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Theoretical Design of a Ball Balancing on Plate Controller 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract 
 

The ball-on-plate balancing systems present a challenging design problem. In this 

study, the ball on plate balancing system has been analyzed. The main objective is to find a 

controller capable of controlling the ball position, and to tracking a certain preset 

complicated paths with precision and accuracy.  

Two techniques are implemented in the design of this controller, full state feedback 

and output feedback. One of the modest methods is the Direct Eigenstructure Assignment, 

which is used for the first time in this study using MATLAB.  

It has been shown that both regulation and tracking can be implemented in the Direct 

Eigenstructure Assignment algorithm with ease. The results show that the overall method is 

very quick and simple to use. 

                       

 

 
 ةـــــــلاصـالخ

تمثل منظومة الاتزان للكرة على السطح المستوي مشكلة و تحدي تصمٌمً. فً هذه الدراسة، تم تحلٌل هذه 
المنظومة، إن الهدف الرئٌسً لهذه الدراسة هو إٌجاد مسٌطر قادر على السٌطرة على موقع الكرة، وإن ٌكون قادراً على 

 ا  بدقة عالٌة.جعل الكرة تتبع مسارات معقدة ٌتم تحدٌده
، والتقنٌة الثانٌة هً      (Full State Feedback)تم استخدام تقنٌتٌن لتصمٌم هذا المسٌطر ، التقنٌة الأولى هً 

(Output Feedback) ولكل من هذه التقنٌات عدة طرق للحل تصف تطور الستراتٌجٌة المستخدمة لإتمام تصمٌم ،
 (Eigenstructure Assignment)ي. إحدى طرق الحل هذه هً طرٌقة المسٌطر لموازنة الكرة على السطح المستو

التً لم ٌتطرق لها الباحثون الآخرون فً هذه الدراسة تفصل الطرٌق لتصمٌم المسٌطرات للأنظمة المختلفة بأستخدام 
 .    MATLABوالتً تمت برمجتها بإستخدام لغة البرمجة  (Eigenstructure Assignment)طرٌقة 

ٌمكن أن ٌنفذ بطرٌقـة                                                                                  (Tracking and Regulating)التوضٌـح بأن كلًا من لـقد تم 
(Direct Eigenstructure Assignment)   بكل سهولة . وعلٌه فإن هذه الطرٌقة تمتاز بأنها سرٌعة و سهلة

 الاستعمال.
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The ball-on-plate balancing system shown in Fig.(1) is a complex multivariable control 

to the assumptions when the mathematical model is derived, and thus the model is 

approximated, some of the states of the system are decoupled from each other, so the system 

becomes as two SISO systems 
[1,2]

. A new technique known as Eigenstructure Assignment is 

presented here. This technique helps the designer to keep the states or outputs of the system 

uncoupled, even when these states are coupled (if some of the neglected quantities are 

considered). So, this approach generates decoupled motion, which can be used to improve 

path tracking and accuracy. The gain obtained is not a function to motion condition only, but 

also to the mode selected 
[3]

. The Direct Eigenstructure Assignment (DEA) method allows 

designers to shape the closed-loop response by choice of desired eigenvalues and 

eigenvectors. During this design effort DEA has been demonstrated to be a useful technique 

for aircraft control design. The control laws developed using DEA have demonstrated good 

performance, and robustness during simulations 
[4]

. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure (1) Ball on plate balancing system [1] 

 
S. A. and Craig 

[1]
 discussed the conceptions and development of a ball on plate 

balancing system. Realization of the design is achieved with the simultaneous considerations 

toward constraints like cost, performance, functionality, extendibility, and educational merit.    

G. Andrew et. al. 
[2]

 described the proposed design and development strategy for 

implementing a control system to balance a ball on a plate. A pan-tilt device is placed on its 

side so as to create a tilt-tilt mechanism capable of moving a ball within an X-Y plane as 

shown in Fig.(2). Dynamic modeling of this system allows the creation of a digital controller 

capable of placing the ball at certain locations or following a preset path. The project goal is 

to create a system capable of moving the ball at a rapid rate of speed in any of several 

predefined complex paths with precision and accuracy. L. F. Faleiro and R. W. Pratt 
[3]

 

examined the use of eigenstructure assignment in the design of an aircraft stability 

augmentation system. It is seen that a static gain eigenstructure assignment controller itself 

may be insufficient if only a small number of outputs is available for measurement.  J. W. 
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Choi 
[5]

 presents that the problem of eigenstructure assignment (simultaneous assignment of 

eigenvalues and eigenvectors) is of great importance in control theory and applications 

because the stability and dynamic behavior of a linear multivariable system are governed by 

the eigenstructure of the system. In general, the speed of response is determined by the 

assigned eigenvalues whereas the shape of the response is furnished by the assigned 

eigenvectors. 

 

 
 

Figure (2) CAD model of a tilt-tilt mechanism [2] 

 

2. Mathematical Model of the System 

 

2-1 The State Differential Equation and System Modiling 

The state of a system is described by the set of first-order differential equations written 

in terms of the state variables (x1, x2,…, xn). These first-order differential equations can be 

written in matrix form as: 

 

BuAxx  ………………………………………………………………… (1) 

 

The outputs of a linear system can be related to the state variables and the input signals 

by the output equation, see Fig.(3). 

 

Cxy   ……………………………………………………………………… (2) 

 

 

 

  

 

 

 

Figure (3) Block diagram description of dynamic relations 
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The linearized differential equations of the ball-on-plate balancing system shown in 

Fig.(1) 
[1]

 are: 
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……......................................................................... (3)

         

 

The transfer function of the state-space system (output to input relation) G(s) is equal   

to 
[6]

:

  

G(s) = C (sI-A)
-1 

B+D ....................................................................................... (4) 

 

Note that if the degree of the numerator of the transfer functions G(s) is equal to the 

degree of the denominator then a constant term can be split off first, which becomes the 

matrix D. Then Eq.(2) becomes: 

 

DuCxy  ....................................................................................................... (5) 

 

D: transmission matrix, mp . 
 

Hence, for the system under consideration, the variables that can be measured are the 

position of the ball in the x,y directions, angular displacement and velocity of the motor and 

the plate.  

The state variables are assumed to be: 

22 qu  ,  11 qu   , 2bb1 u)h
7

5
r(xx   , 12 xx   , 1bb3 u)h

7

5
r(yx   , 34 xx   

Sub these states into Eqs.(3), then,    

21 u7x      Or   22 7ux  ,      13 7ux    Or   14 7ux    

 

2-2 Controllability and Observability 

The system (A, B, C, D) is controllable if and only if the rank of the matrix:    

 

C = (B, AB, A
2
B... A

n-1
B)    is equal to n ......................................................... (7) 

 

and the system is observable if and only if the rank of  
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    is equal to n ................................................................................ (8) 

 

The matrices C and Q are called controllability and observability matrices,     

respectively 
[7]

. 

 

2-3 Feedback Control Theory 

 

2-3-1 Controller Design with Output Feedback 

Let a multivariable system be described by the state equations (Eqs.(1,5)), where y and u 

are 1m  vectors. The plant matrix relating the output Y(s) to the control U(s) is given by: 

 

DB)AsI(C)s(G
1

p   .................................................................................... (9) 

 

a compensator matrix G(s) is designed, so that 

 

)s(M)s(G)s(G)s(Y p ....................................................................................... (10) 

 

The matrix G(s) is chosen such that )()( sGsG p  is a diagonal matrix.  

 

2-3-2 Controller Design with State Feedback 

Figure (4) shows the block diagram of state feedback controller 

 

 
Figure (4) Block diagram description of state feedback 
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The following equation is only needed:   

 

Kxru  ........................................................................................................ (11) 

 

and K is selected accordingly.  

Combining eqs.(1) and (5) with eq.(10) the following is obtained: 

 

Brx)BKA(x  ......................................................................................... (12) 

 

it is clear that the state feedback matrix is: 

 

BKA .............................................................................................................. (13) 

 

therefore, the characteristic equation of the system is: 

 

0)BKA(sI   ............................................................................................. (14) 

 

By equating the coefficient of the determinant with the desired roots, the controller will 

be obtained. 

 

2-4 Eigenspace (Eigenstructure) Method 

The system outputs are 
[1]

: 

 

  

t

0

)t(AAt
d)(BuCe)0(xCe)t(y  .................................................................. (15) 

 

And the system dynamic matrix A can be represented by: 

 

LVVVA
1  

 ........................................................................................ (16) 

 


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Equation (13) can then be expressed as:      
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2-5 Direct Eigenspace Assignment Formulation For State Feedback 

 

2-5-1 The Control Problem 

Simple EA can be used to produce a ( nm  ) static state feedback controller K, where 

 

kxu  ........................................................................................................... (19) 

 

The regulator design that results is shown in Fig.(5). 

 

 

 

 

 

 

 

 

 

Figure (5) Basic state feedback regulator 

 

From Eqs.(1,5,19), xBkAx )(  , 

 

BkAAc   ................................................................................................. (20) 

 

Let a set of p desired self-conjugate eigenvalues and eigenvectors that define the 

behavior of the desired dynamic modes of the closed-loop system be defined by: 

 

 
dpdi1dd    ........................................................................................ (21) 

 

and,  

 

 
dpdi1ddV    ........................................................................................ (22) 

 

Where the closed-loop system eigenstructure can be given by 

 

dVV)BKA(  ............................................................................................. (23) 

 

Hence, if a set of desired eigenvalues d  and a set of final eigenvectors V are defined, 

then Eq.(23) can be used to find the feedback gain K that will give this eigenstructure in the 

closed-loop system 
[4]

. 
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B 

A 

C 
x xu y
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2-5-2 Determination of a Feedback Gain Matrix 

As shown in Eqs.(20) to (23), the matrix equations that describe the system can be 

rearranged to give an expression for the feedback gain matrix K, given an achievable set of 

right eigenvectors, V: 

 

)VVA(BK
1

d

1   ....................................................................................... (24) 

 

2-6 Direct Eigenspace Assignment Formulation for Output Feedback 

Given the observable controllable system of Eq.(1) with system measurements given by 

Eq.(5), the total control input is u. The measurement (output) feedback control law is: 

 

u=Ky .................................................................................................................. (25) 

 

Solving for u as a function of the system states:  

 

u=KCx+KDu ................................................................................................... (26) 

 

u= [I-KD]
-1

KCx ............................................................................................... (27) 

 

The system augmented with the control law is given by: 

 

x)KC]KDI[BA(x

)KCx]KDI([BAxx

1

1












 ............................................................................ (28) 

 

The spectral decomposition of the closed-loop system is given by: 

 

iii

1
)KC]KDI[BA(  

.......................................................................... (29) 

 

For i = 1,...,n where i  is the i
th

 system eigenvalue and vi is the associated i
th

 system 

eigenvector. Let wi be defined by: 

 

i

1

i KC]KDI[w  
 ......................................................................................... (30) 

 

Substituting this result into Eq.(29) and solving for vi one obtains:  

 

i

1

ii Bw]AI[
  ........................................................................................... (31) 

 

Values of wi that yield an achievable eigenspace that is as close as possible in a least 

square sense to a desired eigenspace can be determined by defining a cost function associated 

with the i
th

 mode of the system: 



Journal of Engineering and Development, Vol. 12, No. 4, December (2008)            ISSN 1813-7822 
 

 101 

)(Q)(
2

1
j diaidi

H

diaii   ......................................................................... (32) 

 

for i = 1,...,l where vai is the i
th

 achievable eigenvector associated with eigenvalue i , vdi is the 

i
th

 desired eigenvector, and Qdi is an )( nn  symmetric positive semi-definite weighting 

matrix on eigenvector elements. This cost function represents the error between the 

achievable eigenvector and the desired eigenvector weighted by the matrix Qdi. Values of wi 

that minimize Ji are determined by substituting Eq.(31) into the cost function for vai. Taking 

the gradient of Ji with respect to wi, setting this result equal to zero and solving for wi, this 

yields: 

 

didi

H

i

1

idi

H

ii vQL]LQL[w
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where,          

 

B]AI[L
1

ndii

 ............................................................................................. (34) 

 

and di  is the i
th

 desired eigenvalue of the closed-loop system. Note in this development that 

di  cannot belong to the spectrum of A. 

By concatenating the individual wi's column-wise to form W and vai's column-wise to 

form Va, Eq.(28) can be expressed in matrix form by: 

 

a

1

m KCV]KDI[W
  ..................................................................................... (35) 

 

The feedback gain matrix that yields the desired closed-loop eigenvalues and achievable 

eigenvectors is given by:      

 

1

a ]DWCV[WK
  ........................................................................................ (36) 

 

3. Results 

 

3-1 Controllability and Observability 

The system must be checked if it is controllable and observable or not. This is done by 

checking the rank of Eqs.(7, 8). By using MATLAB, it is found that n is equal to four.  

The rank of Q and C is equal to the number of states. i.e. the system is controllable and 

observable. 
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Poles  

Zeros  

wn 

3-2 System Transfer Function 

The transfer function of the open loop state-space system G(s) is found by applying 

Eq.(4): 
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3-3 Stability of the System 

Let, 3h  cm, 36.1br  cm , By substituting these values in Eq.(37), then: 
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the roots are: 04321  ssss                                                                                     

 

The roots lie at origin, i.e. at a critical unstable point, see Fig.(6), then the system is 

unstable. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure (6) Open loop poles and zeros of the system 
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Using MATLAB 
[7]

, a time response plot for a unit step input can be obtained. See 

Fig.(7). 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure (7) Time response to a unit step input of the open loop system 

 
3-4 Control Design Techniques 

 

3-4-1 State Feedback 

This method is applicable to SISO systems. The system is decoupled into two systems, 

i.e. each input affects one of the outputs as shown in Fig.(8). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure (8) Open loop MIMO system decoupled into two SISO systems 
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3-4-2 Controller Design 

Figure (9) shows the system with the controller then: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (9) Block diagram of the two SISO systems with the controllers 

 
By using MATLAB, The s-plane of the closed loop poles and zeros is obtained, and the  

time response plot to a unit step input is also obtained to each one of the two systems 

separately, see Figs.(10,11). 

 

 
 

Figure (10) Closed loop poles and zeros of the system 
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Figure (11) Time response to a unit step input (state feedback) 

 
3-4-3 Output Feedback 

The controller obtained by this method is based on feeding back all the outputs with 

constant gains, see Figs.(12,13). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (12) Block diagrams of the output feedback of the two SISO systems 
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Figure (13) Time response to a step input of the output feedback  
of the two systems 

 
3-5 Eigenstructure Method for Full State Feedback 

 

3-5-1 Eigenvalue Requirements 

The desired eigenvalues are determined by their trigonometric relationship to damping 

ratio and frequency, as shown in Table (1). 

 

Table (1) Determination of the desired eigenvalues 
 

Mode 

Minimum 

Damping 

ratio 

Minimum 

frequency 

Open-loop 

eigenvaluse 

Desired closed-loop 

eigenvalues 

First mode 0.826 2.66 
0 

0 
j5.12.2   

Second mode 0.826 2.66 
0 

0 
j5.12.2   

 

The open-loop poles and zeros, and the desired closed-loop eigenvalues are shown in 

Fig.(14). 

x
b
 

y
b
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Figure (14) Open-loop and closed loop poles and zeros 

 

3-5-2 Mode-state Coupling Vector Requirements 

Table (2) shows the modes of the system. For a stability augmentation system, it is 

desirable to keep 1x and 3x  uncoupled from each other. 

 
Table (2) Mode state coupling vectors of the open loop system 

 

States First Mode Second Mode 

x1 1 1 0 0 

x2 x x x x 

x3 0 0 1 1 

x4 x x x x 

 
3-5-3 Choice of Desired Eigenvectors    

If the linearized equations of the system are considered, and the state vector is, 


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There are 4 states and 2 inputs in this system. This implies freedom to assign 4 

eigenvectors and decouple one element in each eigenvector, coupling any of the remaining 

elements. Therefore, with this assignment, all the freedom available to specify the closed-loop 

eigenvectors is used up, and so the desired eigenstructure will be achieved exactly.  

Then, a good choice of closed loop eigenvectors might be: 

Closed loop zeros  

Closed loop poles  

Open loop zeros  

Open loop poles  
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3-5-4 Direct Eigenstructure Assignment (DEA) Design (State Feedback) 

The time response of the open loop system to a step input is shown in Fig.(7), the time 

response to a unit step input of the closed loop system is shown in Fig.(15), and to impulse 

input in Fig.(16). 

 

 

Figure (15) Step response to unit step input for the MIMO system 

 

 

Figure (16) Response to unit Impulse input for the decoupled MIMO system 
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3-6 Eigenstructure Method for Output Feedback 

 

3-6-1 Eigenvalue Requirements 

The performance requirements can be translated into the required position of the  

closed-loop poles of the system, and hence the desired eigenvalues are as shown in Table (3). 

 

Table (3) Determination of the desired eigenvalues 
 

Mode 

Minimum 

Damping 

ratio 

Minimum 

frequency 

Open-loop 

eigenvaluse 

Desired closed-loop 

eigenvalues 

First mode 0.8 2.66 
0 

0 
j5.12.2   

Second mode 0.8 2.66 
0 

0 
j5.12.2   

 
3-6-2 Mode-Output Coupling Vector Requirements 

There are 4 states and 2 inputs in this system. This implies freedom to assign 2 

eigenvectors and decouple one element in each eigenvector, coupling any of the remaining 

elements. Therefore, the desired eigenstructure may not be achieved exactly. From Table (4), 

it can be seen that 1x is decoupled from 3x  and is equal to one when 3x  is zero at the first 

mode, and 3x  is equal to one when 1x is zero for the second mode.  

For a stability augmentation system, it is desirable to keep bx and by  uncoupled from 

each other. 1x  represents bx with the aid of the input, and 3x  represents by  with the aid of 

the input. Thus, the state coupling vectors are chosen such that 3x  is decoupled from the first 

mode, and 1x is decoupled from the second mode so that any correction in displacement in 

one direction will not affect the other. 

 

Table (4) Mode state coupling vectors of the open loop system 
 

States First Mode Second Mode 

x1 1 0 

x2 x x 

x3 0 1 

x4 x x 

 
The time response to a unit step input of the closed loop system is shown in Fig.(17), 

and to impulse input in Fig.(18).  
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Figure (17) Response to unit step input for the output feedback system 

 

 

Figure (18) Response to unit impulse input for the output feedback system 

 
The original idea for the ball on plate system for Greg Andrews 

[2]
 is from the Labyrinth 

game Fig.(19). Therefore, the system will be checked to follow a similar path to the path of 

the game. Figure (20) is a schematic diagram to the game top surface, which shows that the 

line represents the path.  
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Figure (19) Photo for labyrinth game 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure (20) Top surface with the path line of the Labyrinth game 

 
The time response for the system for this path is shown in Fig.(21), the xb,yb plot for the 

desired and simulated paths are shown in Figs.(22,23). The difference between them due to 

neglecting some parameters such as friction. 

 

 

 
 
 
 
 
 
 

 
 
 
 

 

Figure (21) Time response to the desired and simulated paths 
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Figure (22) Desired xb, yb path of the Labyrinth game 

 

 
Figure (23) Simulated xb, yb path of the Labyrinth game 

 

4. Conclusions 
 

The main conclusions are: 

1. EA can be used for regulation which can be implemented in the DEA algorithm easily. The 

resulting overall method is very quick and simple to use. 

2. Eigenstructure analysis adds a measure of system dynamics that can enhance a designer’s 

understanding of some of the interactions of the system, beyond classical techniques. 

3. The strength of eigenstructure analysis lies in its stability to describe input-mode-output             

instruction easily. 
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Matrices, Vectors and Variables 
h                          Displacement between plate and U-joint center (m). 

J                          Performance index. 

L                         Left eigenvector "inverse of V". 

li                                        the ith row of L. 

p                          Number of system outputs. 

p                           transformation matrix in DEA. 

rq                         Velocity in the r-direction (m/s). 

u                          System input vector. 

V                         Matrix of right eigenvectors. 

v                          Right eigenvector. 

x                          System state vector. 

                          Unspecified component of desired vector. 

y                          System output vector. 

  

i                         ith eigenvalues. 

r                         Displacement  in the r-direction (m). 

                          Velocity of  the ball (m/s). 
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System Variables 
 

bI                          Mass moment of inertia (Kg.m2). 

bm                         Mass of the ball  (Kg). 

1q                          Angle of rotation of the plate about x-axis (rad.). 

2q                          Angle of rotation of the plate about y-axis (rad.). 

br                          Radius of the ball (m). 

 

Abbreviations 
 

MIMO              Multi-Input, Multi-Output 

SISO                Single-Input, Single-Output 

 


