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Direct and Inverse Position Kinematics  

of 3-UPS Parallel Manipulators 
 

 

 

 

 

 

 

 

 

 

Abstract 
 

In this paper, the equations for the inverse and direct kinematics problems of a 3-UPS 

spatial parallel mechanism (universal-prismatic-spherical) of six degrees of freedom with 

two actuated joints and four passive joints in each of three parallel branches have been 

studied. 

The number of solutions of the inverse kinematics problem is shown to be not more 

than 64, and the solution of the direct kinematics problem has been shown to reducible to a 

8th order polynomial. This implies that for a given set of actuated angles, this 3-UPS 

parallel mechanism can be assembled in at most 8 different configurations. Further 

numerical computations were performed to check the algebra and numerical examples 

were solved to demonstrate the procedure. 

 

 

 
 
 ةـــــــلاصـالخ

 UPS-3 ائٌةـــــــفً هذا البحث تمت دراسة معادلات الحركة المباشرة و المعكوسة المجردة للآلٌة الفض
ذات درجات الحرٌة الستة والمتصفة بفعالٌة مفصلٌن و خمول المفاصل الأربعة المتبقٌة لكل ساق من السٌقان  المتوازٌة
 الثلاث.

للحالة الحركٌة المعاكسة بٌنما أتضح بان حل معادلة الحركة المباشرة  46ول هً لقد تم التوصل إلى إن عدد الحل
لة. تم ـ  أي ٌمكن الحصول على ثمانٌة هٌئات مختلفة لمجموعة زواٌا مفــع، هً معادلة متعددة الحدود من الدرجة الثامنة

كذلك تم حل العدٌد من الأمثلة الرقمٌة  ،تإجراء مختلف الحسابات الرٌاضٌة الأخرى للتأكد من دقة المعادلات التً استنتج
 الحلول. صحة ودقة لإثبات
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1. Introduction 
 

For the past few years, parallel robotic systems have received considerable research 

attention in the robotic field. This is because of their high stiffness where the load is usually 

carried in compression-traction mode only. Also it offers a high load capability since the 

payload is carried by several links in parallel and hence quick dynamic response and good 

position accuracy due to non-cumulative join error. Among the many aspects of parallel 

robotic systems, forward position analysis has been studied extensively but remains a 

challenging problem for researchers. Forward position analysis is to determine the position 

and orientation of the moving platform provided that a set of actuated joint variables is 

specified. Forward position analysis of a parallel mechanism is necessary under the following 

circumstances: (1) the parallel system is controlled by a Cartesian scheme; (2) the parallel 

system is used as a position-orientation sensor or force-torque sensor; and (3) the parallel 

system is utilized as the master manipulator in a teleoperation system 
[1]

.  

A six degrees of freedom parallel manipulator was introduced by Stewart in 1965 and 

since then has been commonly known as the "Stewart-Gough platform" Merlet 
[2]

. An atlas of 

parallel robots was composed by Merlet and can be found in 
[3]

. Several researchers have 

analyzed the direct kinematics of Stewart-Gough platform. Kim and Tsai 
[4]

 studied the 

kinematics of 3-RPS parallel manipulator using the method of prescribed positions. Song and 

Kwon 
[5]

 solved the kinematics of parallel mechanism using the tetrahedron configuration. 

Hopkins and Williams 
[6]

 designed a PSU parallel mechanism. The limitation of these 

methods is due to their dependent on the estimation of the initial configuration. Hence the 

solutions of the forward kinematics are generally calculated and preferred by numerical 

methods. For example, Tahmasebi 
[7]

 studied a Novel Tip Tile Piston parallel manipulator, 

Ben-Horin et. al. 
[8]

 analyzed a planarly actuated parallel robot. All these methods were 

without initial estimation. 

 

2. Description of the Mechanism 
 

In this paper the equations for the direct and inverse position kinematics for 3-UPS 

mechanism. Figure (1) have been developed and solutions have been obtained It is shown 

that, at most, sixty-four solutions exist for the inverse position kinematics problem. While the 

direct position kinematics solution has been shown to be reducible to an eighth order 

polynomial equation. 

The mechanism under discussion consists of two platforms connected to each other by 

three serial chains as shown in Fig.(2). One of the platforms is fixed to the ground while the 

other one is free. Each of the three serial chains has a total of six degrees of freedom. All the 

three serial chains are connected to the top platform by passive spherical joints at P1, P2, and 

P3, respectively. Each chain is connected to the bottom platform by two active perpendicular 

revolutes, forming the universal joint at O1, O2, and O3 respectively, also each chain has a 

passive prismatic joint Li connecting the passive ball joint at Pi to the active universal joint at 
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Oi as shown in Fig.(3). The angle of rotation about the Xg axis which is needed to align the 

Zg axis with Zoi is (270-αi). This fixes the position and orientation of XoiYoiZoi relative to the 

base frame XgYgZg. The overall mobility of this mechanism can be evaluated by applying 

the kutzbach criterion 
[9]

: 
 

61812)312(3)198(6f)1jn(F.O.D
1j

1i

i  




  

 

Therefore the mechanism is 6 D.O.F. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1) Prototype of 3-UPS 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure (2) Schematic of 3-UPS parallel mechanism 
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Figure (3) Location of the base coordinate system 

 

3. Inverse Position kinematics  
 

The inverse position kinematics problem for this structure can be stated as: given the 

position and orientation of the moving platform P1P2P3 with respect to the base platform 

O1O2O3, find the intermediate actuator angles. 

Since the position and orientation of a moving body in space can be uniquely 

determined by specifying the position of three noncollinear points embedded in the moving 

body, we can restate the inverse position kinematics problem as follows: given The position 

of the points P1,P2 and P3 in the base coordinate frame XgYgZg, and 

332312221212111
,,,,,,, LandLL  , find the intermediate actuator angles.  

Using standard, serial chain techniques, the vector from Og to Pi can be written in the 

form 
[10]

: 

 

3,2,1iforq]R[p oiioi

g

pi   ………………………………………... (1) 

 

where:  

[
oi

g R ]: is the coordinate transformation matrix of XoiYoiZoi frame with respect to XgYgZg frame and 

is given by: 
 





















ii

iioi

g

sincos0

cossin0

001

R  

 

oi : is the vector from Og to Oi and is given by: 

 

T

zoiyiooi ])()(0[   

 

Detailed expressions for all of the three limbs are given below. The notation and 

conventions used here are those of Husain and Waldron 
[10]

. They are consistent with 

Hartenberg and Denavit 
[11]

 notation, but the inhomogeneous matrix from which has separate 

matrices for the notation and the position of the origin is preferred 
[12]

. The first subscript 
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refers to the position of a revolute in the chain, and the second subscript refers to the chain 

itself. 

 

ii2i1i JSJUUq   ………………………………………………………………... (2) 

 

where: 
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Combining Eq.(1),with Eq.(2 ), we get: 

 

ii2i1i0pi

1

oi

g
JSJUU)p(]R[ 

 ……………………………………………. (3) 

 

The above matrix equation can be decomposed to 3 independent scalar equations in 3 

unknowns which can be solved using stander techniques. The numbers of solutions obtained 

are as follows: 

If i =1 equation (3) gives: 2 solutions for L1, 2 solutions for θ12, and 1 solution for θ11, 

If i =2 equation (3) gives: 2 solutions for L2, 2 solutions for θ22, and 1 solution for θ12, 

If i =3 equation (3) gives: 2 solutions for L3, 2 solutions for θ32, and 1 solution for θ13. 
 

Hence, the number of solutions to the inverse kinematics problem is not greater than 64, 

although all of these solutions may not be physically realizable. 

 

4. Direct Position Kinematics   
 

The direct position kinematics problem is much more involved. It can be stated as: 

Given the actuator angles for all of the actively controlled joints, find the position and 

orientation of the moving platform P1P2P3 with respect to the base platform O1O2O3. 

From the previous discussion of inverse position kinematics it is obvious that the direct 

position kinematics problem can be re-stated as: 

GIVEN: The actuator angles 231322122111
,,,,  and , FIND: The prismatic joint 

lengths Li. 

Expansion of Eq.(1) with the help of Eq.(2) gives the vector from Og to P1 as:  

 





















13113

12112

111

1p

RL.P

RL.P

L.P

p …………………………………………………………... (4)     

 

where: 
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211111 sincosP   

2111121112 sinsinsincoscosP   

y1o12 )(R   

2111121113 sinsinsincossinP   

z1o13 )(R   

 

Similarly, the vector from Og to P2 is: 

 





















23223

22222

221

2p

RL.P

RL.P

L.P

p  ………………………………………………………….. (5) 

 

where: 

221221 sincosP   

2212222222 sinsinsincoscosP   

y2o22 )(R   

2212222223 sinsincoscossinP   

z2o23 )(R   

 

and the vector from Og to P3 is: 

 





















33333

32332

331

3p

RL.P

RL.P

L.P

P  …………………………………………………………… (6) 

 

where: 

231331 sincosP   

2313323332 sinsinsincoscosP                     

y3o32 )(R   

2313323333 sinsincoscossinP   

z3o33 )(R   

 

All of these P's and R's can be considered to be known for the direct kinematics 

problem. 

For the formulation of the direct kinematics equations, we use geometric constraint that 

triangle P1P2P3 embedded in the moving platform is invariant 
[10]

, i.e., 

 

2

12

2

21

2

2p1p mPPpp   ……………………………………………………… (7) 
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2

23

2

32

2

3p2p mPPpp  ……………………………………………………... (8) 

 

2

13

2

31

2

3p1p mPPpp  ………………………………………………………. (9)                        

 

Using Eqs.(4), (5), and (6) we can simplify Eqs.(7), (8) and (9) giving Eqs.(10), (11), 

and (12), respectively, which are stated below: 

 

0ALALALLALALA 62514213

2

22

2

11   ……………………………. (10) 

 

0BLBLBLLBLBLB 63524323

2

32

2

21   …………………………….. (11) 

 

0CLCLCLLCLCLC 63514313

2

32

2

11   …………………………... (12) 

 

where: 

2

13

2
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2

111 PPPA   

2

23

2

22

2

212 PPPA   

2313221221113 PP2PP2PP2A   

)RR(P2)RR(P2A 2313132212124   

)RR(P2)RR(P2A 1323231222225   

2

12

2

2313

2

22126 m)RR()RR(A   

 

and, 

2

23

2

22

2

211 PPPB   

2

33

2

32

2

312 PPPB   

3323322231213 PP2PP2PP2B   

)RR(P2)RR(P2B 3323233222224   

)RR(P2)RR(P2B 2333332232325   

2
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2

3323

2

32226 m)RR()RR(B   

 

and, 

2

13

2
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2

111 PPPC   

2

33

2

32

2

312 PPPC   

3313321231113 PP2PP2PP2C   

)RR(P2)RR(P2C 3313133212124   

)RR(P2)RR(P2C 1333331232325   

2

13

2

3313

2
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Eqs.(10),(11) and (12) cab be rewritten as: 

 

0NLMLT 121

2

21   ....................................................................................... (13) 

 

0NLMLT 222

2

22   ...................................................................................... (14) 

 

0VLVLV 312

2

11   ......................................................................................... (15) 

 

where: 

21 AT           5131 ALAM            614

2

111 ALALAN   

12 BT            4332 BLBM            635

2

322 BLBLBN   

11 CV           4332 CLCV             635

2

323 CLCLCV   

 

We can eliminate L2 from Eqs.(13) and (14) using Bezout's method 
[9,10]

 and the 

resulting equation will contain only L1 and L3 ; as follows: 
 

 Step 1- Elimination of L2: 

Multiplying eq.(13) by T2 and eq.(14) by T1 and subtracting we obtain: 

 

0)NTNT(L)MTMT( 211222112   ............................................................. (16) 

 

Multiplying eq.(13) by N2 and eq.(14) by N1 and subtracting then dividing by L2 we 

obtain: 

 

0)MNMN(L)TNTN( 211222112   ........................................................... (17) 

 

Equations (13) and (14) represent two linear equation in one unknown: 

 

0
MNMNNTNT

NTNTMTMT

21121221

21122112





 ................................................................... (18) 

 

Expanding equation (18) and substituting the expressions for L1, M1, N1, L2, M2, and N2 

results in the following equation. 

 

0OLOLOLOLO 514

2

13

3
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4

11   .............................................................. (19)    

 

where: 

11 GO   

3322 GLGO   

635

2
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1039

2

38

3

374 GLGLGLGO   

15314

2

313

3

312
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3115 GLGLGLGLGO   

 

where: 

2

1

2

11 BAG   

31312 BBAAG   

2

14141313 BAA2BBAAG   

2121

2

32121

2

34 BBAA2BAABBAG 

512143213143315151

2

35 BBAA2BBAA2BBAABBAABBAG 
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2
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2

1616121

2
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2
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2
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2
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2
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2
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2
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2
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2

262

2

22162

2

3625352425221

2
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2
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 Step 2- Elimination of L1: 

Multiplying equation (19) by V1 and eq.(15) by 
2

11
LO , and subtracting, we obtain: 

 

0VOLVOL)VOVO(L)VOVO( 15114

2

13113

3

12112   ............................ (20) 

 

Multiplying equation (19) by 211 VLV  , and equation (15) by 2
12

3
11 LOLO  , and 

subtracting, we get: 

 

0VOL)VOVO(L)VOVOVO(L)VOVO( 2512415

2

1322314

3

13113   .... (21) 

 

Multiplying equation (15) by L1, we obtain: 

 

0LVLVLV 13

2

12

3

11  ..................................................................................... (22) 
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 We can think of equations (20), (21), (22), and (15) as four linear equations in three 

unknown’s 
1

2

1

3

1
,, LandLL .Vanishing of their eliminate yields 

[7]
: 

 

0

VVV0

0VVV

VOVOVOVOVOVOVOVO

VOVOVOVOVOVO

321

321

2524153223143113

151431132112






 .................... (23) 

 

If we substitute the expressions for V1, V2, V3, O1, O2, O3, O4, and O5 into eq.(23), and 

expand, we obtain: 

 

0ELELELELELELELELE 938

2

37

3

36

4

35

5

34

6

33

7

32

8

31   ............... (24)  

 

Detailed expressions for the Oi's and Ei's are not given here due to space limitation and 

for further information please contact the author.   

After solving for L3, L1 and L2 can be computed from Eqs.(14) and (15), respectively. 

Each of these equations is quadratic, and yields two solutions for L1 and L2 into Eq.(13) 

reveals that only one of the four possible combinations of solutions satisfies the equation. 

Hence we have a total of eight valid solutions for L1, L2 and L3. 

The positions of points P1, P2 and P3 relative to the fixed frame are now given by Eqs. 

(4), (5) and (6), respectively. This is sufficient for formulating the transformation from the 

moving to the fixed reference frame. 

 

5. Numerical Examples 

 

5-1 Validation Example 

Using the example of Cruz, P., et. al. 
[13]

 after modification to be 3-UPS mechanism, so: 
 

5-1-1 Inverse Position Kinematics Problem  

The dimensions of the mechanism were chosen to be: 
0

3
0

2
0

1 150,270,30    

5.1,5.1,5.1 132312  mmm  

 

Let the coordinates of the members of the mechanism in the base coordinate frame be 

O1= (0,-0.5,-0.866), O2= (0,1.0,0), O3= (0,-0.5,0.866) 

P1= (1.9365,0,-0.866), P2= (1.9365,0.75,0.433), P3= (1.9365,-0.75,0.433) 

These coordinate of P1, P2, and P3 do satisfy the constraint that m12=m23=m13=1.5. 

Solving Eq.(3) when i=1 we get the following set of solutions for θ11, θ21 and L1 stated below: 

L1= (+2.0,-2.0) 

θ21= (+102.50392
0
, - 102.50392

0
) when L1= +2.0 
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θ21= (+77.49608
0
, - 77.49608

0
) when L1= -2.0 

θ11= -7.356155
0
 when L1= +2.0 and θ21= +102.50392

0
            

or,  

when L1= -2.0 and θ21= - 77.49608
0
. 

θ11= +172.64575
0
 when L1= +2.0 and θ21= -102.50392

0
            

or,       

when L1= -2.0 and θ21= + 77.49608
0
. 

 

This is a total of 4 real solutions for θ11, θ21 and L1. Similarly solving Eq.(3) when i=2 

we get the following set of solutions for θ12, θ22and L2 stated below: 
 

L2= (+2.0,-2.0) 

θ22= (+102.50392
0
, - 102.50392

0
) when L2= +2.0 

θ22= (+77.49608
0
, - 77.49608

0
) when L2= -2.0 

θ12= -7.356155
0
 when L2= +2.0 and θ22= +102.50392

0
            

or,    

when L2= -2.0 and θ22= - 77.49608
0
: 

θ12= +172.64575
0
 when L2= +2.0 and θ22= -102.50392

0
            

or,       

when L2= -2.0 and θ22= + 77.49608
0
: 

 

This is a total of 4 real solutions for θ12, θ22and L2. 
 

Solving Eq.(3) when i=3 we get the following set of solutions for θ13, θ23 and L3 stated 

below: 

L3= (+2.0,-2.0) 

θ23= (+102.50392
0
, - 102.50392

0
) when L3= +2.0 

θ23= (+77.49608
0
, - 77.49608

0
) when L3= -2.0 

θ13= -7.356155
0
 when L3= +2.0 and θ23= +102.50392

0
            

or,    

when L3= -2.0 and θ23= - 77.49608
0
: 

θ13= +172.64575
0
 when L3= +2.0 and θ23= -102.50392

0
            

or,       

when L3= -2.0 and θ23= + 77.49608
0
: 

 

This is a total of 4 real solutions for θ13, θ23 and L3. Hence, for the inverse kinematics 

problem of this particular example-we have a total of 64 real solutions from the maximum 

possible 64 solutions. 

 

5-1-2 Direct Position Kinematics Problem 

As an example of solution of a direct kinematics problem, we shall take the same 

dimensions as were taken in the inverse kinematics problem ,and also for the angles of the 
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actuated joints we shall take one of the solutions obtained from the inverse kinematics 

problem so as to verify our result. 

Hence we select:          0

21

0

11 503.102,355.7      

  0

22

0

12 503.102,355.7    

 
0

23

0

13 503.102,355.7    

 

The polynomial equation obtained for L3  is: 

01811.67692.195839.283754.24

3947.138551.41341.11563.00098.0

3
2

3
3

3

4
3

5
3

6
3

7
3

8
3





LLL

LLLLL
 

 

The solutions of this equation are presented in Table (1). The lengths in this table in 

meter. The final mechanism configuration obtained from this simulation is presented in 

Fig.(4). 

Hence for this particular problem, 2 equal real solutions are obtained. All the solutions 

were checked by back-substitution into Eqs.(13), (14), and (15). They are all valid. This 

shows that there are no spurious solutions and the minimum order of the polynomial Eq.(24) 

is eight. Also we can clearly verify that two of the real solutions obtained for direct 

kinematics problem do match with the solution obtained to the inverse kinematics problem, 

which was expected. 

 

Table (1) The numerical results of ex. 1 
 

No. L3 L1 L2 

1 2.3778+1.1794i ----- ----- 

2 2.3778-1.1794i ----- ----- 

3 2.0000+1.2580i ----- ----- 

4 2.0000-1.2580i ----- ----- 

5 1.6224+1.1790i ----- ----- 

6 1.6224-1.1790i ----- ----- 

7 2.0044 2.0004 2.0005 

8 1.9954 1.9956 1.9958 
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 Figure (4) The resulting 3-UPS mechanism (ex_1) using MATLAB 

 
5-2 Validation Example 

 

5-2-1 Inverse Position Kinematics Problem  

The dimensions of the mechanism were chosen to be: 

0
3

0
2

0
1 150,270,30    

5.1,5.1,5.1 132312  mmm  

 

Let the coordinates of the members of the mechanism in the base coordinate frame be 

O1=(0,-0.5,-0.866), O2=(0,1.0,0), O3=(0,-0.5,0.866) 

P1=(2.586,0,-0.6919), P2=(1.9365,0.75,0.433), P3=(1.9365,-0.75,0.433) 
 

These coordinate of P1, P2, and P3 do satisfy the constraint that m12=m23=m13=1.5. 

Solving Eq.(3) when i=1 we get the following set of solutions for θ11, θ21 and L1 stated below: 

L1= (+2.639,- 2.639) 

θ21= (+97.531
0
, - 97.531

0
) when L1= +2.639 

θ21= (+82.468
0
, - 82.468

0
) when L1= -2.639 

θ11= -8.8095
0
 when L1= +2.639 and θ21= +97.531

0
            

or,    

when L1= -2.639 and θ21= - 82.468
0
 . 

θ11= +171.19
0
 when L1= +2.639 and θ21= -97.531

0
            

or,       

when L1= -2.639 and θ21= + 82.468
0
 . 

 

This is a total of 4 real solutions for θ11, θ21 and L1. 

Similarly solving Eq.(3) when i=2 we get the following set of solutions for θ12, θ22 and 

L2 stated below: 

L2= (+2.0,-2.0) 

θ22= (+102.50392
0
, - 102.50392

0
) when L2= +2.0 

P1

11 
P3 

P2 

O1

11 

O2 

O3

33 
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θ22= (+77.49608
0
, - 77.49608

0
) when L2= -2.0 

θ12= -7.356155
0
 when L2= +2.0 and θ22= +102.50392

0
            

or,    

when L2= -2.0 and θ22= - 77.49608
0
: 

θ12= +172.64575
0
 when L2= +2.0 and θ22= -102.50392

0
            

or,       

when L2= -2.0 and θ22= + 77.49608
0
 : 

 

This is a total of 4 real solutions for θ12, θ22 and L2.  

Solving Eq.(3) when i=3 we get the following set of solutions for θ13, θ23 and L3 stated 

below: 

L3= (+2.0,-2.0) 

θ23= (+102.50392
0
, - 102.50392

0
) when L3= +2.0 

θ23= (+77.49608
0
, - 77.49608

0
) when L3= -2.0 

θ13= -7.356155
0
 when L3= +2.0 and θ23= +102.50392

0
            

or,    

when L3= -2.0 and θ23= - 77.49608
0
: 

θ13= +172.64575
0
 when L3= +2.0 and θ23= -102.50392

0
            

or,       

when L3= -2.0 and θ23= + 77.49608
0
: 

 

This is a total of 4 real solutions for θ13, θ23 and L3. 
 

Hence, for the inverse kinematics problem of this particular example, we have a total of 

64 real solutions from the maximum possible 64 solutions. 

 

5-2-2 Direct Position Kinematics Problem 

As an example of solution of a direct kinematics problem, we shall take the same 

dimensions as were taken in the inverse kinematics problem, and also for the angles of the 

actuated joints we shall take one of the solutions obtained from the inverse kinematics 

problem so as to verify our result. 

Hence we select:           
0

21

0

11 97.531,8.8095      

  
0

22

0

12 503.102,355.7    

 
0

23

0

13 503.102,355.7    

 

The polynomial equation obtained for L3 is: 

0163.42723.164917.2655.23

6068.122026.4859.00988.00049.0

3

2

3

3

3

4

3

5

3

6

3

7

3

8

3





LLL

LLLLL
 

 

The solutions of this equation are presented in Table (2). The lengths in this table are in 

meter. The final mechanism configuration obtained from this simulation is presented in 

Fig.(5). 
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Table (2) The numerical results of ex. 2 

No. L3 L1 L2 

1 4.5068+1.3043i ----- ----- 

2 4.5068-1.3043i ----- ----- 

3 2.5414+1.718i ----- --- 

4 2.5414 -1.718i ----- ----- 

5 2.0099 2.6510 2.0090 

6 1.9239 ----- ----- 

7 1 .0257+1.1790i ------ ----- 

8 1.0257-1.1790i ------ ----- 

 

 

Figure (5) The resulting 3-UPS mechanism (ex_2) using MATLAB 

 
Hence for this particular problem, we get 1 equal real solution. All the solutions were 

checked by back-substitution into Eqs.(13), (14), and (15). They are all valid. This shows that 

there are no spurious solutions and the minimum order of the polynomial Eq.(24) is eight. 

Also we can clearly verify from the spatial configuration and movement that this parallel 

mechanism has 6 D.O.F. as was expected. 

 

5-3 Discussion 

When studying and comparing the solution procedure it can be observed that it is not 

only simple but also hasn’t got a complex programming as well as it doesn’t need initial trial 

and error values, this program gives accurate results compared with Cruz, P. 
[13]

 and         

Song, S. 
[5]

 who studied the 3-UPS and used the iteration method, which leads to non accurate 

results because of the initial guess besides the long  period where the desired solutions were 

obtained (converged) in at least 4 iterations.  
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6. Conclusion 
 

The number of solutions of the inverse kinematics problem is shown to be not more than 

64, and the solution of the direct kinematics problem has been shown to reducible to a 8
th

 

order polynomial. This implies that for a given set of actuated angles, this 3-UPS parallel 

mechanism can be assembled in at most 8 different configurations.  

The algebra used in this work was verified using MATLAB-7
TM

 program. Further 

numerical computations were performed to check the algebra and numerical examples were 

solved to demonstrate the procedure. It has been shown that the mechanism has a translational 

and rotational motion and this verify that the mechanism is a 6-D.O.F. 

In spite of, the solution method is independent on the iteration technique, the solution 

results has been achieved simply where the initial configuration is not important, emphazing 

all the equations of motion are trigonometric functions, and as a result there has been 

sensitivity for input values.  

It can be found that there are a positive value for each limb (Li) corresponding to an 

equal negative value and they both constitute a pair of mutual mirror image configuration 

with respect to base. This is unavoidable in mathematics since the sign of the UPS limb 

cannot be constrained to be positive in the problem formulation. The mirror image solutions 

merely make sense in mathematics and they thereby should be regarded as extraneous 

solutions 
[14]

. 
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Notations 
 

θ1i, θ2i:  the actively controlled joints are the two perpendicular revolutes at Oi. 

Li:     the passively controlled limb length.  

m12, m23, m13:  the length of the sides of the moving triangle P1P2, P2P3 and P1P3. 

XgYgZg:  the fixed coordinate frame has its origin Og at the centroid of the base 

triangle O1O2O3., Xg axis points outward from the plane paper. 

Zo1, Zo2, Zo3:  the unit vectors along the passive revolute O1, O2 and O3 respectively. 

αi:  the angle made by the normal of the Zoi axis with the Zg axis (positive 

in the clockwise sense). 

λ:     degree of freedom of the task space. 

n:     total number of links.  

j:     number of joints. 

fi:     degrees of relative motion permitted by joint i. 

qi:     the position vector of Pi relative to Oi. 

 


