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Flow Distribution in Manifolds 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract 
 

A Numerical study of two-dimensional, turbulent, incompressible fluid flow through 

manifold pipe that divides flow to five consecutive laterals is carried out. Each lateral is 

oriented at ninety degree to manifold axis. The study is based on the solution of the elliptic 

partial differential equations representing the conservation of mass, momentum, 

turbulence energy and its dissipation rate in finite volume form. The turbulent viscosity and 

diffusion coefficients are calculated using the (k-ε) model. Different parameters are 

considered to illustrate their influences on the flow distribution along manifold. These 

parameters include the area ratio (the ratio of the sum of areas of all laterals to manifold 

area) (A.R), curvature radius at the junction points between manifold and laterals (R), and 

space between each two consecutive laterals.  

The results show that the area ratio has a significant effect on flow distribution along 

manifold pipe and as a result of these effects the discharge through laterals near from 

uniform as the area ratio becomes less than unity (A.R<1), while when area ratio becomes 

larger than unity (A.R>1) the discharge distribution through laterals is far from uniform 

(flow rate through the last lateral will be greater than the flow through the first lateral), 

especially for short manifold (L/D≤10) and sharp-edged laterals. The value of skin friction 

factor will be decreased as area ratio becomes larger than unity. The rounding of lateral 

entrance, the variation in flow distribution is much greater, whereas the discharge will be 

increased at last two lateral pipes. The value of skin friction factor at wall of manifold 

decrease as curvature radius increases.  

Finally as the space between each two consecutive laterals increases, the variation in 

discharge distribution through laterals decreases slowly. 
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 ،اللانضغاطً داخل بوب متفرع، ثنائً الأبعاد، تتضمن الدراسة الحاسوبٌة الحالٌة محاكاة الجرٌان المضطرب
والذي ٌوزع الجرٌان إلى خمسة أنابٌب جانبٌة متتابعة ذات طول قصٌر. كل أنبوب جانبً ٌتقاطع مع إحداثٌات الأنبوب 

، الدراسة حل المعادلات التفاضلٌة الجزئٌة الاهلٌجٌة والمتمثلة بحفظ الكتلةدرجة(. تتضمن 09المنوع بزاوٌة قائمة )
المعادلات سوٌة مع الصٌغ الجبرٌة  هذهولقد حلت ، باستخدام الحجوم المحددة، الطاقة المضطربة ومعدل ضٌاعها، الزخم

وضٌح تأثٌر عدة عوامل . وقد تم ت(k-ε)بوجود نظام الاضطراب المسمى للزوجة المضطربة ومعدل الانتشارٌة
العوامل تضمنت نسبة المساحة )مجموع مساحات الفروع  ، وهذههندسٌة على توزٌع الجرٌان خلال الأنبوب المتفرع

 والمسافة بٌن الأنابٌب الفرعٌة. ، نصف قطر التقوس ،مقسومة على مساحة الأنبوب الرئٌسً(
ونسبة إلى هذا ، لموس وواضح على توزٌع الجرٌاننتائج هذه الدراسة أوضحت أن نسبة المساحة تملك تأثٌر م

، التأثٌر فأن التصرٌف  خلال الأنابٌب الفرعٌة سوف ٌقترب من التوزٌع المنتظم عندما تكون نسبة المساحة أقل من واحد
، لمنتظمفأن توزٌع التصرٌف خلال الأنابٌب الجانبٌة ٌبتعد من التوزٌع ا ،بٌنما عندما تكون نسبة المساحة أكبر من واحد

(. قٌمة الاحتكاك عند جدار الأنبوب المنوع سوف ٌقل عندما تكون L/D≤10وبالأخص إذا كان الأنبوب المنوع قصٌر )
فان الفرق فً توزٌع الجرٌان خلال التفرعات الجانبٌة  ،نسبة المساحة أكبر من واحد. عندما ٌكون مدخل الأنبوب منحنً

  .فً أخر تفرعٌن جانبٌٌنوخصوصاً سوف ٌتركز التصرٌف  ،سوف ٌزداد
فأن الفرق فً توزٌع التصرٌف خلال الأنابٌب الجانبٌة سوف  ،أخٌراً عندما تزداد المسافة بٌن الأنابٌب الفرعٌة

 .ئٌقل ببط

 

1. Introduction  
 

Dividing flow takes place in a manifold that distributes a fluid flow uniformly to a series 

of successive lateral outlet ports. The fluid flow through manifolds has many applications, 

such as; flow distribution systems in treatment plants that treat water and wastewater, the 

piping system of pumping stations that involves a main supply manifold with many side 

branches to pumps, and in irrigation systems. The function of a pumping station is to transfer 

water from a source to a required destination such as supplying water to the distribution 

networks. The water pumping station consists of pumps, pipes of various sizes, valves, pipe 

fittings, and distribution reservoirs…etc. pumps which pumped water directly into 

transmission lines, and distribution system. Pipes are divided into two types: in the first, 

suction and discharge piping of pumps. In the second, supply and collecting manifolds, these 

pipes carry water from reservoir to each part in pumping station. Valves are used to control 

the flow of water through the pipes 
[1]

.   

Rasafa pumping station for reservoir No-3 has been chosen in this study to analyze 

water distribution through the supply manifold and its laterals, as shown at dotted lines in 

Fig.(1). Rasafa pumping station consists of ten centrifugal vertical split case pumps connected 

in parallel joint together into supply manifold (header) in order to feed those pumps. Eight of 

those have high flow (800 l/sec), and two of them have low flow (500 l/sec), whereas the total 

flow becomes (7400 l/sec). This pump station contains one butterfly valve before each pump 

and two butterfly valves with check valve after each pump. 
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In practical cases, there is a strong inter-linkage between flow distribution and manifold 

design, which is determined by the area ratio (AR) (the ratio of the sum of areas of all laterals 

to manifold area), curvature radius (R) and the space between each two consecutive laterals 
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(l).with this perspective, various aspects of this problem have been studied by a number of 

investigators. Keller 
[2]

 presented a study that deals with the general problem of manifolds 

supplying fluids to a set of parallel pipes or ducts, or discharging through a numerous opening 

distributed along the manifold length. For this case of the problem, the fundamental equation 

relating pressure and flow to position along the manifold is reduced to a second-order 

differential equation for which no solution has been found. Therefore, a point-by-point 

numerical method was used, starting with unit velocity and pressure at the discharge lateral 

nearest the dead end of the manifold and working back from lateral to lateral toward the inlet 

end. Bajura 
[3]

 developed analytical procedure for determining the performance of       

dividing-flow type of manifolds in which the lateral tubes form sharp-edged junctions at right 

angles to the manifold axis. A mathematical model describing the flow behavior at discrete 

branch point was formulated in terms of momentum balance along the manifold pipe.  

Hudson et. al. 
[4]

 presented a simplified approach based on successive-approximations 

scheme for predicting the hydraulic behavior of manifold pipe that divides flow to five 

consecutive short length laterals. In the first stage, the head losses are calculated by assuming 

equal flow distribution between laterals. In the second stage, better estimation of the lateral 

flow distribution along the manifold can be made using the previous head loss results. In their 

study, a series of mathematical iterations may be used to predict the flow distribution. 

Hayes et. al. 
[5]

 studied the laminar flow characteristics of a Newtonian, incompressible 

fluid in a two-dimensional, planar, right angled tee branch over a range of inlet Reynolds 

number of (10-800) by solving the Navier-Stokes equations using a finite element 

discretization. Neary et. al. 
[6]

 developed numerical model for predicting a three-dimensional, 

steady, turbulent flows through lateral intakes for rectangular T-junctions. The flow field was 

discretized using Reynolds-averaged Navier-stokes equations closed with the isotropic (k-ε) 

turbulence model of Wilcox on a non-staggered mesh by using a finite difference formulas.  

The main objective of the present investigation is to predicate the effect of changing the 

area ratio (AR), curvature radius at the junction point between manifold and lateral (R), and 

the space between each two consecutive laterals (l), on flow distribution along manifold pipe 

that divides flow to five consecutive short length laterals. Each lateral is oriented at ninety 

degree to manifold axis and in square-edged, uniform spacing between laterals. 

 

2. Mathematical Formulation 
 

 Governing Equations  

The flow is assumed to be two dimensional, steady, incompressible and constant 

laminar viscosities. Therefore, the mean flow is assumed to satisfy the incompressible  

Navier-Stokes equations with an eddy viscosity. A set of the differential equations which are 

commonly used to depict the flow under prescribed conditions can be presented in a general 

form.  
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Equation (1) is called the general transport equation. The argument   identifies the 

dependent variable,  is the diffusion coefficient for variable . The two terms on the       

left-hand side are the convective terms; the first two terms on the right-hand side are the 

diffusive term, and the last term is the source term. The source term includes both the source 

of   and any other terms that cannot find place in any of the convection or diffusion terms. 

The governing differential equations in engineering problems are generally derived in 

Cartesian (i.e. rectangular) coordinate systems. Finite difference methods for solving 

differential equations require that continuous physical space is to be discretized into a uniform 

orthogonal computational space.  

Difficulties associated with the use of Cartesian coordinate system motivate the 

introduction of a transformation from physical (x, y) space to a generalized curvilinear 

coordinate (ξ, η) space. The final complete transformed form of the conservative general 

transport equation for property ø can be written, as follows:  

 

totalS)2aJ()1aJ()2G()1G( 
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










  ......................... (2) 

 

where:  

Stotal: represents the total source term  

 

 ,y,xtotal SSJS  ................................................................................................ (3) 

 

3. Discretization Method  
 

The finite-volume method of Patankar 
[7]

 will be used for the discretization of the 

conservative form of the governing equations. The calculations domain is divided into a 

number of non-overlapping control volumes surrounding each grid point Fig.(2). Then, the 

governing equations can be integrated over discrete control volume in the computational 

space. Final discretized algebraic equation for property   is given by the following:  

 

  totalnbnbPP SAA ................................................................................ (4) 
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Figure (2) Control volume arrangement for general variable 

 
The boundary conditions that required for the solution of equation (4) as shown below 

Fig. (3).   

 

Figure (3) Two-dimensional manifold geometry 

 
1. Inlet boundary condition. The distribution of all flow variables are specified at inlet 

boundaries (the line I=1 or i=2 for u  velocity). An approximation for the inlet distribution 

for k and ε as given below:  

 

2

iin
)Tu(

3

2
k  ....................................................................................................... (5) 

 



23
43 k

C  .......................................................................................................... (6) 

 

L07.0  ............................................................................................................. (7) 

 

Inlet  

 

L=16 m 

Outlet  
 



Journal of Engineering and Development, Vol. 12, No. 4, December (2008)        ISSN 1813-7822 

 

 165 

where:  

L: is equivalent hydraulic diameter,  

C : is a universal constant, 0.09,  

 : is the length scale of turbulence and  

Ti: turbulence intensity.   
 

2. Outlet Boundary Conditions. The gradient of all variables at the outlet are specified equal 

to zero. 

3. Wall Boundary Conditions. The optimum near wall relationships for the standard k-ε model 

from extensive computing trials Versteeg and Malalasekera 
[8]

, are implemented as follows.   
 

 Momentum equation tangential to wall  

Wall shear stress:     

 



 uuKC P

21

P

41

w
............................................................................................ (8) 

Wall force:       

 

cellP

21

P

41

cellws A)uuKC(AF


  .............................................................. (9) 

 

 Momentum equation normal to wall  

Normal velocity =0  
 

 Turbulent kinetic energy equation  

Net-k source per unit volume =
P

23

P

41

Pw y)uKCu(  


................... (10) 

 

 Dissipation rate equation 

Set nodal value: 

 

)yK(KC P

23

P

43

P  
 ....................................................................................... (11) 

 

where:  

Acell: is the wall area of control volume.  
 

These relationships should be used in conjunction with universal velocity (u
+
) for near 

wall turbulent flows:  

 

)y(ln
1

u
 


  ................................................................................................... (12) 

 

The SIMPLE algorithm of Patankar and Spalding 
[9]

, is adopted in this current work. 

The govering equation was solved using upwind differences scheme, and the solution is 

repeated until convergences achieved. 
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4. Result and Discussion 

 

4-1 Manifold Geometry 

The geometry under consideration is a short manifold pipe (L/D ≤10) of Al-Rasafa 

pumping station that divides flow to five consecutive laterals. Each lateral is oriented at ninety 

degrees to the manifold and is square-edged. At the inlet of manifold, the flow rate is taken as 

(Q=3.7 m3/sec) and has dead end, as shown in Fig.(3).  

Owing to the complex geometry of the manifold, the computational grid should be 

selected carefully so that it could be dense in a region where high gradients occur and/or near 

the wall boundary. The grid is generated by solving an elliptic partial differential equations, 

where the numerical computation is performed on (222*50) grid nodes in x and y directions 

respectively. 

 

4-2 Influence of Area Ratio 

The influence of area ratio, can be divided into three cases, and for each case different 

diameters of manifold (D=1400, 1600, 1800mm) and for laterals (d=500,750,800,900 mm) 

have been examined to predict their effect on flow distribution along the manifold pipe. The 

flow distribution for different cases analysis is as follows:  

 Case 1 

Figures (4) and (5) show the streamlines contour and velocity vectors of flow through 

manifold pipe for different area ratios (A.R=0.6, 1.4, 1.6, 2), by keeping the manifold 

diameter constant (D=1400mm) and different diameters of lateral pipes 

(d=500,750,800,900mm) respectively. It becomes obvious from Fig.(4), that one recirculation 

zone can be seen clearly at left wall of each lateral pipe (from first to fourth lateral), while the 

recirculation zone of the last lateral is formed at the right wall, and one recirculation zone will 

be formed at the junction point between  manifold and Last lateral pipe. The size of the lateral 

recirculation zones will be decreased along the manifold pipe. It is well evident that the 

increase in area ratio (from 0.6to 2), produces an increase in the size of lateral recirculation 

zones.  

Figure (6) shows the pressure distribution along manifold pipe. It can be seen that the 

pressure increase along the center-line of manifold pipe. 
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Figure (4) Contours of streamline for manifold of diameter D=1400mm,  
and lateral diameters (d=500,750,800,900mm), R=0.0001m 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (5) 
Velocity vectors for manifold of diameter D=1400mm, and lateral                   

diameters (d=500,750,800,900mm) respectively, R=0.0001m 
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Figure (6) Pressure contours for manifold of diameter D=1400mm, and lateral 
diameters (d=500,750,800,900mm), R=0.0001m 

From Fig.(7), it is noticed that the center-line velocity will decrease along manifold pipe 

due to the change in flow rate along the manifold pipe, and when area ratio increases (from 

0.6to2), the center-line velocity of manifold increases in values (but decrease remains along 

manifold pipe), in accordance with Bernoulli's theorem. This tends to increase the fluid 

pressure along the manifold pipe.  
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Figure (7) Velocity distribution at centerline of manifold for different area ratio 

 

Figure (8) shows the predicated distribution of flow along manifold for different area 

ratios. The results show, at A.R=0.6, about 29.5% from total flow is discharged from last 

lateral pipe and about 10.5% from total flow is discharged from first lateral pipe. At A.R=1.4, 

about  35% from total flow is discharged from last lateral and 7.75% is discharged from first 

lateral pipe .At A.R=1.6, about 37.5% from total flow exit from last lateral and about 7% exit 

from first lateral , finally at A.R=2 , 41.5% from total flow discharged from last lateral and 

5.5% from first lateral. The disparities of flow distribution grow greater as the area ratio 

increase above unity (A.R=1).These predictions are very similar to those reported by Hudson 

H. E. et. al. 
[4]

.  
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Figure (8) Discharge distribution along manifold length for different area ratio 
Figure (9) illustrates the skin friction distribution at the wall of manifold pipe, where 

the maximum value of friction factor is (Cf=0.011) at A.R=0.6, finally, at A.R=2, the 

maximum value of friction factor is (Cf=0.095), then it is found that the value of skin friction 

factor at the wall of manifold decreases as area ratio increases. Finally, for cases 2&3 we get, 

as area ratio decrease (less than unity), may help to make the flow distribution in lateral pipes 

as uniform as possible. In addition, the pressure will be increased along the centerline of the 

manifold pipe, and the value of friction factor decreases as area ratio increases. 
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Figure (9) Skin friction distribution at wall of manifold for different area ratio 

 
4-3 Influence of the Curvature Radius:  

Figures (10 to 14) represent the effect of changing the curvature radius at the junction 

points on the properties and behavior of flow through manifold pipe, by taking different 

values of curvature radius (R=50,150,250,400 mm) respectively, with different area ratios 

(A.R=0.85, 1, 1.25). It is noticed that the recirculation zones in the last two lateral pipes 

disappear drastically as the curvature radius increases from (50 to 400mm), as shown in 

Fig.(10). Figure (11) show the velocity vector of flow through manifold pipe for different 

Figure (7) Velocity Distribution at 

Centerline of Manifold for 

Different Area Ratio. 
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curvature radius. It can be seen from Fig.(12) that the centerline velocity will decrease along 

manifold pipe. It becomes obvious that the influence of this factor (R=50,150,250,400 mm) 

makes the flow distribution along the manifold pipe not uniform. This is noticeable by the fact 

the discharge increases along the manifold pipe, in addition to the rounding entrance of lateral 

pipes. At (A.R=0.85, R=50mm) about 32% from total flow is discharged from last lateral and 

8.25% is discharged from first lateral, while at (A.R=0.85, R=400mm) about 39% is 

discharged from last lateral and about 3.5% is discharged from first lateral, the disparities 

increase as area ratio increase from (0.85 to 1.25) as shown in Fig.(13). From Fig.(14), it can 

be seen, the value of friction factor decreases as the curvature radius increases. 
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Figure (10) Contours of streamline for (A.R=0.85), with different  
curvature radius (R=50,150,250,400mm) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure (11) Velocity vectors for manifold of diameter D=1800mm, and lateral 
diameter d=750mm, with different curvature radius (R=50,150,250,400mm) 
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Figure (12) Velocity distribution at centerline for different curvature radius 
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Lateral Pipes

D
is

c
h

a
rg

e

1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6 (R=50mm)

(R=150mm)

(R=250mm)

(R=400mm)

 
Figure (13) Discharge distribution along manifold  

for different curvature radius 
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Figure (14) Skin friction distribution at the wall of manifold  

for different curvature radius 

 
4-4 Influence of the Space between Lateral Pipes:  

Figures (15 to 20) shows the effect of an increase in the space between each two 

consecutive lateral pipes on the properties and behavior of flow inside manifold pipe, where 

different values of the space have been examined (l=1.5, 2.5,4 m) respectively, with constant 

area ratio (A.R=1). It is well evident that the increase in the space between lateral pipes 

produces a decrease in the size of lateral recirculation zones, as shown in Fig.(15).         

Figure (16) show the velocity vector distribution along manifold pipe. From Fig.(17), it is 

found that the pressure increases along the center-line of the manifold pipe. Figure (18) 

shows the velocity distribution at centerline of manifold. The flow distribution for (l=1.5m) in 

Fig.(19) is found 30% from total flow discharged from last lateral and about 10% is 

discharged from first lateral, while at (l=4m) about 28.5% from total flow is discharged from 



Journal of Engineering and Development, Vol. 12, No. 4, December (2008)        ISSN 1813-7822 

 

 173 

0

1300

0

1300

0

14
00

0

1400

0

1
5
0
0

1418.21

1437.8

1460.16

1460.16

1300

1300
1460.16

1400

1437.8

1437.8

0

1290.01

0

12
90

.0
1

0

1300

0

1400

1
5

0
0

1
5
0
0

1400 1400

1421.56

1442.39 1456.56
1290.01

1290.01

1456.56

1442.39

1421.56

1421.56

0

1200

0

1200

0

1200

0
1
2
0
0 6
0
0

1
2
0
0

1422.18
1422.18

1388.89

1442.7 1442.7

1453.77

1422.18 1388.89 600

1000

1442.7

1388.89

1442.7

last lateral and 10.5% is discharged from first lateral. Then it is found that the disparities in 

the flow distribution along the manifold pipe decreases as the space increases. Figure (20) 

represents the friction factor distribution along the manifold pipe, whereas the value of 

friction factor increases as the space between lateral pipes increases. 

 

 

 

 

 

 

 

 
 

Figure (15) Contours of streamline for (A.R=1), with different space  
between laterals (l=1.5, 2.5,4 m) respectively 

 

 

 

 

 

 

 

 

 

 
 

Figure (16) Velocity vectors for manifold of (A.R=1), with different space 
between laterals (I=1.5, 2.5,4 m) respectively 

 

 

 

 

 

 

 

 

 

 

 

Figure (17) Pressure contours for manifold of (A.R=1), with different space 
between laterals (l=1.5, 2.5, 4 m) respectively 
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Figure (18) Velocity distribution at center-line of manifold for different  

space (l=1.5, 2.5,4 m) respectively, (A.R=1), R=0.0001m 
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Figure (19) discharge distribution along manifold length for different 

space (l=1.5, 2.5,4 m) respectively, (A.R=1), R=0.0001m 
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Figure (20) Skin friction distribution at the wall of manifold for different  
space (l=1.5, 2.5,4 m) respectively, (A.R=1), R=0.0001m 

   

5. Conclusion Remarks 
 

In this work, a successful numerical model based on staggered FVM has been developed 

for the calculation of two-dimensional incompressible turbulent flow through manifold pipe 

that divides flow to five consecutive lateral pipes. The influence of several factors on the flow 

distribution along manifold pipe such as area ratio (A.R), curvature radius (R), and space 

between laterals (l) is clarified. It is concluded that the area ratio has evident influence on 

flow distribution along manifold pipe, where the percentage of last lateral flow will be 

decreased, while the percentage of first lateral flow increases as area ratio becomes less than 

unity (A.R<1), and this condition applies for short manifold (L/D≤10). For shorter manifold, 

the discharge distribution along the manifold pipe is far from uniform, even if area ratio is less 

than unity, as well evident by the change in the configuration of junction point (from sharp-
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edged to rounded).As space between each two consecutive laterals is increased, the variation 

in discharge decrease slowly. 
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Nomenclature 
 

 Coordinate transformation coefficient a1, a2, b1 

 Combined diffusion-convection coefficient A 

 Constants in the k-ε model 21,,  CCC  

kg/s Diffusion term D 

 Constant used in the low of the wall E 

kg/s Convection term F 

 Production term of kinetic energy kG  

 Contravariant velocity components G1,G2 

 Determinant of jacobian of transformation J  

m2/s2 Turbulent kinetic energy K 

m Characteristic length L 

 Source term S 

 Turbulent intensity iT  

m/s Cartesian velocity components u,v 

 Covariant velocity components  uu ,  

M Cartesian coordinate x,y 

m3 Volume of control unit   

 Diffusion coefficient   

m2/s3 Dissipation rate of turbulent kinetic energy   

 Von Karman constant   

 Curvilinear coordinate  ,  

kg/m3 Density   

N/m2 Wall shear stress w  

 Dependent variable   

 Abbreviation of neighboring nb  


