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Abstract

The ball-on-plate balancing systems present a challenging design problem. In this
study, the ball on plate balancing system has been analyzed. The main objective is to find a
controller capable of controlling the ball position, and to tracking a certain preset
complicated paths with precision and accuracy.

Two techniques are implemented in the design of this controller, full state feedback
and output feedback. One of the modest methods is the Direct Eigenstructure Assignment,
which is used for the first time in this study using MATLAB.

It has been shown that both regulation and tracking can be implemented in the Direct
Eigenstructure Assignment algorithm with ease. The results show that the overall method is
very quick and simple to use.
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1. Introduction
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The ball-on-plate balancing system shown in Fig.(1) is a complex multivariable control
to the assumptions when the mathematical model is derived, and thus the model is
approximated, some of the states of the system are decoupled from each other, so the system
becomes as two SISO systems 2. A new technique known as Eigenstructure Assignment is
presented here. This technique helps the designer to keep the states or outputs of the system
uncoupled, even when these states are coupled (if some of the neglected quantities are
considered). So, this approach generates decoupled motion, which can be used to improve
path tracking and accuracy. The gain obtained is not a function to motion condition only, but
also to the mode selected !, The Direct Eigenstructure Assignment (DEA) method allows
designers to shape the closed-loop response by choice of desired eigenvalues and
eigenvectors. During this design effort DEA has been demonstrated to be a useful technique
for aircraft control design. The control laws developed using DEA have demonstrated good
performance, and robustness during simulations .

Figure (1) Ball on plate balancing system "

S. A. and Craig ™ discussed the conceptions and development of a ball on plate
balancing system. Realization of the design is achieved with the simultaneous considerations
toward constraints like cost, performance, functionality, extendibility, and educational merit.
G. Andrew et. al. @ described the proposed design and development strategy for
implementing a control system to balance a ball on a plate. A pan-tilt device is placed on its
side so as to create a tilt-tilt mechanism capable of moving a ball within an X-Y plane as
shown in Fig.(2). Dynamic modeling of this system allows the creation of a digital controller
capable of placing the ball at certain locations or following a preset path. The project goal is
to create a system capable of moving the ball at a rapid rate of speed in any of several
predefined complex paths with precision and accuracy. L. F. Faleiro and R. W. Pratt [*!
examined the use of eigenstructure assignment in the design of an aircraft stability
augmentation system. It is seen that a static gain eigenstructure assignment controller itself
may be insufficient if only a small number of outputs is available for measurement. J. W.
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Choi B! presents that the problem of eigenstructure assignment (simultaneous assignment of
eigenvalues and eigenvectors) is of great importance in control theory and applications
because the stability and dynamic behavior of a linear multivariable system are governed by
the eigenstructure of the system. In general, the speed of response is determined by the
assigned eigenvalues whereas the shape of the response is furnished by the assigned
eigenvectors.

Figure (2) CAD model of a tilt-tilt mechanism @

2. Mathematical Model of the System

2-1 The State Differential Equation and System Modiling

The state of a system is described by the set of first-order differential equations written
in terms of the state variables (X, Xa,..., Xn). These first-order differential equations can be
written in matrix form as:

The outputs of a linear system can be related to the state variables and the input signals
by the output equation, see Fig.(3).

Figure (3) Block diagram description of dynamic relations
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The linearized differential equations of the ball-on-plate balancing system shown in
Fig.(1) ™ are:

7 . 7 .
gxb +(grb+h)(12:9%
e et eeeeaneettteeatteeateaatteeaateeaa—eeaa—eereteeareeeareeaares (3)

7. (7 3
gyb—(gmh]qf—gql

The transfer function of the state-space system (output to input relation) G(s) is equal
to [°:

G(S) = C (SI-A) T BHD oot )

Note that if the degree of the numerator of the transfer functions G(s) is equal to the
degree of the denominator then a constant term can be split off first, which becomes the
matrix D. Then EQ.(2) becomes:

D: transmission matrix, pxm.

Hence, for the system under consideration, the variables that can be measured are the
position of the ball in the x,y directions, angular displacement and velocity of the motor and
the plate.

The state variables are assumed to be:

5 . 5 .
u,=4q,, u =4q,, X1=Xb+(rb+7h)u2 1 Xy =X 1X3:yb_(rb+7h)ul » Xy =Xy

Sub these states into Egs.(3), then,
s X, =7u, Or Xx,=7u,, X, =-7u, Or X, =-7u,

2-2 Controllability and Observability
The system (A, B, C, D) is controllable if and only if the rank of the matrix:

C=(B, AB, A’B... A"B) iS€qUAI t0 N oveeeveeeeeeeere e (7

and the system is observable if and only if the rank of
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-

C
CA

Q={CA? b iSEOUAITO N c.oveveeeecceeecee et (8)

LCA”_lJ

The matrices C and Q are called controllability and observability matrices,
respectively .

2-3 Feedback Control Theory

2-3-1 Controller Design with Output Feedback
Let a multivariable system be described by the state equations (Egs.(1,5)), where y and u
are mx1 vectors. The plant matrix relating the output Y (s) to the control U(s) is given by:

G,(S)=C(SI=A) B4 D e (9)
a compensator matrix G(s) is designed, so that

Y(S) =G ,(S)G(S)M(S) evviiiiiiiisiiiic s (10)
The matrix G(s) is chosen such that G (s) G(s) is a diagonal matrix.

2-3-2 Controller Design with State Feedback
Figure (4) shows the block diagram of state feedback controller

Reference . u(t) X(t l y(
r(t)

______________

Figure (4) Block diagram description of state feedback
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The following equation is only needed:

and K is selected accordingly.
Combining egs.(1) and (5) with eq.(10) the following is obtained:

e (N =1 D = (12)

it is clear that the state feedback matrix is:

therefore, the characteristic equation of the system is:
IST= (A =BK)|[Z 0 oo (14)

By equating the coefficient of the determinant with the desired roots, the controller will
be obtained.

2-4 Eigenspace (Eigenstructure) Method
The system outputs are ™:

y(t) = Ce™x(0)+ j CeMIBU(TIOT oo (15)

And the system dynamic matrix A can be represented by:

A S VAV T VAL oottt anee (16)

Equation (13) can then be expressed as:

n n t
y(t) =Y Cvie" 1x(0)+ Y Cv, [ PUBUTIIT v (18)
j=1 i=1 0
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2-5 Direct Eigenspace Assignment Formulation For State Feedback

2-5-1 The Control Problem
Simple EA can be used to produce a (m x n) static state feedback controller K, where

u X X y
» B | cC +—
+
A
K

Figure (5) Basic state feedback regulator

From Egs.(1,5,19), x=(A-BKk)x,

Let a set of p desired self-conjugate eigenvalues and eigenvectors that define the
behavior of the desired dynamic modes of the closed-loop system be defined by:

and,

Where the closed-loop system eigenstructure can be given by

(A=BK)V = VA covoooeeeseeeeeeeeeeoosseesssesssssseesesssssssssssesssessssssssssseessessssseeees (23)

Hence, if a set of desired eigenvalues A, and a set of final eigenvectors V are defined,

then Eq.(23) can be used to find the feedback gain K that will give this eigenstructure in the
closed-loop system 1.
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2-5-2 Determination of a Feedback Gain Matrix

As shown in Egs.(20) to (23), the matrix equations that describe the system can be
rearranged to give an expression for the feedback gain matrix K, given an achievable set of
right eigenvectors, V:

= T (- NN e (24)

2-6 Direct Eigenspace Assignment Formulation for Output Feedback
Given the observable controllable system of Eq.(1) with system measurements given by
Eq.(5), the total control input is u. The measurement (output) feedback control law is:

Solving for u as a function of the system states:
USKCXFKDU oot (26)
T I 0] [ SO OO (27)

The system augmented with the control law is given by:

X = Ax+ B([I - KD]™"KCx)

............................................................................ (28)
- X=(A+B[l -KD]"'KC)x
The spectral decomposition of the closed-loop system is given by:
(A+B[l =KDT KC)V, Z AV cooeeiieieeeceeeeeie e, (29)

For i = 1,..,n where 4, is the i system eigenvalue and v; is the associated i™ system

eigenvector. Let w; be defined by:
W, =1 = KDTEKCV, oottt (30)
Substituting this result into Eq.(29) and solving for v; one obtains:
Vi = AT = ATEBW, e (31)
Values of w; that yield an achievable eigenspace that is as close as possible in a least

square sense to a desired eigenspace can be determined by defining a cost function associated
with the i"™ mode of the system:
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ji= %(vai — Vi) Qi (Vai = Vi) ovrrereirmeireeiseissies s (32)

for i = 1,...,| where v, is the i achievable eigenvector associated with eigenvalue A, Vi is the
i™ desired eigenvector, and Qgi is an (nxn) symmetric positive semi-definite weighting
matrix on eigenvector elements. This cost function represents the error between the
achievable eigenvector and the desired eigenvector weighted by the matrix Qg;. Values of w;
that minimize J; are determined by substituting Eq.(31) into the cost function for v,. Taking
the gradient of J; with respect to w;, setting this result equal to zero and solving for w;, this
yields:

w;, = [LE‘QdiLi]‘1 LTQdivdi .................................................................................. (33)
where,

Y N R = Y (34)

and A, is the i desired eigenvalue of the closed-loop system. Note in this development that
Aq cannot belong to the spectrum of A.

By concatenating the individual wi's column-wise to form W and v,'s column-wise to
form V,, Eq.(28) can be expressed in matrix form by:

W =]l = KD]T ' KCV, oot (35)

The feedback gain matrix that yields the desired closed-loop eigenvalues and achievable
eigenvectors is given by:

K = WICV, + DWT™ oot (36)

3. Results

3-1 Controllability and Observability

The system must be checked if it is controllable and observable or not. This is done by
checking the rank of Egs.(7, 8). By using MATLAB, it is found that n is equal to four.

The rank of Q and C is equal to the number of states. i.e. the system is controllable and
observable.
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3-2 System Transfer Function
The transfer function of the open loop state-space system G(s) is found by applying
Eq.(4):

7—(r, + Eh)s2
0 -
5. G(s)= . S s (37)
—7+(r, + = h)s?
!/ 0
| s? |
7—(rb+?h)s2 —7+(rb+§h)s2
501=0,=0, 0,= 2 y Uy = 2 (38)

3-3 Stability of the System
Let, h=3 cm,r, =1.36 cm, By substituting these values in Eq.(37), then:

9 7 —0.035s>
2
- G(s) = S e, 39
s) —7+0.035s° (39)
— 0
S

the roots are: s, =s, =s; =s, =0

The roots lie at origin, i.e. at a critical unstable point, see Fig.(6), then the system is
unstable.
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Figure (6) Open loop poles and zeros of the system
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Using MATLAB "1 a time response plot for a unit step input can be obtained. See
Fig.(7).

Unit Step Response
U; prese U,

Xb

Displacement
-

Yb

0 0.2 0.4 0.6 0.5 10 0.2 0.4 0.6 0.3 1
Time (sec)

Figure (7) Time response to a unit step input of the open loop system

3-4 Control Design Techniques

3-4-1 State Feedback
This method is applicable to SISO systems. The system is decoupled into two systems,
i.e. each input affects one of the outputs as shown in Fig.(8).
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Figure (8) Open loop MIMO system decoupled into two SISO systems
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3-4-2 Controller Design
Figure (9) shows the system with the controller then:

.035 l
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10129 |4
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r C L e fjm [ O
0.62857
1.0129 |«

Figure (9) Block diagram of the two SISO systems with the controllers

By using MATLAB, The s-plane of the closed loop poles and zeros is obtained, and the
time response plot to a unit step input is also obtained to each one of the two systems
separately, see Figs.(10,11).
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Figure (10) Closed loop poles and zeros of the system
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Figure (11) Time response to a unit step input (state feedback)

3-4-3 Output Feedback
The controller obtained by this method is based on feeding back all the outputs with
constant gains, see Figs.(12,13).
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Figure (12) Block diagrams of the output feedback of the two SISO systems
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Figure (13) Time response to a step input of the output feedback
of the two systems

3-5 Eigenstructure Method for Full State Feedback
3-5-1 Eigenvalue Requirements

The desired eigenvalues are determined by their trigonometric relationship to damping
ratio and frequency, as shown in Table (1).

Table (1) Determination of the desired eigenvalues

Minimum .. :
Mode Damping Minimum (_)pen-loop DeS|r_ed closed-loop
. frequency | eigenvaluse eigenvalues
ratio
First mode 0.826 2.66 8 —-2.2+15j
Second mode 0.826 2.66 8 —2.2+15j

The open-loop poles and zeros, and the desired closed-loop eigenvalues are shown in
Fig.(14).
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Figure (14) Open-loop and closed loop poles and zeros
3-5-2 Mode-state Coupling Vector Requirements

Table (2) shows the modes of the system. For a stability augmentation system, it is
desirable to keep x; and x, uncoupled from each other.

Table (2) Mode state coupling vectors of the open loop system

States First Mode | Second Mode
X1 1 1 0 0
Xo X X X X
X3 0 0 1 1
X4 X X X X

3-5-3 Choice of Desired Eigenvectors

=

N

If the linearized equations of the system are considered, and the state vector is, x =

X X X X
[

4
There are 4 states and 2 inputs in this system. This implies freedom to assign 4
eigenvectors and decouple one element in each eigenvector, coupling any of the remaining
elements. Therefore, with this assignment, all the freedom available to specify the closed-loop
eigenvectors is used up, and so the desired eigenstructure will be achieved exactly.
Then, a good choice of closed loop eigenvectors might be:
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1 X 0 0

X 1 X X

0 0 1 X | et ——————————— (40)
X X X 1
vV, Vv, VvV, vV,

3-5-4 Direct Eigenstructure Assignment (DEA) Design (State Feedback)
The time response of the open loop system to a step input is shown in Fig.(7), the time

response to a unit step input of the closed loop system is shown in Fig.(15), and to impulse
input in Fig.(16).
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Figure (15) Step response to unit step input for the MIMO system

Fram: ul Fromuz

14

Tar xh

Tooyh

15 L L L L
a 1 2 30 1 2 3
Time (=ec)

Figure (16) Response to unit Impulse input for the decoupled MIMO system
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3-6 Eigenstructure Method for Output Feedback

3-6-1 Eigenvalue Requirements
The performance requirements can be translated into the required position of the
closed-loop poles of the system, and hence the desired eigenvalues are as shown in Table (3).

Table (3) Determination of the desired eigenvalues

Mode I\D/I;r:rl]m#]m Minimum | Open-loop | Desired closed-loop
ping frequency | eigenvaluse eigenvalues
ratio
First mode 0.8 2.66 8 —-2.2+15j
Second mode 0.8 2.66 8 —-2.2+15j

3-6-2 Mode-Output Coupling Vector Requirements

There are 4 states and 2 inputs in this system. This implies freedom to assign 2
eigenvectors and decouple one element in each eigenvector, coupling any of the remaining
elements. Therefore, the desired eigenstructure may not be achieved exactly. From Table (4),

it can be seen that x, is decoupled from x, and is equal to one when x, is zero at the first
mode, and X, is equal to one when ¥, is zero for the second mode.

For a stability augmentation system, it is desirable to keep x, and y, uncoupled from
each other. x, represents x, with the aid of the input, and x, represents y, with the aid of
the input. Thus, the state coupling vectors are chosen such that x, is decoupled from the first

mode, and X, is decoupled from the second mode so that any correction in displacement in
one direction will not affect the other.

Table (4) Mode state coupling vectors of the open loop system

States First Mode | Second Mode
X1 1 0
X2 X X
X3 0 1
X4 X X

The time response to a unit step input of the closed loop system is shown in Fig.(17),
and to impulse input in Fig.(18).
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Figure (17) Response to unit step input for the output feedback system
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Figure (18) Response to unit impulse input for the output feedback system

The original idea for the ball on plate system for Greg Andrews ! is from the Labyrinth
game Fig.(19). Therefore, the system will be checked to follow a similar path to the path of
the game. Figure (20) is a schematic diagram to the game top surface, which shows that the
line represents the path.
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Figure (20) Top surface with the path line of the Labyrinth game

The time response for the system for this path is shown in Fig.(21), the xp,y;, plot for the
desired and simulated paths are shown in Figs.(22,23). The difference between them due to
neglecting some parameters such as friction.

Desired path
= Simulated path

Figure (21) Time response to the desired and simulated paths
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_4
@l
.
al
@l
—

Figure (23) Simulated xb, yb path of the Labyrinth game

4. Conclusions

The main conclusions are:
1. EA can be used for regulation which can be implemented in the DEA algorithm easily. The
resulting overall method is very quick and simple to use.
2. Eigenstructure analysis adds a measure of system dynamics that can enhance a designer’s
understanding of some of the interactions of the system, beyond classical techniques.
3. The strength of eigenstructure analysis lies in its stability to describe input-mode-output
instruction easily.
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Matrices, Vectors and Variables

h Displacement between plate and U-joint center (m).
J Performance index.

L Left eigenvector "inverse of V".

l the i row of L.

p Number of system outputs.

p transformation matrix in DEA.

q, Velocity in the r-direction (m/s).

u System input vector.

vV Matrix of right eigenvectors.

v Right eigenvector.

X System state vector.

x Unspecified component of desired vector.
y System output vector.

Al Eigenvalue matrix.

A, i" eigenvalues.

n, Displacement in the r-direction (m).

v Velocity of the ball (m/s).

113



Journal of Engineering and Development, Vol. 12, No. 4, December (2008) ISSN 1813-7822
System Variables

I, Mass moment of inertia (Kg.m?).

m, Mass of the ball (Kg).

q, Angle of rotation of the plate about x-axis (rad.).
a, Angle of rotation of the plate about y-axis (rad.).
r, Radius of the ball (m).

Abbreviations

MIMO Multi-Input, Multi-Output
SISO Single-Input, Single-Output
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