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Effect of Partial Connection on the Behavior and Strength 
of Continuous Composite Beams 

 
 
 
 
 

 
 
Abstract 

 

Composite construction can be defined as the usage of different materials in an 

optimum geometric configuration with the aim that only the desirable property of each 

material will be utilized by virtue of its designated position.  

This study is concerned with the behavior of continuous composite beams of 

reinforced concrete and steel shapes taking into consideration the non-linear behavior of 

the components of the composite section, i.e. (concrete, steel shapes, reinforcing bar, and 

shear connectors). A theoretical model has been presented to cover the full range of non-

linear behavior of such beams allowing for differential movement at the interface i.e., slip 

and separation.  

The compatibility and equilibrium equations have been derived and arrived at four 

differential equations in terms of four independent displacements. Finite difference method 

has been used to solve these equations. Comparing with the available experimental data, 

the application of the current model gives close prediction. 

 
 

 
 

 ةـــــــلاصـالخ
ٌمكن تعرٌف المنشات المركبة بأنها تعتمد على الاستخدام الأمثل للمواد المختلفة بهدف الاستفادة من الخواص 

       وضعها فً مواقعها المتخصصة.                                                            بها نتٌجة للمٌزة التً تمتلكها عند  المرغوب
تختص الدراسة المقدمة بدراسة التصرف للجسور المركبة المستمرة المتكونة من خرسانة مسلحة وأشكال حدٌدٌة 

لبحث تم تقدٌم نموذج نظري لٌغطً حدود اخذٌن بنظر الاعتبار التصرف اللأخطً لعناصر المقطع المركب. فً هذا ا
 التصرف اللأخطً لهكذا عتبات سامحة بحركة تفاضلٌة فً الوجه الداخلً )الانفصال والانزلاق(                                 

أربع إزاحات مستقلة. استعملت  ةالمعادلات التوافقٌة والتوازنٌة أعطت بالنتٌجة أربع معادلات تفاضلٌة بدلال
 رٌقة الفروقات المحددة لحل هذه المعادلات وقورنت مع النتائج العملٌة حٌث أعطت بالنتٌجة توقعات متقاربة.ط
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1. Introduction 
 

The aim of using or selecting any material in construction is to make full use of its 

properties in order to get best performance for the structure being constructed keeping in mind 

the availability, strength, stiffness, workability, durability of the material and economy of 

construction. 

The term composite construction generally means steel beams attached to concrete slab 

by means of (shear connectors). The functions of these connectors are to transfer horizontal 

and normal forces between the two components, by sustaining the composite action. 

Continuous composite beams are used extensively in recent years in the construction of 

multistory building and bridges because of the great benefit that are obtained from using this 

type of construction, such as reducing beam design moments, considerable reduction in 

deflection, the simplification in joint details and increased erection facility due to self-

supportive nature of the construction. 

Analysis of composite beams with partial interaction has, in general, been based on an 

approach which has been attributed to Roberts 
[1]

, in which the basic equilibrium and 

compatibility equations are formulated in terms of resulting differential equations and, then 

solved simultaneously by expressing the displacement derivatives in finite difference form. 

Al-Amery 
[2]

 developed Roberts’s approach, taking into consideration non-linear material and 

shear connector behavior. The resulting non-linear differential equations are expressed in 

finite difference form and solved iteratively. This approach is prepared for simply supported 

composite beams only. Herein, the basic differential equations of non-linear behavior of 

materials and shear connectors, which was presented by Al-Amery, will be developed to 

cover the case of continuous beams, in which a negative moment existed in the region of the 

internal supports, and produced tensile forces on the concrete at this region. As tensile 

strength of the concrete is very low, the concrete will crack at the early stage of loading. This 

problem is taken in details and modeled accurately, while the region of positive moment was 

already solved and presented by Al-Amery’s solution. 

 

2. Assumptions 
 

1. For each of the concrete slab and steel beam, the assumption of plane sections normal to 

neutral plane (or axis of the beam) before bending remain plane and normal after bending. 

This implies that the distribution of strain is linear over the depth of the concrete slab and 

the depth of the steel beam. Hence no transverse shear deformation exists in concrete slab or 

steel beam. 

2. The shear connection between the two components of composite beam is continuous along 

the length, i.e. discrete deformable connectors are assumed to be replaced by a medium of 

negligible thickness having normal and tangential stifnesses. 

3. At elastic stage the concrete was assumed to have tensile strength at early stage of loading 

but, it was assumed to have no tensile strength at subsequent stages of loading and the 
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forces are transmitted through the steel reinforcing bars and the steel beam at the region of 

negative moment. 

4. Only longitudinal normal strain, slip (connector shear strain) and uplift (separation between 

concrete slab and steel beam) are taken into account. 

5. Perfect bond between concrete and steel reinforcement in the slab is assumed.  

6. Friction and bond effect between concrete slab and steel beam are neglected. 

 

3. The Models 
 

A composite beam that is continuous over two spans or more is different from a beam 

which is simply supported, where the continuous beam is subjected to positive and negative 

moments at the same span. 

Therefore, the full length of the composite beam will be modeled by two different 

elements. The first element is applicable for the positive moment zone and the second element 

is applicable for the negative moment zone. The two elements are connected together by 

continuity property at the point of contra-flexural (i.e. the point of zero moment at the beam 

span), as shown in Figs.(1-a) and (1-b). 
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Figure (1-a) Element (1) Typical element of composite beam  
in the positive moment region 
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Figure (1-b) Element (2) Typical element of composite beam  
in the negative moment region 
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4. Displacements Strain and Stress Resultants 
 

From full length of a composite beam, two elements of length δx, are shown in Fig.(1-a) 

and (1-b). The beam is made from different materials, concrete and steel, for positive moment 

region and concrete, steel and reinforcing steel bars, for negative moment region jointed at 

interface by a medium of negligible thickness but having finite normal and tangential 

stifnesses. 

The materials are subjected to moments (M), shear forces (V), and axial forces (F), 

while q and T denote the shear and normal forces per unit length at the interface.  

Assuming that plane sections within each material remain plane, the axial strains ε can 

be expressed in term of displacements u and w relative to local x and z-axes, which are 

assumed to pass through the centroids of each material. Hence: 

 

xx,ccx,cx,ctc w.zuu   ……………………………………………………… (1) 

 

xx,ssx.sx,sts w.zuu   ………………………………………………………. (2) 

 

xx,rrx,rx,rtr w.zuu    ……………………………………………………… (3) 

 

in which subscript c, s and r denote the concrete, steel beam and steel reinforcing bars, 

subscripts, x and xx denote differentiation and z is the distance from the origin of                

co-ordinates. 

Stresses ζ can now be related to strains via the material properties (Ec), (Es) and (Er), 

which for a linear elastic material behavior are constants. However, for non-linear elastic and 

elasto-plastic material behavior, Ec, Es and Er are functions of strain. Hence the stress in the 

materials is given by: 

 

 
xx,ccx,ccc w.zuE   ………………………………………………………… (4) 

 

 
xx,ssx,sss

w.zuE   …………………………………………………….. (5) 

 

 
xx,rrx,rrr

w.zuE   …………………………………………………….. (6) 

 

The axial forces F and moments M can now be obtained by integrating the stresses, 

multiplied by the appropriate lever arms z, in the case of moments, over the cross section area 

of concrete, steel and reinforcing bar, denoted by Ac,, As and Ar. Hence: 

 

ccc dA.F   ;  sss dA.F ; rrr dA.F    ………………………………………... (7) 

 

 cccc dA.z.M ;  ssss dA.z.M ;  rrrr dA.z.M ……………………… (8) 
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5. Equilibrium and Compatibility Equations 
 

Since strains have been defined in terms of four independent variables, four independent 

equations for two moments region (i.e. negative and positive zone), are required to obtain a 

solution. These four equations can be obtained by considering the equilibrium of the elements 

of the composite beam and the compatibility at the interface between the two materials. 

For equilibrium of the two elements shown in Fig.(1-a) and (1-b) in the x-direction. 

 

0FF x,sx,c   …………………………………………………………………… (9) 

 

0FF x,sx,r   ………………………………………………………………….. (10) 

 

For equilibrium in the z-direction 

 

iscx,sx,c FF   …………………………………………………... (11) 

 

iscx,sx,r FF   …………………………………………………... (12) 

 

In which  is the total distributed load per unit length (superimposed load ρi plus dead 

loads ρc and ρs). 

Tacking moments about the origin of co-ordinates in the concrete for positive moment 

and reinforcement steel bars for negative moment respectively gives: 

 

1x,sscx,sx,c d.FVVMM   ……………………………………………….. (13) 

 

2x,ssrx,sx,r d.FVVMM   ………………………………………………. (14) 

 

in which d1 and d2 are the distances between the centroids of the concrete and the steel beams, 

and the steel bars and the steel beam cross-sections, respectively. 

Combining equations (11) and (13) gives: 

 

 1xx,sxx,sxx,c d.FMM  …………………………………………………… (15) 

 

Similarly, equation (12) and (14) gives 

 

 2xx,sxx,sxx,r d.FMM  …………………………………………………... (16) 

 

The slip, ucs at the interface between the two materials is defined as the relative 

displacement in the x-direction of initially adjacent particle. If zci, zsi, and zri denote the         
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z-coordinates of the interface in the materials (zsi being negative), ucs for positive and negative 

moment zones are given by: 

 

   
x,ssisx,cciccs w.zuw.zuu   …………………………………………. (17) 

 

)w.zu()w.zu(u x.ssisx,rrircs   ………………………………………….. (18) 

 

If the shear stiffness of the joint per unit length is denoted by Ks, then for element (1) 

 

x,ccss Fu.Kq   ……………………………………………………………… (19) 

 

and for element (2): 

 

x,rcss Fu.Kq   ……………………………………………………………… (20) 

 

Hence, from equations (17) and (19): 

 

     0w.zuw.zuKF x,ssisx,ccicsx,c   ……………………………….. (21) 

 

and from equations (18) and (20): 

 

     0w.zuw.zuKF x,ssisx,rrirsx,r   ………………………………. (22) 

 

The separation wsc at the interface between the concrete and the steel is the relative 

displacement in the z-direction i.e.,  

 

cssc www   …………………………………………………………………. (23) 

 

and  

 

rssc www   ………………………………………………………………… (24) 

 

If the normal stiffness of the joint per unit length is denoted by Kn, then: 

 

 
csnscn wwKw.KT   …………………………………………………... (25) 

 

 
rsnscn wwKw.KT   ………………………………………………….. (26) 

 

For equilibrium of the two elements (concrete-steel and reinforcement-steel) in the       

z-direction: 
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TV cix,c  ………………………………………………………………. (27) 

 

TV cix,r  ……………………………………………………………… (28) 

 

For moment equilibrium of the two elements (concrete-steel and reinforcement-steel) 

about the interface: 

 

cix,cc z.qMV   ……………………………………………………………… (29) 

 

rix,rr z.qMV   ……………………………………………………………... (30) 

 

Hence, combining equations (27), (29), and (23) gives: 

 

 
cicsncixx,cxx,c wwKz.FM   ……………………………………... (31) 

 

and equations (28), (30), and (24) gives: 

 

 
cirsnrixx,rxx,r wwKz.FM   ……………………………………... (32) 

 

Equations (9), (15), (21), and (31) (for positive moment zone) and equations (10), (16), 

(22), and (32) (for negative moment zone) are the equilibrium and compatibility equations 

required for a complete solution, which can be expressed in terms of displacement derivatives, 

after substitution from equations (4)-(8). These equations cover the whole length of the 

continuous beam. 

 

6. Material Properties 
 

Integration of equations (7) and (8) to determine the axial forces and moments in the 

materials requires specification of the material properties Ec ,Es, and Er  in equations (4), (5), 

and (6). Solution of the four equilibrium and compatibility equations also requires 

specification of the shear and normal stiffness of the connector, Ks and Kn. In general, Ec, Es, 

Er, Ks, and Kn are all functions of strain or displacement and solutions had to be obtained 

iteratively. 

The assumed uniaxial stress-strain curves, neglecting the influence of coexistent shear 

stress, are as shown in Fig.(2) 
[3]

 and Fig.(3) 
[4]

 in which the appropriate units, are Newton and 

millimeters. The concrete is assumed to have no tensile strength and the ultimate compressive 

strain is limited to 0.0035. The curved portion of the stress-strain curve of concrete is defined 

by the equation. 

 

26

cu 10*3.11f5500  ………………………………………………….. (33) 
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in which fcu is the concrete cube strength. For simplicity, a bilinear stress-strain curve was 

assumed for the steel beams and reinforcing steel bars, with equal yield stresses ζy in tension 

and compression. 

 

Ei=200000

compression

y

y

 

Figure (2) Stress-Strain curve for steel 

 

Compression

Strain

Stress Mpa

0.67fcu

0.0035
 

                                      cuf5500      cu

4 f10x244 
 

 

Figure (3) Stress-strain curve for concrete 

 
The assumed shear force Q vs. slip ucs curve for the shear connectors can be represented 

by equation 
[4]

: 

 

 ucs

u e1QQ
   …………………………………………………………….. (34) 

 

in which Qu is the ultimate shear strength of a connector and Φ is a constant, which can be 

determined from test result. 

If, for example, the slip at load Q  is equal to csu , then from equation (34). 

 












QQ

Q
ln

u

1

u

u

cs

 ………………………………………………………….. (35) 
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The tangent stiffness, Ks is given by differentiating equation (34) once with respect to 

slip value: 

 

 csu

ucss e.Qdu/dQK


  ………………………………………………… (36) 

 

The tangent value of the material properties E was used in the iterative analysis. 

For most composite construction, separation of the two materials is negligible since Kn 

is relatively large. Therefore, for simplicity, a relatively large constant value of Kn is assumed. 

 

7. Layered Model 
 

For non-linear analysis, the modulus of elasticity for a composite beam is a function of 

strain value at the point under consideration. But the strains vary across the depth of the beam. 

This difficulty can be overcome by using the layered system in which, the cross sectional area 

of each material is divided into a number of layers as shown in Fig.(4), so that:  

 





n

1i

i.i

A

A.EdAEEA  ……………………………………………………… (37)

  





n

1i

i

2

i.i

A

2
A)z.(EdAzEEI ……………………………………………….. (38)      

 

where,  

n: the number of layers in the material under consideration. 

Ei: A layer modulus of elasticity.  

Zi: the distance from the layer center to the origin of co-ordinates. 

Ai: the cross-sectional area of the layer. 

 

A j

(z) j

z

x

 

Figure (4) Subdivision of cross-section into elemental area 

 
The values of tangential modulus, KS, and normal modulus, Kn, of the shear connector 

layer, elastic modulus of concrete slab steel reinforcement, Er, and steel beam modulus of 

elasticity, ES, and concrete slab modulus of elasticity, EC, are obtained from the corresponding 

constitutive relationship as discussed previously. 
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8. Numerical Integration of Force-Displacement Equations 
 

When the material properties E are constants, equations (7) and (8) can be integrated 

analytically to give the axial forces F and moment M in terms of displacements u and w. 

Alternatively, if the material properties are non-linear, the layered approach is used to 

overcome these problems. In the layered approach, the cross-sectional area of the concrete, 

steel shape and reinforcing bars are divided into a chosen number of layers having areas (AC
i
), 

(AS
j
), (Ar

k
) from the origin of co-ordinates, respectively. Hence, from equations (4) to (8).  

 


jc

j

xx,cjcx,cjcc )A(w)z(u)E(F   ………………………………………… (39) 

 


js

j

xx,sjsx,sjss )A(w)z(u)E(F   …………………………………………. (40) 

 


jr

j

xx,rjrx,rjrr )A(w)z(u)E(F   ………………………………………… (41) 

 


jcc

j

xx,cjcx,cjcc )Az(w)z(u)E(M  ……………………………………… (42) 

 


jss

j

xx,sjsx,sjss )Az(w)z(u)E(M   ……………………………………… (43) 

 


jrr

j

xx,rjrx,rjrr )Az(w)z(u)E(M   ……………………………………... (44) 

 

The appropriate values of (E)j for the strips (δA)j are the tangent value determined from 

the assumed stress-strain curve, as discussed in the previous section, corresponding to the 

total strain (ε)j in strips (δAj). For example, for concrete section, (Ec)j the corresponding strain 

(εc)j, is given by: 

 

xx,cjcx,cjc w)z(u)(   ……………………………………………………….. (45) 

 

9. Finite Difference Analysis 
 

Substituting equations (39)-(44) into equations (9), (15), (21), and (31) and equations 

(10), (16), (22), and (32) provides a set of four simultaneous differential equations for each 

moment zone in terms of the displacements u and w in each material. These equations can be 

solved by expressing the displacement derivatives in finite difference form and solving the 

resulting set of algebraic equations. These equations contain mixed derivatives of different 

type of variables with different order, which must be expressed in finite (central) difference 

form. These equations contain derivatives of fourth order in (w), so that five nodes are 
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required to represent them in the finite difference form and this leads to define two external 

nodes at each end of the beam to verify the substitution of the differential equations at the 

ends of the beam. Since each node is assigned with four degrees of freedom, eight boundary 

conditions are requiring at each end. It is required for a complete solution, to define the 

interface between the two systems of differential equations near the point of contra flexure, in 

which the material properties has to be separated for the two moment a region at that point. 

This can be illustrated by the following example: 
 

n n+1 n+2n-1n-2

Zero moment

n+3 n+4 n+5n-3n-4n-5

x

Negative moment regionPositive moment region

 
 

The fourth derivative of the deflection of the upper component of the composite 

element at positive moment region (for example at node number (n-3)) can be expressed as 

follows: 

 

4

1n,c2n,c3n,c4n,c5n,c

xxxx
x

WW4W6W4W
W







 ………………………. (46) 

 

in which (wc) represent the displacement variable at the concrete. The same derivative can be 

expressed at negative region (for example at node number (n+3)) as follows: 

 

4

5n,r4n,r3n,r2n,r1n,r

xxxx
x

WW4W6W4W
W







 ………………………. (47) 

 

in which (wr) represent the displacement variable at the reinforcing bar. 

The fourth order derivative of the same variable at the point of contra flexural can be 

expressed as follows: 

 

4

2n,r1n,rn,c1n,c2n,c

xxxx
x

WW4W6W4W
W







 ………………………… (48) 

 

Different types of finite difference stencil are used near the point of contra flexural to 

verify the continuity conditions at this region.     

To complete the set of algebraic equations, the boundary conditions for a continuous 

beam of length (L), used in this analysis, are: 

 

0Ws    when x= 0 and L …………………………………………... (49) 



Journal of Engineering and Development, Vol. 12, No. 4, December (2008)           ISSN 1813-7822 

 

 31 

0W xx,s    when x= 0 …………………………………………………. (50) 

 

0W x,s    when x= L …………………………………………………. (51) 

 

0W xx,c    when x=0 ………………………………………………….. (52) 

 

0W x,r    when x= L …………………………………………………. (53) 

 

0u x,s    when x= 0 …………………………………………………. (54) 

 

0us    when x= L …………………………………………………. (55) 

 

0u x,c    when x= 0 …………………………………………………. (56) 

 

0ur    when x= L …………………………………………………. (57) 

 

Osc RVV   when x= 0 …………………………………………………. (58) 

 

Lsr RVV   when x= L …………………………………………………. (59) 

 

0u xxxx,c    when x= 0 …………………………………………………. (60) 

 

0u xxxx,r    when x= L …………………………………………………. (61) 

 

0u xxxx,s    when x= 0 and L …………………………………………... (62) 

 

To express the shear forces carried by the reinforcing steel bar in terms of displacement 

derivatives, moments are taken about the origin of co-ordinates of the reinforced concrete 

element, as: 

 

rix,rx,rr z.FMV   ……………………………………………………………. (63) 

 

After introducing the boundary conditions, the non-linear algebraic equations can be 

solved iteratively. Initially, all materials are assumed to have constant properties, and a set of 

nodal displacements corresponding to a specified applied loading, is determined. From these 

displacements, slip at the interface and strains throughout the composite beam can be 

determined, which are used to define the tangent values of the material properties for the 

second stage of the solution. The process is repeated until the calculated displacements have 

converged, according to a prescribed criterion. For subsequent values of the applied loading, 

the iterative procedure is commenced with tangent values of the material properties 
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corresponding to the previously converged solution, which reduces the required number of 

iterations.        

 

10. Illustrative Example 
 

To illustrate the application of the theory presented herein, the example which is 

presented by Yam and Chapman 
[5]

 and tested by Teraskiewicz 
[6]

 was used to carry out a 

convergence study and to examine the effect of some properties on the behavior of a 

continuous composite beam. A single continuous composite beam of two equal spans        

(336 cm) are considered to be subjected to a concentrated load at the middle of each span. 

Because of symmetry, half of the continuous beam is considered. The calculated ultimate load 

based on plastic theory is (130 kN). 

At each load increment a convergence limit is introduced on slip values, since the slip is 

more sensitive than other parameters to the change in loading. The properties of the beam are 

given below. All dimensions in the original reference were in imperial units and have to be 

presented herein in SI-units. 
 

Concrete Slab 

Width of concrete slab   =92 cm. 

Depth of concrete slab   =6 cm. 

Cross sectional area    =552 cm
2
. 

d1      =10.6 cm. 

Initial modulus of elasticity  =3790 kN/cm
2
. 

Ultimate compressive strength  =47.5 MPa. 

Ultimate compressive strain  =0.0035. 
 

Steel Beam  

I-beam (6 in * 3 in * 12 Ib/ft, rolled steel joist) 

Overall depth (hs)    =15 cm. 

Flange width      =7.5 cm. 

Cross sectional area    =22.77 cm
2
. 

Moment of inertia    =874 cm
4
. 

Initial modulus of elasticity   =20700 kN/cm
2
. 

Yield stress     =300 MPa. 

Yield strain     =0.0014. 
 

Steel Reinforcing Bar 

Total area     =4.45 cm
2
. 

Moment of inertia    =0.52 cm
4
. 

Initial modulus of elasticity  =20700 kN/cm
2
. 

Yield stress    =320 MPa. 

d2      =12.3 cm. 
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Shear Connector 

The connection between the concrete slab and the steel beam was assumed to be 

provided by pairs of (10mm.) diameter, (50 mm.) length, headed studs, with spacing of (14.6 

cm) and initial shear stiffness (K) of (1935 kN/cm). The ultimate shear strength of a single 

stud, (Qu) was taken as (100 kN), while the slip ( csU ) corresponding to shear force       

( Q =62 kN) was taken as (0.5 mm). The value of (Ф) can be determined after substituting the 

values of Q , Qu and csU in equation (35), and was found to be equal to (1.935). 

It should be noted that the concrete slab was divided into ten equal strips. Each flange of 

the steel beam was divided into four equal strips and the web was divided into ten strips. The 

reinforcing bars were treated as one strip. 

The following results were obtained using 25 nodes along the length of the beam, 

including the four external nodes required to specify the boundary conditions. Solutions were 

considered to have converged when the change in the maximum slip at the ends of the beam 

was less than 0.002mm. 

The variation of the central deflection wmax with the concentrated load p is shown 

graphically in Fig.(5). The numerical results appear to be converging to a value pu =140 kN, 

which is the same concentrated load corresponding to the ultimate flexural strength of the 

composite beam, based on assumed rectangular plastic stress blocks. 

 

 

 

 

 

 

 

 

 
                                             CENTERAL 

DEFLECTION (mm) 
 

Figure (5) Load deflection curve 

 
In order to assess the convergence of the non-linear (iterative) finite difference solution, 

results were obtained by using different numbers of nodes along the beam (including the two 

external nodes required to specify the boundary conditions) and different convergence limits 

on the slip at the simply supported end of the continuous beam and at the different applied 

load levels, as can be seen in Table (1). 
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Table (1) Convergence of iterative solution 
 

No. of Node 45 25 10 

δucs 1*10
-06

mm 0.002mm 0.002mm 

Load (%) It ucso Wcl It ucso Wcl It ucso Wcl 

30 7 0.028 2.06 5 0.028 2.09 2 0.021 1.8 

55 11 0.07 5.8 7 0.069 5.71 5 0.05 5.07 

85 54 0.161 12.3 20 0.140 11.3 16 0.102 10.9 

95 32 0.22 18.2 15 0.196 17.1 13 0.167 17.03 
 

It: number of iterations; ucso: slip at support 

wcl: central deflection; δucs convergence limit 

 

The variation of the interface slip values has been calculated along the beam span for 

different load levels up to failure as shown in Fig.(6). As the load is increased, values of 

interface slip along the beam have been increased, with zero value at the position of external 

load and the middle continuous support. Also, it can be seen that slip values are 

unsymmetrical on both sides of load as different boundary conditions exist, with higher values 

at the middle continuous due to the high shear values. It should be noted that, zero slip values 

were located at the points of contra flexural (i.e. points of high shear, which are near the 

concentrated load position for positive moment and at interior support for negative moment). 

This is due to change in the direction of the longitudinal shear force at the interface, on both 

sides of these points. 
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Figure (6) Slip distribution for different load levels 
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Figure (7) shows the variation of deflection values along the span for different load 

levels up to failure. As the load is increased, values of deflection along the beam have been 

increased with maximum value being at the span center region. 
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Figure (7) Deflection distribution for different load levels 

 

Strain and stress profiles throughout the depth of the composite beam, corresponding to 

service and ultimate loads are shown in Fig.(8). The discontinuous strain profiles indicate the 

existence of slip at the interface between the concrete and steel, while the stress profiles 

indicate the spread of plasticity. 
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Figure (9) Stress and strain profiles 
                                                       (a) For services load 
                                                       (b) For ultimate load 

 

11. Discussion and Conclusions 
 

A general formulation for the analysis of continuous composite beams with partial 

interaction, which incorporates the influence of slip and separation at the interface between 

the materials and non-linear material and shear connector behavior, has been developed. 

Solutions of the four basic equilibrium and compatibility equations are obtained by expressing 

the displacement derivatives in finite difference. This method with incremental-iterative 

solution technique is efficient for the non-linear analysis of continuous composite beams and 

gives a good saving in computer time and effort.  
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