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Abstract

In this paper, the equations for the inverse and direct kinematics problems of a 3-UPS
spatial parallel mechanism (universal-prismatic-spherical) of six degrees of freedom with
two actuated joints and four passive joints in each of three parallel branches have been
studied.

The number of solutions of the inverse kinematics problem is shown to be not more
than 64, and the solution of the direct kinematics problem has been shown to reducible to a
8th order polynomial. This implies that for a given set of actuated angles, this 3-UPS
parallel mechanism can be assembled in at most 8 different configurations. Further
numerical computations were performed to check the algebra and numerical examples
were solved to demonstrate the procedure.
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1. Introduction

For the past few years, parallel robotic systems have received considerable research
attention in the robotic field. This is because of their high stiffness where the load is usually
carried in compression-traction mode only. Also it offers a high load capability since the
payload is carried by several links in parallel and hence quick dynamic response and good
position accuracy due to non-cumulative join error. Among the many aspects of parallel
robotic systems, forward position analysis has been studied extensively but remains a
challenging problem for researchers. Forward position analysis is to determine the position
and orientation of the moving platform provided that a set of actuated joint variables is
specified. Forward position analysis of a parallel mechanism is necessary under the following
circumstances: (1) the parallel system is controlled by a Cartesian scheme; (2) the parallel
system is used as a position-orientation sensor or force-torque sensor; and (3) the parallel
system is utilized as the master manipulator in a teleoperation system ™1,

A six degrees of freedom parallel manipulator was introduced by Stewart in 1965 and
since then has been commonly known as the "Stewart-Gough platform" Merlet 1. An atlas of
parallel robots was composed by Merlet and can be found in ©!. Several researchers have
analyzed the direct kinematics of Stewart-Gough platform. Kim and Tsai ! studied the
kinematics of 3-RPS parallel manipulator using the method of prescribed positions. Song and
Kwon P! solved the kinematics of parallel mechanism using the tetrahedron configuration.
Hopkins and Williams © designed a PSU parallel mechanism. The limitation of these
methods is due to their dependent on the estimation of the initial configuration. Hence the
solutions of the forward kinematics are generally calculated and preferred by numerical
methods. For example, Tahmasebi ! studied a Novel Tip Tile Piston parallel manipulator,
Ben-Horin et. al. ® analyzed a planarly actuated parallel robot. All these methods were
without initial estimation.

2. Description of the Mechanism

In this paper the equations for the direct and inverse position kinematics for 3-UPS
mechanism. Figure (1) have been developed and solutions have been obtained It is shown
that, at most, sixty-four solutions exist for the inverse position kinematics problem. While the
direct position kinematics solution has been shown to be reducible to an eighth order
polynomial equation.

The mechanism under discussion consists of two platforms connected to each other by
three serial chains as shown in Fig.(2). One of the platforms is fixed to the ground while the
other one is free. Each of the three serial chains has a total of six degrees of freedom. All the
three serial chains are connected to the top platform by passive spherical joints at P, P, and
P3, respectively. Each chain is connected to the bottom platform by two active perpendicular
revolutes, forming the universal joint at Oy, O,, and O3 respectively, also each chain has a
passive prismatic joint L; connecting the passive ball joint at P; to the active universal joint at
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O; as shown in Fig.(3). The angle of rotation about the Xg axis which is needed to align the
Zg axis with Z; is (270-ai). This fixes the position and orientation of XY iZ,i relative to the
base frame XgYgZg. The overall mobility of this mechanism can be evaluated by applying

the kutzbach criterion ©:

j=1
DO.F=A(N-j-1)+3.f,=6(8-9-1)+3(2+1+3)=-12+18=6

i=1

Therefore the mechanism is 6 D.O.F.

Universal
Joint

Moving Plate

Universal
Joint

L

Actuated
Revolutes

Figure (2) Schematic of 3-UPS parallel mechanism
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Figure (3) Location of the base coordinate system

3. Inverse Position kinematics

The inverse position kinematics problem for this structure can be stated as: given the
position and orientation of the moving platform P;P,P; with respect to the base platform
010,03, find the intermediate actuator angles.

Since the position and orientation of a moving body in space can be uniquely
determined by specifying the position of three noncollinear points embedded in the moving
body, we can restate the inverse position kinematics problem as follows: given The position
of the points P;P, and Pz in the base coordinate frame XgYyZg and
6,.0,,..,6,.86,,.L,,0.,,0, and L,, find the intermediate actuator angles.

Using standard, serial chain techniques, the vector from Oq4 to P; can be written in the
form [1%:

P =["Ry1d; + Py fOri=123 oot 1)

where:
[g ROi ]: is the coordinate transformation matrix of X,;Y.iZoi frame with respect to X,YZ, frame and
is given by:
1 0 0
'R, =|0 =sina; cosa,

ol

0 —cosa; -—sina,
Poi - Is the vector from Q4 to O; and is given by:

P =[0 (Py), (Pu).I"

Detailed expressions for all of the three limbs are given below. The notation and
conventions used here are those of Husain and Waldron ™. They are consistent with
Hartenberg and Denavit ™ notation, but the inhomogeneous matrix from which has separate
matrices for the notation and the position of the origin is preferred ™. The first subscript
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refers to the position of a revolute in the chain, and the second subscript refers to the chain
itself.

0 TR T 1 1 (2)
where:
cos@; -—sin6; O 10 O 0
U; =|sinB; cose; O J=|0 0 -1 S;=|0
0 0 1 01 0 L,
Combining Eq.(1),with Eq.(2 ), we get:
PRI (P = Poi) = UpdUydS, e, (3)

The above matrix equation can be decomposed to 3 independent scalar equations in 3
unknowns which can be solved using stander techniques. The numbers of solutions obtained
are as follows:

If i =1 equation (3) gives: 2 solutions for L, 2 solutions for 612, and 1 solution for 01,
If i =2 equation (3) gives: 2 solutions for Ly, 2 solutions for 02, and 1 solution for 01,
If i =3 equation (3) gives: 2 solutions for Ls, 2 solutions for 03, and 1 solution for 0;3.

Hence, the number of solutions to the inverse kinematics problem is not greater than 64,
although all of these solutions may not be physically realizable.

4. Direct Position Kinematics

The direct position kinematics problem is much more involved. It can be stated as:
Given the actuator angles for all of the actively controlled joints, find the position and
orientation of the moving platform P;P,P3 with respect to the base platform O;0,0:s.

From the previous discussion of inverse position kinematics it is obvious that the direct
position kinematics problem can be re-stated as:

GIVEN: The actuator anglesé,,,0,,,0,,,6,,,6,, and 6,,, FIND: The prismatic joint

11°
lengths L.
Expansion of Eq.(1) with the help of Eq.(2) gives the vector from Oq to P, as:

where:
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P,, =c0s0,,sin0O,,

P, =—cosa, cos0,, —sina, sinB,; sin®,,

Ry, = (pol)y
P, =sina, cos0,, —sina, sing,; sind,,
Ry =(Po1),

Similarly, the vector from Oq to P is:

where:
P,, =c0s0,,sin0,,

P,, =—cosa, cos0,, —sina,sind,,sinb,,

R, = (pOZ)y
P,; =sina,cos6,, —cosa,sind,,sind,,
R2:=(Ps2),

and the vector from Qg to Psis:

where:
P,, =c0s0,,5iN0,,

P,, =—cosa, cos0,, —sina,sin@,;sind,,

Ra, = (p03)y
P,; =sina; cos0,, —cosa,sinB,,sind,,
R =(pos),
All of these P's and R's can be considered to be known for the direct kinematics
problem.

For the formulation of the direct kinematics equations, we use geometric constraint that
triangle P1P,P; embedded in the moving platform is invariant % i.e.,

‘ppl —ppzr = PP, =M, ettt (7
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‘ppz - pps‘z = PP =M et (8)

‘ppl - pp3‘2 = PPy =M s (9)

Using Egs.(4), (5), and (6) we can simplify Eqgs.(7), (8) and (9) giving Egs.(10), (11),
and (12), respectively, which are stated below:

AL +AL + AL L, +AL +AL,+A; =0 cerrrrereieeerneeeneeerneerneeenns (10)
B,LS+B,L5 +B,L,L+B,L, + Bl + By =0 ererrererierenieennneneenneenns (11)
CLLA+CLA+CL L, +C,L i +CL,;+Cu =0 trrrrrrerrneeeneennennneennnn (12)

where:
A, =P +P%+P}
A,=P2 +P. + P}
A, =-2P,P, —2P,P,, —2PP,,
A,=2P,(R,-R,,)+2P,(R;—R,)
A, =2P, (R, —R,)+2P,(R,;,—R,,)
A, =(R,-R,) +(R;—R,) —m
and,
B, =P, + P, +P2
B, =P + P + P
B, = —2P,,P,, —2P,,P,, — 2P,.P,,
B, =2P,,(R,, —R,,)+2P,,(R,; — R;,)
B, =2P,,(R;, —R,,)+ 2P, (R,; —R,;)
B, =(R,,—R,,)*+(Ry;—R,;)*+m5,
and,
C,=P>+P,+P}
C,=P, +P,+PZ
C,=-2P,P,, —2P,P,, — 2P.P.,
C,=2P,(R,—R,,)+2P.(R;—R.,)
C, =2P,(R,;, —R,,) + 2P, (Ry; — Ry;)
C,=(Ry, —R,,) + (R — Ry) —mi,
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Egs.(10),(11) and (12) cab be rewritten as:

TS ML, + Ny =0 e (13)
TS+ IMLL, 4 Ny =0 et (14)
VILZ + VoL 4 Vo =0 e (15)
where:
T, =A, M, = AL, +A, N, =AL,+A,L +A,
T,=B, M, =B,L,+B, N, =B,L% +B,L, + B,
V,=C, V,=C,L,+C, V,=C,L%+C.L,+C,

We can eliminate L, from Egs.(13) and (14) using Bezout's method % and the
resulting equation will contain only L; and Lj; as follows:

+ Step 1- Elimination of L,:
Multiplying eq.(13) by T, and eq.(14) by T; and subtracting we obtain:

(T,M, = ToM)L, 4 (ToNy = TiN) =0 e (16)

Multiplying eq.(13) by N and eq.(14) by N; and subtracting then dividing by L, we
obtain:

(N,T, = N T, A+ (N,M, = NJML) =0 e (17)
Equations (13) and (14) represent two linear equation in one unknown:

Tle_Tle T2N1 _T1N2
T1N2 _Tle Nle - N1M2 -

Expanding equation (18) and substituting the expressions for L;, M1, N1, Ly, M2, and N,
results in the following equation.

O,L4 + 0,13 +O,L2 + 0,1, + 05 =0 oo, (19)
where:
O1 =Gl
0,=G,L,+G,

0,=G,l3+G.L,+G,
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0,=G,L +G,L3+G,L,+G,,
Os = GllL43 + GlZL33 + G13L23 + Gl4L3 + GlS

where:
G,=AB:
G,=-A,A,B,B,
G,=-A,A,B,B, +2A A,B’
G,=A’B,B,+AAB,-2A A,BB,
G,=A’B,B,-AABB,-AABB,+2A A,B.B,-2A ,A,B,B,
G,=A’B,B,—AA.B,B,—A,ABB,+AA,B,-2A AB,B,+2A AB’ +A’B?
G,=-A,A,B,B,
G,=2A,A,B,B,-A,A.B,B,-A,A,B,B. +A,AB2-2A A,BB,
G,=2A,AB,B,-A,AB,B.—A,A.B.B,—A,ABB,-A,ABB,
+2A,A,B.B, —2A,A,B B,
G, =2A,A.B,B,-AAB,B,-A,AB,B,-A,AB,B,+A,A,B’
—-2A,A,B,B, +2A,A B’
G, =AB]
G,,=—-A,A.B,B, +2A’B,B,
G, =AB,B,-A,A.B,B,-A,AB.,B,+A,AB?-2A,A B,B, +2A’B,B, + A’B’
G, =A’B,B,-A,A.B,B.-A,AB.B,-A.A,B,B,+2A,A,B,B,
—-2A,AB,B, +2A’B.B,
G, =A’B,B,-A,A,B,B,—AAB,B, +AAB?-2A,A BB, + A’B’ + A’B?

+ Step 2- Elimination of L;:
Multiplying equation (19) by V; and eq.(15) by OlLf, and subtracting, we obtain:

(0,V, —=O,V,)L2 +(0O,V, —O,V,)L2 + O,V,L, + OV, =0 oo (20)

Multiplying equation (19) by V;L;+V,, and equation (15) byOlLf+02Lf, and
subtracting, we get:

(O,V,-0,V,)L3 +(0,V, +0,V, —0,V,)L; +(0.V, +O,V,)L, +O.V, =0 .... (21)
Multiplying equation (15) by L;, we obtain:

Y Y A e YA (22)
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We can think of equations (20), (21), (22), and (15) as four linear equations in three
unknown’s L2, L%, and L,.Vanishing of their eliminate yields ™:

o,v,-0.\V, o,V,-0,V, oV, OV,

O.V;=0O,V; OV, +0,V,-0,V; OV, +0,V, OV, =0 i, (23)
V, V, V; 0
0 V, Vv, V,

If we substitute the expressions for Vi, Va, V3, 01, Oy, O3, O4, and Os into eq.(23), and
expand, we obtain:

E,L%+E, L, +E,L +E,L,+E LY+ E.LS+E, LS +EL,+E; =0 ............... (24)

Detailed expressions for the Oi's and Ei's are not given here due to space limitation and
for further information please contact the author.

After solving for Ls, L; and L, can be computed from Egs.(14) and (15), respectively.
Each of these equations is quadratic, and yields two solutions for L; and L, into Eq.(13)
reveals that only one of the four possible combinations of solutions satisfies the equation.
Hence we have a total of eight valid solutions for L;, L, and Ls.

The positions of points Py, P, and Pj relative to the fixed frame are now given by Egs.
(4), (5) and (6), respectively. This is sufficient for formulating the transformation from the
moving to the fixed reference frame.

5. Numerical Examples

5-1 Validation Example
Using the example of Cruz, P., et. al. ** after modification to be 3-UPS mechanism, so:

5-1-1 Inverse Position Kinematics Problem
The dimensions of the mechanism were chosen to be:

o =30°, o, =270°, oy =150°

mlz :15 , m23 :15 f m13 :15

Let the coordinates of the members of the mechanism in the base coordinate frame be
01=(0,-0.5,-0.866), O,= (0,1.0,0), Os= (0,-0.5,0.866)
P1=(1.9365,0,-0.866), P,= (1.9365,0.75,0.433), P3= (1.9365,-0.75,0.433)
These coordinate of P1, Py, and P3 do satisfy the constraint that mi,=myz=m;3=1.5.
Solving Eq.(3) when i=1 we get the following set of solutions for 611, 0,; and L; stated below:
L;=(+2.0,-2.0)
0,1= (+102.50392°, - 102.50392°%) when L= +2.0
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0,1= (+77.49608°, - 77.49608%) when L;= -2.0

011= -7.356155° when Ly= +2.0 and 0= +102.50392°
or,

when L= -2.0 and 0= - 77.49608°.

011= +172.64575° when Ly= +2.0 and 2,= -102.50392°
or,

when L= -2.0 and 0,= + 77.49608°.

This is a total of 4 real solutions for 011, 621 and L. Similarly solving Eq.(3) when i=2
we get the following set of solutions for 012, 620and L, stated below:

L,= (+2.0,-2.0)

020= (+102.50392°, - 102.50392°%) when L,= +2.0

020= (+77.49608°, - 77.49608°) when L,= -2.0

01,= -7.356155° when L,=+2.0 and 0,,= +102.50392°
or,

when Lp= -2.0 and 0,,= - 77.49608°;

01,= +172.64575° when L,= +2.0 and 02,= -102.50392°
or,

when Ly= -2.0 and 6,,= + 77.49608":

This is a total of 4 real solutions for 015, 020and L.

Solving Eq.(3) when i=3 we get the following set of solutions for 613, 823 and L3 stated

below:

Ls= (+2.0,-2.0)

0,3= (+102.50392°, - 102.50392°%) when Ls= +2.0

0,3= (+77.49608°, - 77.49608%) when Ls= -2.0

013= -7.356155° when Ls= +2.0 and 3= +102.50392°
or,

when Ls= -2.0 and 023= - 77.49608";

013= +172.64575° when Lg= +2.0 and 0,3= -102.50392°
or,

when Ls= -2.0 and 023= + 77.49608";

This is a total of 4 real solutions for 613, 0,3 and Ls. Hence, for the inverse kinematics
problem of this particular example-we have a total of 64 real solutions from the maximum
possible 64 solutions.

5-1-2 Direct Position Kinematics Problem
As an example of solution of a direct kinematics problem, we shall take the same
dimensions as were taken in the inverse kinematics problem ,and also for the angles of the
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actuated joints we shall take one of the solutions obtained from the inverse kinematics
problem so as to verify our result.

Hence we select: 0,=-735° , 0, =+102.503°
0, =-7.35° , 0,, =+102.503°
0, =-7.35° 0, =+102.503°

The polynomial equation obtained for Lj is:
—0.0098 L% +0.1563 Ly" —1.1341 L,® + 4.8551 L,° —13.3947 L,*
+24.3754 L3> — 28.5839 L,% +19.7692 Ly — 6.1811 = 0

The solutions of this equation are presented in Table (1). The lengths in this table in
meter. The final mechanism configuration obtained from this simulation is presented in
Fig.(4).

Hence for this particular problem, 2 equal real solutions are obtained. All the solutions
were checked by back-substitution into Egs.(13), (14), and (15). They are all valid. This
shows that there are no spurious solutions and the minimum order of the polynomial Eq.(24)
is eight. Also we can clearly verify that two of the real solutions obtained for direct
kinematics problem do match with the solution obtained to the inverse kinematics problem,
which was expected.

Table (1) The numerical results of ex. 1

=z
=

Ls L, L,
2.3778+1.17%4i | - | -
2.3778-1.1794i | - | eme--
2.0000+1.2580i | @ - | -
2.0000-1.2580i | @ - | -
1.6224+1.1790i | = - | -
1.6224-1.1790i | - | = -

2.0044 2.0004 2.0005
1.9954 1.9956 1.9958

O|IN|OO|O B |IWIN]|PF
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Yem

Figure (4) The resulting 3-UPS mechanism (ex_1) using MATLAB

5-2 Validation Example

5-2-1 Inverse Position Kinematics Problem
The dimensions of the mechanism were chosen to be:

o =30°, @, =270°, oz =150°

m12 =15 f m23 =15 y m13 =15

Let the coordinates of the members of the mechanism in the base coordinate frame be
0,=(0,-0.5,-0.866), 0,=(0,1.0,0), 03=(0,-0.5,0.866)
P1=(2.586,0,-0.6919), P,=(1.9365,0.75,0.433), P3=(1.9365,-0.75,0.433)

These coordinate of P1, Py, and P3; do satisfy the constraint that mi,=myz=m;3=1.5.

Solving Eq.(3) when i=1 we get the following set of solutions for 611, 0,1 and L; stated below:

L= (+2.639,- 2.639)

0,1= (+97.531°, - 97.531°% when L;= +2.639

0,1= (+82.468°, - 82.468°%) when L= -2.639

011= -8.8095° when L;= +2.639 and 02,= +97.531°
or,

when L;= -2.639 and 0,;= - 82.468° .

01,= +171.19° when L;= +2.639 and 0,;,= -97.531°
or,

when L= -2.639 and 0,,= + 82.468° .

This is a total of 4 real solutions for 011, 01 and L;.
Similarly solving Eq.(3) when i=2 we get the following set of solutions for 012, 62, and
L, stated below:
L= (+2.0,-2.0)
020= (+102.50392°, - 102.50392°%) when L,= +2.0
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0,0= (+77.49608°, - 77.49608%) when L,= -2.0

01,= -7.356155° when L,= +2.0 and 0,= +102.50392°
or,

when L,= -2.0 and 0,,= - 77.49608";

01,= +172.64575° when L,= +2.0 and 62,= -102.50392°
or,

when L,= -2.0 and 0= + 77.49608° :

This is a total of 4 real solutions for 015, 0,7 and L.
Solving Eq.(3) when i=3 we get the following set of solutions for 613, 823 and L3 stated
below:
Ls= (+2.0,-2.0)
0,3= (+102.50392°, - 102.50392°) when L= +2.0
0,3= (+77.49608°, - 77.49608°) when Ls= -2.0
015= -7.356155° when Lg=+2.0 and 0,3= +102.50392°
or,
when Lz= -2.0 and 0,3= - 77.49608°;
015= +172.64575° when Ls= +2.0 and 023= -102.50392°
or,
when Ls= -2.0 and 6,3= + 77.49608":

This is a total of 4 real solutions for 013, 0,3 and Ls.

Hence, for the inverse kinematics problem of this particular example, we have a total of
64 real solutions from the maximum possible 64 solutions.

5-2-2 Direct Position Kinematics Problem

As an example of solution of a direct kinematics problem, we shall take the same
dimensions as were taken in the inverse kinematics problem, and also for the angles of the
actuated joints we shall take one of the solutions obtained from the inverse kinematics
problem so as to verify our result.

Hence we select: 0,,=-8809 ° , @, =+97.531°
0, =-7.35° , 6,, =+102.503°
0, =-7.35° 6, =+102.503°

The polynomial equation obtained for L is:
—0.0049L,° +0.0988L," —0.859L,° + 4.2026L,° —12.6068L,"
+2355L,° —26.4917L,° +16.2723L, —4.163=0

The solutions of this equation are presented in Table (2). The lengths in this table are in
meter. The final mechanism configuration obtained from this simulation is presented in

Fig.(5).
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Table (2) The numerical results of ex. 2

Z
=

Ls L, L,

4.5068+1.3043i | o -m | o
45068-1.3043i | - |
25414+1.7181 | -
25414 -1.718i | e | -
2.0099 2.6510 2.0090
19239 | - | =
1.0257+1.1790i | -oemm | -
1.0257-1.1790i | - | -

O|IN|O|O R |WIN]|PF-

a4 05 0 05 -
X [m] Y [m]

Figure (5) The resulting 3-UPS mechanism (ex_2) using MATLAB

Hence for this particular problem, we get 1 equal real solution. All the solutions were
checked by back-substitution into Egs.(13), (14), and (15). They are all valid. This shows that
there are no spurious solutions and the minimum order of the polynomial Eq.(24) is eight.
Also we can clearly verify from the spatial configuration and movement that this parallel
mechanism has 6 D.O.F. as was expected.

5-3 Discussion

When studying and comparing the solution procedure it can be observed that it is not
only simple but also hasn’t got a complex programming as well as it doesn’t need initial trial
and error values, this program gives accurate results compared with Cruz, P. ®® and
Song, S. P! who studied the 3-UPS and used the iteration method, which leads to non accurate
results because of the initial guess besides the long period where the desired solutions were
obtained (converged) in at least 4 iterations.
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6. Conclusion

The number of solutions of the inverse kinematics problem is shown to be not more than
64, and the solution of the direct kinematics problem has been shown to reducible to a 8"
order polynomial. This implies that for a given set of actuated angles, this 3-UPS parallel
mechanism can be assembled in at most 8 different configurations.

The algebra used in this work was verified using MATLAB- program. Further
numerical computations were performed to check the algebra and numerical examples were
solved to demonstrate the procedure. It has been shown that the mechanism has a translational
and rotational motion and this verify that the mechanism is a 6-D.O.F.

In spite of, the solution method is independent on the iteration technique, the solution
results has been achieved simply where the initial configuration is not important, emphazing
all the equations of motion are trigonometric functions, and as a result there has been
sensitivity for input values.

It can be found that there are a positive value for each limb (Li) corresponding to an
equal negative value and they both constitute a pair of mutual mirror image configuration
with respect to base. This is unavoidable in mathematics since the sign of the UPS limb
cannot be constrained to be positive in the problem formulation. The mirror image solutions
merely make sense in mathematics and they thereby should be regarded as extraneous
solutions [,

7TM
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Notations

B4, O the actively controlled joints are the two perpendicular revolutes at Oi.

Li: the passively controlled limb length.

M1z, My3, Mi3! the length of the sides of the moving triangle P,P,, P,Ps;and P,Ps.

XgYoZy: the fixed coordinate frame has its origin Og at the centroid of the base
triangle 0,0,03;., Xg axis points outward from the plane paper.

Zo1, Zoz, Zos. the unit vectors along the passive revolute O,, O, and O respectively.

a;: the angle made by the normal of the Zoi axis with the Zg axis (positive
in the clockwise sense).
degree of freedom of the task space.

n: total number of links.

J: number of joints.

fi degrees of relative motion permitted by joint i.

(o the position vector of P; relative to O..
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