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High performance technique FIR Filter Using  
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Abstract 
 

The FIR filter is the one from the most DSP components used. There are two main 

approaches to design of FIR, first using the windows that have simple mathematics 

calculations but its results are not optimal. The second method that uses Least Squares 

error approach to get an optimal design but it required to large number of calculations.      

A new algorithm for weighted least squares linear-phase FIR filter design has been 

presented, this algorithm used to solve quadratic programming problems. This paper shows 

how to rearrange this algorithm to reduce the number of flouting point operations (FPOs), 

that will results in a faster method for constrained least squares FIR filter design. The 

proposed algorithm is fast, stable and suitable for high order filter design. 

 

 

 

 
 

 ةـــــــلاصـالخ
سلوبان أساسٌان إمن أهم وحدات بناء دوائر معالجة الإشارة الرقمٌة. هناك  FIR)) ٌعد مرشح النبضة المنتهٌة

سلوب . أما الإسلوب النوافذ والذي ٌكون مبسط رٌاضٌا إلا انه لاٌعطً أفضل النتائجإ، الأول ٌستخدم FIR))لبناء مرشح 
ع الخطأ للحصول على أفضل النتائج إلا انه معقد رٌاضٌا. تعتمد الخوارزمٌة الجدٌدة على الثانً الذي ٌعتمد على تقلٌل مرب

الخطً الطور، وهذه الخوارزمٌة تعتمد أسلوب حل الرباعٌات برمجٌا  FIR)) ستخدام تقلٌل مربعات الأوزان لمرشحإ
(quadratic programming) . 

، وهذا سٌعطً طرٌقة  (FPO (لل عدة عملٌات الضرب الحر ٌقوم هذا البحث بإعادة ترتٌب هذه الخوارزمٌة لٌق

 أسرع من الإسلوب الثانً المستخدم. وهذه الخوارزمٌة ستكون أسرع ومستقرة ومناسبة للمرشحات الكبٌرة.
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1. Introduction 
 

The constrained least squares (CLS) design of FIR filters was presented in 
[1]

 for the first 

time. Subsequently, it has also been considered in a number of references 
[2,3,4]

. However, the 

algorithms proposed in those papers are neither guaranteed to converge nor can be used in 

every case. On the other hand the Goldfarb-Idnani (GI) algorithm, which was presented in 
[5]

  

(see also 
[6]

) is one of the best algorithms available to solve positive definite quadratic 

programming problems subject to linear constraints. 

This algorithm is very efficient, it is guaranteed to find a solution in a finite number of 

steps and it can be implemented in a numerically stable way. It has been successfully applied 

to the CLS design of FIR filters in 
[6]

.  

The rest of this paper is organized as follows: in section II, the original algorithm is 

developed, section III, the proposed algorithm is developed. Section IV present some filter 

design examples that show the applicability of the proposed algorithm. In section V, the final 

remarks are presented. 

 

2. Algorithm formulation [5] 
 

When designing linear phase FIR filters using the least squares method will minimize 

the mean square error given by 

 

2
jwjw
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………………………………………. (1) 

 

where:  

F(e
jw

): is the frequency response of the FIR filter and,  

D(e
jw

): is the desired frequency response.  
 

Let us define an error function given by: 

 

)e(D)e(F)w(E tt jwjw
 …………………………………...... (2) 

 

This equation can be written in vector form as: 

 

e= Ax- d ……………………………………………………………………….. (3) 

 

where:  

x: is the vector whose elements are the filter coefficients, and 
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where:  

n: is the Filter  order coefficients, and l is the frequency grid. 
 

Minimizing ε = e
T
 will equivalent to minimizing the following function 

 

Gxx
2

1
xa)x(f

TT  ………………………………………………………. (6) 

 

where:  

 

AWAG
T …………………………………………………………...... (7) 

 

and,  

 

dWAa
T …………………………………………………………………... (8) 

 

In CLS filter design, the minimization of the above cost function (6) is subject to the 

following constraints: 

 

|Ax − d| ≤ δ ……………………………………………………………………. (9)   

 

where:  

δ: is a column vector whose elements are all δ > 0. 

 

3. Fast Algorithm Formulation 
 

The most disadvantages for CLS linear phase FIR filter design algorithm is the large 

number of floating point operations. This paper analyzes the components of the FPOs then 

rearranges this algorithm to reduce the number of FPOs and in result design a fast algorithm 

for CLS linear phase FIR filter design. It combines the powerful GI algorithm with a fast 

method used to compute orthogonal cosine basis. 
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The result of this combination is a fast algorithm which also has the desirable property 

of numerical stability and that can be applied to high order filter design. 

The key to reduce the numbers of FPOs is depending on the god selection of the initial 

value of the algorithm. However, the eqs.(7) and (8) have three matrix variables G, W and 

with two equations, that’s mean there is a one free selection variable. 

The god selection will give a fast algorithm. However, the selection of matrix a in 

equation 8 will capture the value of desired matrix d and matrix W while give a small 

reduction ratio in FPOs, therefore the available choice is a selection of matrix G or matrix W 

in eq.(7). 

The deep analysis for algorithm equations shows the computation of G is at the core of 

the GI algorithm is a part of matrix computations 
[5]

 that have to be performed at every step of 

that algorithm. It is mentioned that efficient computational methods can be devised to reduce 

the computational burden. 

There is infinity selection choices for G matrix, the triangular G matrix is a suitable 

choice but not efficient. The diagonalization of matrix G will reduce all the computational 

effort associated with G without any effect on the algorithm efficiency.  

Because G has been replaced with the identity matrix. That is leads to the simplified 

eq.(6) to present as: 

 

xx
2

1
xa)x(f

TT  …………………………………………………………. (10) 

 

The solution of eq.(7) for G=I will leads to W=I and in result the eq.(8) will presented 

as:  

 

dAa
T …………………………………………………………………… (11) 

 

Now, the number of FPOs will reduce to 50% ideally, or to about 50-60% practically as 

shown in the next section. 

 

4. Examples 
 

In order to demonstrate the applicability of the proposed algorithm, a couple of filters 

have been designed using a direct implementation of the GI algorithm (CLS algorithm) and 

the algorithm developed in this paper. The implementation of the GI algorithm follows the 

one presented in 
[5]

. 

In implementing the CLS algorithm, the symmetric structure of G has been taken into 

account in order to reduce the number of operations. 
 

Example (1): The first example is design a linear phase lowpass filter of order 50 according 

to the following specifications: 
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The frequency response of this filter is depicted in Fig.(1). The value of δ, the number of 

frequency points and the number of floating point operations required to get the coefficients 

are shown in Table (1). This table shows results of different filters differ in order, frequency 

grid and δ. This table shows results of different filters differ in order, frequency grid and δ. 

This table shows the experimental number of FPOs for the original and modified algorithms 

with the experimental percentage ratio of them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure (1) Frequency response for example (1) 

 
Table (1) Number of floating point operations for filters of example (1) 

 

Freq. 

grid 
δ 

Filter  

order 

Number of  

FPOs  for CLS 

algorithm 

Number of FPOs 

for proposed  CLS 

algorithm 

Experiment 

Ratio of FOPs % 

1000 

2000 

3000 

0.04 

0.004 

0.00046 

50 

100 

150 

2,675100 

35,266965 

58,063193 

1,672156 

19,995324 

29,332337 

62.5 

56.7 

50.5 
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Example 2: The second example is design a linear-phase bandpass filter of order 50 

according to the following specifications: 
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The frequency response of this filter is depicted in Fig.(2). The value of δ, the number of 

frequency points and the number of floating point operations required to get the coefficients is 

shown in Table (2). This table shows results of different filters differ in order, frequency grid 

and δ. This table shows the experimental number of FPOs for the original and modified 

algorithms with the experimental percentage ratio of them. 

 

 

    
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure (2) Frequency response for example (2) 

 
Table (2) Number of floating point operations for filters of example (2) 

 

Freq. 

grid 
δ 

Filter  

order 

Number of  

FPOs for CLS 

algorithm 

Number of FPOs  

for proposed CLS 

algorithm 

Experiment Ratio 

of FOPs % 

1000 

2000 

3000 

0.045 

0.0046 

0.00049 

50 

100 

150 

4752006 

26208253 

151218001 

3013473 

14805181 

82116668 

63.4 

56.5 

54.3 
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5. Conclusions 
 

This paper presented a fast and numerically stable algorithm that takes the advantage of 

a powerful for constrained least squares filter design, this method has an optimal design but it 

required to large number of calculations. 

This paper rearranged this algorithm to solve quadratic programming problems. This 

rearranges results to reduce the number of FPOs to 50%. However, it gives a faster method 

for constrained least squares FIR filter design. The proposed algorithm in result is a fast, 

stable and suitable for high order filter design. 
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