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Abstract 
 

Automatic segmentation of multiple sclerosis lesions in magnetic resonance images 

remains a challenging task. In this study, we present a fully automatic method to extract 

lesions from multi-sequence MRI (T1, T2, T2 FLAIR, Proton Density) within an 

Expectation Maximization (EM) based probabilistic framework.  

The method uses the available MRI sequences in a hierarchical, orderly manner. 

First the T2 FLAIR sequence is used to generate a segmentation of supra-tentorial lesions. 

Then T2 and T1 lesion loads are computed, providing an insight into lesion structure. 

 

 

 
 

 ةـــــــلاصـالخ
ه تصلّبِ الأنسجة المتعدّدةِ فً بقاٌا صورِ الرنٌنِ المغناطٌسٌة هوِ تَحدّي شاقً. حٌث تم فً هذ لأذىالتصنٌف الآلً 

ٌّمُ طرٌقة آلٌة بالكامل  الدراسةِ،  ,T1, T2, T2 FLAIR)السلسلةَ  بالرّنٌن المغناطٌسً متعدّدِ  تصوٌر مِنْ  الأذى لانتزاعتُقد

Proton Density) ضمن تحقٌق حدّ توقّعِ الأقصى (EM)  احتمالًإطار  إسنادذات . 
 T2سلسلة  أولاً  بطرٌقة هرمٌة.  والمرتبةالطرٌقةُ سلاسلَ التصوٌر بالرّنٌن المغناطٌسً  هحٌث تَستعملُ هذ

FLAIR  السطحً. ثمّ  الأذىاستخدمت لتَولٌد تصنٌفT2 وT1  على   وءالمَحْسُوبة، والذي ٌسلط الض الأذىلأحمال
 تركٌبِ الأذى.
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1. Introduction 
 

Magnetic Resonance Imaging (MRI) is the primary complementary exam for the 

monitoring and diagnosis of multiple sclerosis (MS) 
[1]

. MS lesions exhibit hypersignals in T2 

and hyposignals in T1, with respect to normal white matter intensities. Typically, lesions 

appear smaller in T1 than T2, reflecting their complex internal structure. T1 lesion load has 

already been successfully correlated with the Expanded Disability Status Scale (EDSS) using 

large sets of patients, while there is little evidence of the clinical relevance of T2 lesion     

load 
[2]

. In any case, an automatic segmentation system that generates different quantifiers is 

useful for diagnosis and clinical trials 
[3]

. 

Hyperintense signals in T2 images provide a good measure of the overall tissue      

injury 
[4]

. However, since the intensities of lesions and cerebro-spinal fluid (CSF) are close, 

this may lead to misclassification. The T2 FLAIR sequence offers good contrast between MS 

lesions and CSF 
[5]

. Even though it highlights supra-tentorial lesions mostly, it is known that 

using this sequence increases sensitivity and specificity for the case of MS lesion 

segmentation 
[6]

. 

Existing multi-sequence MS lesion segmentation methods 
[7, 8, 9]

 give equal importance 

to the set of MRI sequences, which are employed all at once, ignoring their differences. 

Instead, we propose a hierarchical method that uses information in an orderly manner. We 

first consider the four sequences T1, T2, T2 FLAIR, Proton Density to build a mask of brain 

tissues, and segment them into three classes: white matter, grey matter, CSF. The parameters 

are then extracted to automatically compute a threshold that we apply on the T2 FLAIR 

sequence to get a mask of MS lesions. Finally, we can separate outliers from lesions and use 

this mask to aid in the segmentation of T1 data and the computation of lesion loads. 

 

2. Segmentation of a Surgical Resection 
 

A surgical resection corresponds to an absence of matter in the considered region, filled 

with CSF, and possibly connected with the ventricles. Its shape is more spherical than the 

other structures of the CSF, and is composed of only one big connected component. These are 

the basic properties that we exploit for delineating the resection. 

First, we extract all structures behaving like CSF in the joint MR T1 and T2 histogram 

(low signal in T1 and high signal in T2) by fitting a 2D Gaussian on the corresponding area of 

the histogram. Selecting all the voxels whose joint intensity is statistically compatible gives us 

an oversized segmentation of CSF which still contains structures like the eyes and the 

ventricles. The eyes are quite easy to remove since they appear as two isolated connected 

components. To select them, we robustly register an atlas with an affine transformation, and 

remove the connected components that have an intersection with the eyes of the atlas. To 

separate the ventricles from the surgical resection, we use a region labeling algorithm based 

on a skeletonization by influence zone (SKIZ) Soille (1999). As this labeling is sensitive to 

narrowings in a connected component, it easily classifies the surgical resection and the 
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ventricle as different regions. The regions that intersect the ventricles of the atlas are removed 

as above. 

Finally, we have to select the surgical resection region among remaining structures. The 

sulci are relatively small with respect to a surgical resection and thus easy to remove. The 

main problem comes from the possible presence of a CSF component between the brain and 

the skull due to brain shift during the surgical operation. The volume of this component may 

be quite large, but its shape is mostly flat. Thus, we compute a distance map in each 

remaining CSF connected component, and select the one that has the largest inscribed ball 

radius. 

 

3. Delineation of the Tumor 
 

Delineating a tumor is a hard task due to the multiple appearances it may have in the 

image. The tumor may generate an edema at its frontiers, and contain a necrotic center. The 

tumor tissues and the edema usually appear like partial volume (CSF and grey matter) 

intensities, while the necrosis resembles the CSF. 

Traditional Expectation-Maximization algorithms (Leemput et. al. (1999)) fail to 

provide good results because of the presence of these tissues. An alternative is to consider 

tumor intensities as outliers in this mixture of Gaussians, or to add some specific classes to 

model the tumor and edema intensities (Moon et. al. (2002)). As this was often not sufficient, 

some anatomical knowledge was added, either by combining geometric priors given by the 

non-rigid registration of an atlas to a tissue classification (Kaus et. al. (2001)), or by using 

Markov Random Fields (Kapur (1999)). Other methods include region growing from a region 

of interest delineated by one of the preceding methods using level-sets methods (Ho et. al. 

(2002)). 

All these methods end up in very complex algorithm as they attempt to segment all the 

tissues. In our case, we are only interested in the tumor segmentation, so that we could rely on 

a very simple mathematical morphology scheme as we developed in the previous section. 

We fit this time a mixture of two Gaussians to the selected region of the joint T1 a T2 

intensity histogram: one for the necrotic part of the tumor (which appear like CSF), and a 

second one for the tumor tissues and its edema (resembling partial volume CSF/grey matter). 

We obtain an oversized segmentation where we need to remove structures like the sulci or the 

ventricles without removing interesting parts. Indeed, we now have CSF and grey matter 

partial volume voxels, and the necrotic part of the tumor can be near a region containing CSF. 

The ventricles and the eyes are removed like before. Then the remaining part of the 

segmentation is labeled into SKIZ zones. Each region is then compared with an a priori 

statistical atlas of the CSF to compute the mean probability of belonging to the CSF. A 

threshold on this probability allows us to remove the CSF structures like the ventricles or the 

sulci. In each of these two steps we also compute a distance map to the CSF of the statistical 

atlas in each region to avoid removing regions containing voxels too far from the expected 

CSF. 



Journal of Engineering and Development, Vol. 12, No. 2, June (2008)             ISSN 1813-7822 

 

 104 

3-1 The Registration of Brain MRI's from Parkinsonian Patients 

We tested our algorithm by registering 10 3D T1-weighted MRI images of Parkinsonian 

patients, such as the ones presented in Fig.(1). They were all acquired using the IR-FSPGR 

(3D acquisition, Inversion Recovery, Fast Spoiled Gradient Echo) protocol and field strength 

of 1.5T. These images were acquired preoperatively under stereotactic conditions, in order to 

select optimal targets for deep brain stimulation. All images have the same 

sizes 124256256  . In order to eliminate large displacements that do not reflect anatomical 

differences, image couples were affinely registered before the non-rigid registration. 

 

 

 

 

 

 

 
 

(a) Target image (sagittal view)               (b) Source image (sagittal view) 

 

 

 

 

 

 

 

       (c) Stiffness information                                  (d) Confidence 

Figure (1) Registering two T1-MRI images of different subjects 
The four images present the same sagittal slice of the target and source images,  

and the stiffness and confidence fields. The images are courtesy of Pr. D. Dormont  
(Neuro-radiology Dept., Pitié-Salpétrière Hospital, Paris, France) 

 
3-1-1 Parameter Tuning 

 

3-1-1-1 Confidence Field 

We compute the confidence as a function of source image gradient, as described by 

Equation (1) below. The values of c and   are parameters of the algorithm (the way to tune 

their values is detailed below in this section). Fig.(1d) presents a slice of the computed 

confidence field (k). Its values give the amount of smoothing of the incremental correction 

field. In places where these values are low, the correction field will be smoother (remark that 

the diffusion is weighted by k1 ), there by making these regions count less in the 

registration. At each iteration, the confidence field is resampled into the deformed geometry. 
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The confidence described in the above equations is close to 1 for large image gradients, 

and to 0 in uniform areas.   is a contrast parameter that discriminates low contrast regions 

(which are mainly diffused) from high contrast ones (which preserve the edges in the 

deformation field), and c is a scalar parameter usually taken around 3.3 (see Weickert (2000)). 

 

3-1-1-2 Stiffness Field 

In brain images, the shapes of structures like ventricles or gyri are highly varying. A 

common problem with non-rigid registration algorithms that use a uniform regularization is 

their inability to properly deform the ventricles. In our algorithm, the regularization allows the 

use of a higher level of regularization in certain areas than in others. For choosing the local 

level of regularization inside a structure, a good reference would be the relative variability of 

the structure (normalized by its size). Computing such a measure is a difficult problem. Our 

experience showed that a good choice is to use a level of regularization three times larger 

within the brain than in the fluid-dominated areas (inside the cerebro-spinal fluid and image 

background). Achieving a fuzzy segmentation of these areas for T1-MRI images of healthy 

subjects is rather straightforward, since a simple thresholding gives rather good results. 

However, we wanted a more general segmentation method, able to take into account other 

modalities, and also brains with pathologies. Thus, we considered classification algorithms. 

In these experiments, we used the fuzzy k-means algorithm (Bezdek (1981); de-Gruijter 

and McBratney (1988)) to classify the images into five classes: image background,      

cerebro-spinal fluid (CSF), grey matter (GM), white matter (WM) and fat. If 

)(,)(,)(,)(,)( pPandpPpPpPpP fatwmgmcsfback are the fuzzy memberships at a voxel p  for 

respectively, the image background, CSF, grey matter, white matter and fat classes, we 

compute the stiffness field (Fig.(1c)) as: 

 

  )p(P)p(P)p(Ppd fatwmgm  ………………………………………………… (2) 

 

As an input, the classification algorithm needs initial estimates of the average values of 

the classes. These protocol parameters are easily specified by the user: thanks to the graphical 

interface we have developed, the user visualizes the images and interactively determines the 

initial intensity values for each tissue class. They are used as input parameters (five for each 

image to register) of the fuzzy k-means algorithm. 
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3-1-1-3 Time Steps 

The result of the registration depends on the similarity gradient descent fraction  , the 

two diffusion (elastic and fluid) time steps, and the parameters c  and   from Equation (1). 

Manually tuning these parameters can be a tedious task, since regularization and similarity 

have different units. Our solution is to provide a normalization of the intensities before 

registration, as follows: From the fuzzy segmentation that allowed us to compute the stiffness 

field, we take the average intensity of the white matter wm  as a reference level, and then 

apply the following intensity correction: 
 

old

wm

new I
K

I


  , where K is a known constant giving the final intensities. 

 

We have experimentally noticed that the normalization procedure described below for 

T1-MRI brain images significantly decreases the sensitivity of the algorithm with respect to 

these parameters. Once the algorithm parameters are tuned for a certain value of K, the user 

does not have to change their values significantly between two experiments. In fact, all the 

experiments presented in this section were done using the same values of the parameters     

( K  = 256, c = 3:3,  = 300, t = 0:3, = 0:0006). 

 

4. Results and Discussion 
 

The algorithm was run in parallel on a cluster of 3GHz Pentium IV personal computers, 

linked together through a 0.5GB/s Ethernet network. For these images of size 124256256  , 

the computation time was 10 minutes, 38 seconds. For comparison, the same registration on a 

single machine takes 1 hour. Figure (2) presents a first registration experiment: large 

anatomical differences are well recovered by the algorithm, while keeping the transformation 

invertible and smooth. 

 

 

 

 

 

 
 

                                  (a) Target image (sagittal view)    (b) Source image (sagittal view)  
 

 

 

 

 

 

 
 

                                    (c) Resampled source image              (d) The deformation field  

                                         after registration                           (applied to a regular grid) 

                                     (compare to image in Fig. a) 
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                                       (e) Target contours,            (f) Target contours, superimposed 

      superimposed on the source          on the resampled source image  

        image before registration                      after registration 

 

Figure (2) Registration experiment: Even if the brains presented in the source 
(Fig. b) and target (Fig. a) images are anatomically rather different, the resampled 

image after registration (Fig. c) is very close to the target image (Fig. a). The 
algorithm is able to recover very well the shapes of the ventricles and the major 

sulci. The recovered displacement field (Fig. d) is smooth. The differences are also 
presented by superposing contours from the target on the source and resampled 

images (see, respectively, Fig. e and f) 

 

Figures (3) and (4) present a second and third experiment, using images of different 

patients. The result in Fig.(3) is remarkable in the fact that the algorithm was able to 

successfully recover the very large difference that exists in the shape of the ventricles. 
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               (a) Source image                 (b) Target image         (c) Resampled source image 

                          (axial view)                           (axial view)             after registration (axial view) 

 

 

 

 

 

 

 

 

 

 
                 (d) Deformation               (e) Contours before             (f) Contours after                                                                                                  

                                               registration                         registration 
 

Figure (3) Second experiment. The figures show the same axial view for all 
images 

The upper and middle white arrows underline two parts of the ventricles where the 
source and target images are particularly different. The lower white arrow points to a 
hole in the skull skin in the source image (Fig. a). This hole is caused by surgery and 
is not present in the target image (Fig. b). However, after registration, the hole was 
preserved in the resampled image (Fig. c). We believe that this is the right behavior, 
since the hole can be consider a part of the image anatomy. The transformation (Fig. 
d) is invertible and smooth. Figures e and f allow to examine more closely the quality 
of the result, by comparing target contours superposed on the source image before 

and after registration (Fig. e and f) 
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                 (a) Source image                (b) Target image        (c) Resampled source image 

                     (axial view)                          (axial view)             after registration (axial view) 

 

 
 
 
 
 
 
 
 
 
 
 

                  (d) Deformation              (e) Contours before             (f) Contours after                                       

                                                                                  registration                         registration 

 

Figure (4) Third experiment: The algorithm is able to compensate very large 
variations of the shape of the ventricles  

The resampled image (Fig. c) is very close to the target image (Fig. b),  
despite very large initial anatomical differences (Fig. e).  

The transformation is smooth and invertible (Fig. d) 

 

5. Conclusion 
 

When attempting to segment real patient images by registering them with an anatomical 

atlas for radiotherapy planning, we encountered the following problem: the tumor or the 

possible surgical resection present in the patient image has no correspondent in the atlas. 

Therefore, false correspondences are estimated for points inside the pathology, which leads to 

a locally erroneous registration. The solution described in “Pathology-aware registration for 

3D conformal radiotherapy planning” consists in giving the pathological voxels a low weight 

in the registration. Results show that this tends to interpolate the displacement field inside the 

tumor from its values outside it, which prevents potential distortions caused by the pathology. 

 



Journal of Engineering and Development, Vol. 12, No. 2, June (2008)             ISSN 1813-7822 

 

 110 

6. References 
 

1. A., Tourbah, “IRM Et Scl´erose En Plaques”, Neurologies, Vol. 4, No. 33, 2001, 

pp. 270-274. 
 

2. J., Grimaud, Y.-M., Zhu, and M., Rombaut, “Mise Au Point: Les Techniques 

D’analyse Quantitative Des IRM C´er´ebrales: Application `a la Scl´erose En 

Plaque”, Revue Neurologique, Vol. 158, No. 3, 2002, pp. 381-389. 
 

3. E. M., Frohman, D. S., Goodin, P. A., Calabresi, J. R., Corboy, P. K., Coyle, M., 

Filippi, J. A., Frank, S. L., Galetta, R. I., Grossman, K., Hawker, N. J., Kachuck, M. 

C., Levin, J. T., Phillips, M. K., Racke, V. M., Rivera, and W. H., Stuart, “The 

Utility of MRI in Suspected MS: Report of the Therapeutics and Technology 

Assessment Subcommittee of the American Academy of Neurology”, Neurology, 

Vol. 61, No. 5, 2003, pp. 602-11. 
 

4. M., Filippi, and R. I., Grossman, “MRI Techniques to Monitor MS Evolution: The 

Present and the Future”, Neurology, Vol. 58, No. 8, 2002, pp. 1147-1153. 
 

5. I. L., Tan, R. A., Van Schijndel, P. J., Pouwels, H. J., Ader, and F., Barkhof, “Serial 

Isotropic Three-Dimensional Fast FLAIR Imaging: Using Image Registration and 

Subtraction to Reveal Active Multiple Sclerosis Lesions”, AJR Am J Roentgenol, 

Vol. 179, No. 3, 2002, pp. 777-82. 
 

6. E. H., Herskovits, R., Itoh, and E. R., Melhem, “Accuracy for Detection of 

Simulated Lesions: Comparison of Fluid-Attenuated Inversion-Recovery, Proton 

Density-Weighted, and T2-Weighted Synthetic Brain MR Imaging”, AJR Am J 

Roentgenol, Vol. 176, No. 5, 2001, pp. 1313- 8.  

 
 

 


