is made using finite element analysis by considering the 

degenerated assumed strain eight-noded shell finite element with each node having five 

degrees of freedom and nonlinear material properties and solution techniques.  

The validity of the current formulation is proved through comparing the results 

obtained from the generated computer program with that of experimentally tested slabs by 

different researches.    

 

 

 

 
 

 ةـــــــلاصـالخ
في البحث الحالي تم تقديم طريقة جديدة لتمثيل القضيب المطمور باستخدام طريقة العناصر المحددة. الطريقة 
الحالية تختلف عن الطرق التقليدية الاخرى بكونها تستطيع تمثيل القضيب بدقة اكثر كما و تستطيع التعامل مع شكل 

 القضيب المنحني او اي شكل اخر.
و لكل عقدة خمسة درجات حرية للحركة مع تمثيل  المؤلف من ثمانية عقدالمولد و  خدام العنصر القشريتم است

 المادة بخواصها اللاخطية و استخدام طرق حل لا حطية ايضاً. 
تم اثبات صحة الطريقة المقترحة بمقارنة النتائج المستحصلة من البرنامج المعد مع  النتائج العملية لععد من 

 ف الانشائية المفحوصة مختبرياً من قبل باحثين اخرين.السقو
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1. Introduction 
 

In the nonlinear finite element analysis of reinforced thin plate structures, the steel 

reinforcement is usually represented as a smeared layer. Alternatively, when there is a lumped 

area of steel at a certain location, like the main steel bars in beams or prestressing tendons, the 

reinforcement is usually represented as a single discrete bar element connected to the nodes of 

the adjacent concrete elements. The discrete modeling of the steel reinforcement is the first 

approach used in the finite element analysis of reinforced concrete structures, which was 

originally suggested by Ngo and Scordelis
 [1]

.  

When shell elements are used to model reinforced concrete structures, the discrete bar 

representation of steel suffers from the following drawbacks: 

1. In the case of curved or complicated bar geometry a distorted shell element needs to be 

used to match the bar geometry. 

2. The bar must be assumed to lie in the mid-surface of the shell element, as shown in 

Fig.(1), where the nodes of the parent element are located. So the finite element mesh 

patterns are restricted by the location of reinforcement and consequently the increase in 

the number of concrete elements and degrees of freedom 
[2]

. 

In order to achieve the advantages of a regular mesh, and at the same time model 

complicated reinforcing details, an embedded representation of reinforcement appears to be 

the desirable approach. Even so, the present embedded reinforcement models, when applied to 

problems with curved or draped reinforcement and prestressing tendons impose significant 

constraints on the selection of the overall mesh. A need therefore exists, for curved embedded 

representation of reinforcement that allows the choice of mesh to be somewhat independent of 

the reinforcement geometry and location. 

 







Discrete 

bar

Embedded bar Mid-surface

 
 

Figure (1) Embedded and discrete bar element in shell element  

 

Over the past decades, a number of embedded representations for reinforcement have 

been published 
[3, 4,  5, 6]

. 

Phillips and Zienkiewicz 
[3]

, introduced the embedded representation of reinforcement. 

In their derivation, the reinforcing bar is restricted to lie along the local coordinates,   or   
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of the parent element. Ranjbaran
 [6]

, modified the representation adopted above to account for 

inclined bars, using one-dimensional bar element with two nodes embedded in 8-noded two-

dimensional concrete element. The current formulation is based on modifying the above 

representation by using three-noded one-dimensional bar element embedded in the 

degenerated concrete shell element shown in Fig.(2), which can represent inclined and/or 

curved tendons, using two Gaussian points. 

 


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

 
 

Figure (2) Three-noded bar element embedded  
in the degenerated shell element 

 

 

2. Assumptions 
 

The following assumptions are made: 

1. Full bond occurs between the tendons and the concrete, i.e. slip of tendons relative to 

concrete is ignored. 

2. Compatibility of tendons and concrete deformations necessitates that the strain of concrete 

and tendons at common points to be the same. 

 

3. Basic Formulation 
 

In the degenerated shell elements, it is assumed that, the strain energy corresponding to 

stresses perpendicular to the middle surface is disregarded, i.e. the stress component normal to 

the shell mid-surface is constrained to be zero in the constitutive equations. In order to more 

easily deal with the shell assumption of zero normal stress in the z -direction 0z   , the 

strain components should be defined in terms of the local system of axes 1x  (where zx3  is 

perpendicular to the -plane).The local system of axes is also the most convenient system 

for expressing the stress components (and their resultants) for shell analysis and design. The 

five significant strain components are: 
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where, v,u   and w  are the displacement components in the local system ix . These local 

derivatives are obtained from the global derivatives of the displacements u, v, and w by the 

following operation: 
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where, ][  is a transformation matrix defined as: 

 

]z,y,x[][  …………………………………………………………….. (3.a) 

 

where, x , y  and  z  are unit vectors in the direction of x , y and  z axes, respectively. 
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Since only the longitudinal strain x  in the embedded bar is considered, this is the first 

term in the matrix of Equation (2):  

 

x
u

x 
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Expansion of the above Equation yields: 
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Rewriting the direction cosine matrix in the following form:  
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where:  
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thus,  
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i.e. 

 

 
    


































11y

w

z

v
11x

w

z

u

11x

v

y

u2

1z

2

1y

2

1xx

nmn

mnm




 ......................................................... (9) 

 

The definition of u, v, and w at node k in the degenerated shell element are given by the 

following Equation: 
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Substituting these values of u, v, and w into Equation (9) yields: 
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A dimensionless coordinate   is defined along the embedded bar in the parent element                

(-1 < <1). Since x  coincides with   except for a coefficient, then: 
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1nm
2

1

2

1

2

1  .................................................................................................. (20) 



Journal of Engineering and Development, Vol. 12, No. 2, June (2008)             ISSN 1813-7822 

 

 117 

     2z
2y2xc











   ......................................................................... (21) 

 

So the Jacobian may be evaluated as: 
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The terms (BP11, BP12… BP15) represent the first row of the embedded bar strain-

displacement matrix [BP]. 

Now, it is important to evaluate the values of (c1, c2, ...,c6) and PJc  . Noting that: 
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The shape functions of the embedded bar element are: 
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Relating with Fig.(2), 
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The embedded bar stiffness can be determined as: 

 

      dvBEBK PP
v

T

PP   ……………………………………………………... (55) 

 

 dJAdLAdv PPP  ………………………………………………………. (56) 

 

where: 

 PK : is the stiffness matrix of embedded bar element, 

EP: is the modulus of elasticity of the embedded bar, 

AP: is the cross-sectional area of the embedded bar. 

 

4. Applications and Result 
 

A nonlinear finite element computer program based on the degenerated shell element 

has been developed to include the above formulation in the representation of reinforcing steel 

bars in reinforced concrete members or prestressing tendons in prestressed concrete members. 

The program developed and used in this research work is based on the computer program 

PLAST by Huang
 [7]

.  

In order to show the validity of the current formulation, the reinforced concrete plate 

tested experimentally by Duddeck et. al. 
[8]

 and numerically by Hinton and Owen 
[9]

 who used 

layered approach for steel modeling is considered using the embedded bar representation. A 

square reinforced concrete slab simply supported at four corners and loaded by a concentrated 

force at the center was tested by Duddeck et. al. 
[8]

, two slabs with different amounts of 

reinforcement in each direction (S1 and S2) are examined here. The slabs’ geometry, amount 

of reinforcement and finite element discretization are shown in Fig.(3), whereas, the material 

properties are presented in Table (1). 
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Figure (3) Details and finite element idealization of Duddeck's square slab [8] 

 

Table (1) Materials properties used by Duddeck et. al. [8] 

 

By taking advantage of symmetry of loading and geometry, one quarter of the slab is 

modeled by a mesh of eleven degenerated shell elements, as shown in Fig.(3). These elements 

are divided into eight-equal thickness concrete layers. Steel in the numerical analysis of Ref. 

[9] was modeled by four steel layers, as shown in Fig.(3), whereas, in this investigation, the 

steel is modeled as embedded bars in the concrete elements. The numerical results for this 

slab have been obtained by applying the concentrated load on a small central area of   

100x100 mm
2
. 

The computed load-deflection curve of the central point of slab S1 is shown in Fig.(4), 

along with the computed results of Ref. [9]. From this figure, it is seen that good agreement is 

obtained between the two results throughout the loading levels. 
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Figure (4) Comparison of computed load-central deflection curves for slab S1 

Concrete Reinforcing steel 

Young's modulus, Ec (MPa) 16400 
Young's modulus, Es(MPa) 201000 

Compressive strength, cf  (MPa) 43.0 

Tensile strength, tf  (MPa) 3.0 
Yield stress, fsy (MPa) 600 

Poisson's ratio,   0.0 

Ultimate compressive strain, cu  0.0035 Hardening parameter, H (MPa) 7250 
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Comparison between the present computed deflections for slab S2 and the experimental 

results by Duddeck et al.
[8]

 and the numerical results of Ref. [9] is shown in Fig.(5), which 

shows good agreement. The present computed ultimate loads of 58.5 kN and 41 kN for slabs 

S1 and S2, respectively, compared to the experimental ultimate load values of 61.25 kN and 

43.5 kN also shows good agreement, in which the ratios of the predicted ultimate load to the 

experimental ultimate load are 0.955 and 0.953, respectively. 
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Figure (5) Comparison between computed and experimental central  

load-deflection curves for slab S2 

 

The proposed computer program is also used to analyze a two-way simply supported 

prestressed concrete slab, previously analyzed by Roca and Mari
 [10]

 and Van Greunen 
[11]

, this 

slab was originally tested experimentally by Ritz et. al. 
[12]

 The slab has a uniform thickness 

of 200 mm, the prestressing tendons have a parabolic profile reaching a maximum 

eccentricity of 65 mm at mid-span, and zero eccentricity at the ends. The geometry of the 

square simply supported slab and the layout of the prestressing tendons is shown in Fig.(6), 

while material properties used in the analysis are given in Table (2). 

Also taking advantage of symmetry, one quarter of the slab is modeled using nine 

degenerated shell elements the slab is subjected to a uniformly distributed vertical load. 
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Figure (6) Details, geometry and layout of prestressing tendons  
of Ritz's et. al. [12] slab 

 

Table (2) Materials properties used by Ritz et. al. [12] 

 

Concrete Prestressing tendons 

Young's modulus, Ec (MPa) 31920 Yield stress, fPy (MPa) 979 

Compressive strength, cf  (MPa) 35 Ultimate stress, fPu (MPa) 1160 

Tensile strength, tf  (MPa) 3.5 Area of a prestressing tendon, AP (mm
2
) 92.9 

Poisson's ratio,   0.18 Effective prestressing stress, Po (MPa) 780 

Ultimate compressive strain, cu  0.002 Curvature friction coefficient   (rad
-1

) 0.1 

Unit weight, c (kN / m
3
)  25 Wobble friction coefficient   (m

-1
) 0.00157 

 

Figure (7), shows the computed and the experimental load-deflection curve for the 

center of the slab, from which, it is seen that good agreement between the two curves are 

obtained through most loading levels. 
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Figure (7) Comparison of computed and experimental 
load-deflection curves 
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Previous numerical results obtained by Roca and Mari
 [10]

 and Van Greunen 
[11]

 are 

drawn in Fig.(8) for comparison. The figure indicates that the present solution is the best in 

comparison with the experimental results. 
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Figure (8) Comparison of computed load-central deflection curve  
with other numerical results  

 

5. Conclusions  
 

A new numerical formulation for representing of steel reinforcement bars and 

prestressing tendons as embedded bars in the degenerated shell element using finite element 

method is shown here in the present study. From the results of the finite element analysis 

carried out for both reinforced concrete and prestressed concrete slabs good agreement is 

found and proved that the used development for modeling prestressing tendons as embedded 

bars within the parent concrete element gave good results in comparison with the 

experimental results. Therefore, applying the prestressing force to each tendon is more 

realistic than considering the bar to be smeared. 

However, the input file in the current case needs a little more effort in comparison with 

the other types of steel representations, i.e. smeared layer and discrete modeling, it is noticed 

from the analysis that, the bars positions within the concrete members must be located 

accurately, since their modeling as embedded bars in the present investigation need the 

correct location of each tendon with respect to the concrete parent element in the three 

coordinates of x, y, and z. 
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Notations 
 

AP = Cross-Sectional area of prestressing tendon 

[BP]= Strain-Displacement matrix of prestressing tendon 

Ec = Modulus of elasticity of concrete 

EP = Modulus of elasticity of prestressing tendon 

Es = Modulus of elasticity of reinforcement steel  

hk =  Shell thickness at node k 

[ PJ ] = Jacobian matrix of prestressing tendon 

[KP] = Prestressing tendon stiffness matrix 

M1, M2, M3 = Shape functions of the embedded bar 

Nk = Shape function at node k  

u, v, w = Displacement in global x, y, z-direction 

k3k2k1 v,v,v = Nodal Cartesian coordinate system at node k 

x, y, z = Global Cartesian coordinate system 

z,y,x  = Local Cartesian coordinate system 

  = General strain 

  = Dimensionless coordinate along the embedded bar element 

 ,,  = Natural coordinate system 

 


