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A Finite Element Analysis of Damaged Composite Sheet 
 
 
 
 
 
 
 
 
 
 
 

 

Abstract 

This work is an attempt to study the behavior of a laminated composite sheet when 

subjected to specific damage cases and harmonic load. The numerical investigation is 

developed using finite element method with 8-nodes shell element to determine the free 

vibration and harmonic response by using the ANSYS package. The investigation covers 

three cases of damage laminate composite sheet with center impact loading.  

The work procedure was to model a healthy structure and apply different damage 

cases in reference to the health structure in order to compute the shift in the stresses 

distribution in different layers. Damage occurs in several layers of the composite sheet in 

multiple locations throughout its volume, and through several layers of the sheet. 
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( عُقَد-8نظرٌة العناصر المحددة، واختٌار العنصر القشري ) باستخدامالتحقٌقَ العدديَ  تم .قوى صدمةِِ  تأثٌربو معٌنة
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1. Introduction  

 

The strength of structures materials can be reduced when subjected to high amplitude or 

repeated loads and, it may lead to failure over time with usage. This failure may be in several 

mechanisms. As various load conditions are applied to a composite element, the internal 

makeup can become damaged with mechanisms such as matrix cracking, delamination, fiber 

breakage, and local buckling. Primary matrix failure modes are characterized by cracks that 

run parallel to the fiber in plies that are not aligned with the principal tensile loading direction. 

Secondary matrix failure causes cracks that extend into adjacent plies, thus initiating 

delamination. A delamination, also called debonding, is a crack that extends within the resin 

rich (matrix material) interface between plies that may contain different fiber orientations. It 

has been observed that delamination only occurs in the presence of matrix cracks. As the 

delamination damage accumulates the material characteristics change until ultimately the 

structure fails in the form of fiber breakage 
[1]

. Figure (1) shows the characteristic progression 

of damage in a laminated composite. In the locations where failure begins to occur, the 

stiffness is reduced and the surrounding material must carry the load. Because the fibers are 

the load bearing material within a composite, when they fail the structure is permanently 

compromised. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1) Development of damage in composite laminates 

 

Failure takes place in stages, where one damage event can lead to a sequence of failures 

inside of the material as shown in the stress-strain curve in Fig.(2). Failures within a ply are 

referred to as interalaminar and failures between layers are referred to as delamination. Each 

plateau in Fig.(2), is a basic representation of a failure within a ply in a composite sheet. As 

consecutive ply failures occur, the end result is an overall failure of the composite laminate.  
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Figure (2) Failure process in laminate composite 

 
The figure implies that the failure within a ply is sudden. But, in reality, the failure is 

progressive as mechanisms such as matrix cracking occur gradually rather than suddenly 
[2,3]

. 

For the last three decades, understanding the effects of damage on composites has been 

the focus of many studies.  A few of those studies are mentioned here.  

Engblom and Havelka 
[4]

 used a combined analytical and experimental approach to 

develop models of damaged composite structures. The experimentation was intended to 

quantify the effects of the four major damage mechanisms on the variations in stiffness and 

damping characteristics. The data gained from the experiments were used to improve existing 

finite element based damage models, as well as improve predictions of changes in material 

properties. The result of their work indicated that the effects of delamination and matrix 

cracking can greatly affect the residual properties and dynamic characteristics of laminated 

composites. In order to differentiate between the various failure mechanisms, failure criteria, 

developed by other researchers, were incorporated in the assessment of the damage.  

Hashin 
[5]

 developed a stress based failure criteria to distinguish between fiber and 

matrix failure modes. Lee 
[6]

 used a similar stress based criteria to distinguish delamination 

from other failure modes. 

Yen, Cassin, Patterson, and Triplett 
[7]

 conducted a progressive failure analysis of thin 

walled composite tubes under low energy impact. This study was also a comparative study of 

experimental and analytical analyses. The failure criteria developed therein was integrated 

into an explicit dynamic analysis code for failure prediction of the composite tubes. The 

results provided a good correlation with experimental data of impact force histories and 

certain critical damage modes. Also, the code predicted nonlinear behavior due to the 

progression of local damage, within the macroscopic continuum. 
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Talreja 
[1]

 developed an internal state variable model, which was used to determine the 

overall stiffness properties and intensity of damage in individual modes. This relationship 

shows that interalaminar damage reduces all the elastic moduli for damage with general 

orientations and changes the initial orthotropic symmetry of a laminate. But the interalaminar 

damage does not change the symmetry, only the moduli. This model represents the effects of 

matrix cracking on stiffness reduction by evaluating the development of crack size within the 

ply. Then, the model characterizes the damage modes as factorial quantities that incorporate 

the geometrical properties of the damage entities. 

Jonathan 
[3]

 presented the effects of various damage cases, load input locations, and 

frequency spectra on the dynamic response of a laminated composite sheet. A realistic finite 

element model generated using material properties and dynamic characteristics. Jonathan used 

the results of the model to provide insight into the progression and accumulation of damage 

within the plies of the composite sheet. 

In this work, jonathan's work is continued with different damage cases and different 

loads and locations.   

 

2. Mathematical Representation of Laminated Composites and 
Loading 
 

The response and characteristics of laminated composites are governed by many 

equations. A laminated sheet with a thickness that is small compared to the lateral dimensions 

has displacement components u, v, and w that are functions of x, y, and z. 

These equations are expanded in terms of the power series of z. Because the 

displacements are small, only the first two terms in the series are retained. The first terms are 

identified as the displacement components of the mid-plane, the second terms represent the 

linear relationship with the deformation in the z direction: 

 

)y,x(z)y,x(u)z,y,x(u x           

)y,x(z)y,x(v)z,y,x(v x   ………………………………………………... (1) 

)y,x(w)z,y,x(w   

 

In general, the stress-strain relation, {s} and {e}, of a lamina (ply) is governed by the 

elastic compliance matrix [S], which is the inverse of the elastic constant matrix [C]: 

 

}{]S[}{]C[}{
1  

…………………………………………………………. (2) 

 

Where the matrix [S] is determined by the mechanical properties of the lamina 
[2]

: 
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The stress-strain relation for orthotropic materials is simplified due to the symmetric 

property of the compliance matrix and follows the relationship: 
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Although the strains are continuous over the thickness of the laminate, the stresses in the 

laminate are discontinuous across the interfaces due to the different material properties 

resulting from different fiber orientations. For the kth lamina, the stress components are given 

by Sun 
[2]

. 
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Eq.(5), [Q] represents the reduced stiffness, a term similar to the elastic constants, which 

is the inverse of the elastic compliance. The strains are described by the in-plane strain and 

curvatures due to bending in the sheet. Typically, the strains associated with bending have the 
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most significant effect. In composites this is influenced by the stacking sequence of the 

laminate. 

When evaluating the strength within a lamina, there are several criteria that can be used. 

One such criterion is the Maximum Stress Criterion, which compares the maximum tensile 

strength in the fiber direction, transverse to the fiber direction, in-plane shear strength to the 

state of stress found in the structure. 

Eq.(6) presents the motion: 

 

{R}K]{U}[}UC]{[}UM]{[    ………………………………………………... (6) 

 

This can be solved by a harmonic analysis; therefore, the displacement may be defined 

as: 

 

        ti

oo esiniUcosUU
  ………………………………………... (7)                                                                 

 

Also, the force vector can be specified analogously to the displacement vector:  

 

        ti

o esinicosRR
  ………………………………………………. (8) 

 

where, 

oU = Maximum displacement (mm). 

i = Square root of (-1). 

= Imposed circular frequency (rad / sec). 

= Displacement phase shift (rad). 

t Time (sec) 

oR = Force amplitude (N). 

=Force phase shift (rad). 

     cos1 oRR = Real force vector. 

     sin2 oRR = Imaginary force vector. 

     cos1 oUU = Real displacement vector. 

     sin2 oUU = Imaginary displacement vector. 

 

When   02 R   and re-arranging eq.(6), substituting eqs.(7) and (8) we get eq.(9):  

 

             
o21

2
RUiUCiMK   …………………………………... (9) 

 

Solving eq.(9) gives the displacement component 1U  and 2U . 
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3. Description of the Case Study 
 

The model was based on a 20-ply composite sheet with S2 Glass/Epoxy for the fiber and 

matrix material in each of the plies. The laminated sheet is symmetric about the mid-plane 

with a stacking sequence of [(0/90)10]s. The overall dimensions used for this model are 

1.219m x 0.914m x 6.35mm. The thickness of each ply is uniform at 0.3175mm.  

The material properties 
[2]

 used in modeling the sheet:  
 

3

xzyzxy

xzyzxyzyx

m/Kg1800,GPa5.4G,GPa2G,GPa5.4G

,29.0,5.0,29.0,GPa7.12E,GPa7.12E,GPa3.43E




 

 

The three dimensional [shell99] (520) elements are used in this analysis. The stresses 

and deformations are computed for different mesh models, it is preferable to name the suitable 

mesh size to be used during the analysis. In each of the simulations, all of the edges of the 

sheet were constrained in all six degrees of freedom. 

The force on the sheet was applied as a distributed load over an area of 0.0247m2 with a 

magnitude 2500 N (The total force on the sheet). This value is a reasonable estimate of 

loading from a ballistic impact 
[3]

. The boundary conditions are shown in Fig.(3). 

 

 

Figure (3) The health case study (constraint and load conditions) 

 

4. Verification Test 
 

The current results are compared with the results of 
[3]

 numerical study as exhibited in 

Table (1), which demonstrates the first five natural frequencies of the same case study. The 

maximum difference is less than 0.07%. 
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Table (1) Values of the first five natural frequencies (Hz)  
for the composite sheet (Health case study) 

 

Mode No. Present Work Ref. (Jonathan, 2003) %Difference 

1 36.99 36.97 0.054 

2 62.85 62.82 0.047 

3 87.28 87.22 0.068 

4 106.23 106.16 0.065 

5 108.16 108.13 0.027 

 

5. Simulation of Damage 
 

The method used to simulate damage in the composite model was to assume that the 

modulus and shear modulus were nearly zero at the location of damage. In order to avoid 

singularity issues during calculation, the properties were not set exactly to zero. For all 

damage cases, the material properties assigned to those locations were as follows: 
 

3.0,Pa40GGG,Pa80EEE xzyzxyxzyzxyzyx   

 

These properties are significantly less than those of a healthy structure. The strength in 

damaged regions is decreased by a factor of 10
8
, which essentially acts as zero. These 

properties represent the effect of a total failure of the load carrying capability of that region. 

The initial effects of damage are difficult to model. For example no stiffness reduction is 

assumed after primary matrix failure occurs. This is because, transverse matrix cracks alone 

usually doing not have a significant effect on the laminate stiffness. 

The damage and force locations are shown in Fig. (4). in this figure, the square shapes 

represent the regions in which damage occurs, and the circles represent the distributed force. 

The details of each damage case are outlined in Table (2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure (4) Damage and force locations on composite sheet, all sides are fixed 

Damage case (2) 
Damage case (1) 

Damage   

case (3) 

Load 
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6. Results and Discussions 
 

The first step in evaluating the response of the laminated composite sheet was to 

perform a modal analysis. The plate was set with the same boundary conditions which used 

for the harmonic forced response. All four edges of the sheet were fully constraint in all 

degrees of freedom. The first five natural frequencies for the healthy and damaged cases are 

shown in Table. (3). It can be noticed from the table that, when the damage is applied, the 

change in the values of natural frequencies is very small. The maximum percentage difference 

is not to exceed 1.27 % in fundamental natural frequency. 

The second set of results is the harmonic analysis. All results were found within a 

frequency range of 30 to 120 Hz. This range was determined by the first and last natural mode 

of the sheet, the force is applied as a step load with a zero phase angle. Also a constant 

damping ratio of (0.1) 
[2]

 is applied to the entire model. 

For the healthy case, Figs.(5, 9, 13, 17, 21 and 25) show the Von-Mises stresses versus 

frequency corresponding to the layers (1, 2, 3, 14, 15 and 16) respectively. The peak stress 

occurs in the range of 37 Hz at the 2
nd

 layer, with a magnitude of about 56 MPa.  

For case (1), Figs.(6, 10, 14, 18, 22, and 26) demonstrate the variation of the Von-Mises 

stresses with the variation  of frequency corresponding to the layers (1, 2 and 3) above the 

damage region and (14, 15 and 16) below the damaged region respectively. The peak stress is 

in the range of 36 Hz in the 2
nd

 layer, with a magnitude of about 305 MPa. 

Figures (7, 11, 15, 19, 23, and 27) show the Von-Mises stresses versus frequency for 

damage case (2), corresponding to the layers (1, 2 and 3) above the damage region and (14, 15 

and 16) below the damaged region respectively. The maximum stress is in the range of 37 Hz 

in the 2
nd

 layer, with a peak magnitude of about 72 MPa.  

Finally, for damaged case (3), Fig. (8, 12, 16, 20, 24, and 28) show the variation of the 

Von-Mises stresses with the variation of frequency corresponding to the layers (1, 2 and 3) 

above the damage region and (14, 15 and 16) below the damaged region respectively. The 

maximum stress is in the range of 38 Hz in the 2
nd

 layer, with a peak magnitude of about 141 

MPa. 

From above it can be found that, the overall trend of the stress (as it is distributed 

through the layers) decreases from the outer surfaces to the mid-plane. But, due to the 

damage, the stress in the first three layers increases because of the reduction in the local cross-

sectional area. Also, the peak stresses in bottom three layers do not exceed that of the top 

three layers. 

Besides to the change in magnitude of stress in the sheet, there is also a slight shift in the 

frequency at which the peak stresses occur. For the first mode, the frequency shifted down 1 

Hz for case (1), no frequency shifted down for case (2) and up 1 Hz for case (3).   
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Figure (5) The Values of Von-Mises stresses with the frequency  
for the 1st layer (Health case) 
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Figure (6) The Values of Von-Mises stresses with the frequency  
for the 1st layer (case one) 
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Figure (7) The Values of Von-Mises stresses with the frequency  

for the 1st layer (case Two) 
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Figure (8) The Values of Von-Mises stresses with the frequency  
for the 1st layer (case three) 
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Figure (9) The Values of Von-Mises stresses with the frequency  
for the 2nd layer (Health case) 
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Figure (10) The Values of Von-Mises stresses with the frequency  
for the 2nd layer (case one) 
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Figure (11) The Values of Von-Mises stresses with the frequency  

for the 2nd layer (case two) 
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Figure (12) The Values of Von-Mises stresses with the frequency  

for the 2nd layer (case three) 
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Figure (13) The Values of Von-Mises stresses with the frequency  
for the 3rd layer (Health case) 
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Figure (14) The Values of Von-Mises stresses with the frequency  
for the 3rd layer (case one) 
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Figure (15) The Values of Von-Mises stresses with the frequency  
for the 3rd layer (case two) 
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Figure (16) The Values of Von-Mises stresses with the frequency  
for the 3rd layer (case three) 
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Figure (17) The Values of Von-Mises stresses with the frequency  

for the 14th layer (Health case) 
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Figure (18) The Values of Von-Mises stresses with the frequency  

for the 14th layer (case one) 
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Figure (19) The Values of Von-Mises stresses with the frequency  

for the 14th layer (case two) 
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Figure (20) The Values of Von-Mises stresses with the frequency  

for the 14th layer (case three) 
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Figure (21) The Values of Von-Mises stresses with the frequency  

for the 15th layer (Health case) 
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Figure (22) The Values of Von-Mises stresses with the frequency  

for the 15th layer (case one) 
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Figure (23) The Values of Von-Mises stresses with the frequency  

for the 15th layer (case two) 
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Figure (24) The Values of Von-Mises stresses with the frequency  

for the 15th layer (case three) 
 

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140

Frequency (Hz)

V
o

n
 M

is
e
s 

S
tr

e
ss

 (
M

p
a

)

 
Figure (25) The Values of Von-Mises stresses with the frequency  

for the 16th layer (Health case) 
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Figure (26) The Values of Von-Mises stresses with the frequency  

for the 16th layer (case one) 
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Figure (27) The Values of Von-Mises stresses with the frequency  

for the 16th layer (case two) 
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Figure (28) The Values of Von-Mises stresses with the frequency  

for the 16th layer (case three) 
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7. Conclusions 
 

The above analysis leads to the following conclusions: (The first two agree with those 

concluded by Jonathan 
[3]

. 

1. For all cases the stress in the top layers, just above the damage, is higher than those just 

below. This is attributed to the reduction in the local cross-sectional area. 

2. In some cases the stress around the damaged area increases or decreases. The areas of 

increase indicate the load-carrying path of the structure in that region. 

3. When the load applied at the center of the damage, this location faces the largest stress 

(case-1). (This result is expected but, the large change in the stress range is not expected). 
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List of Symbols 
 

Symbol Definition Units 

[S]: Elastic compliance matrix.  
[C]: The inverse of the elastic constant matrix.  

332211 ,,  : Normal strains.  

t : Time interval. Second 

F: Impact force. N 

xx : The stress in the X-Direction. N/m2 

yy : The stress in the Y-Direction. N/m2 

xy : The stress in the X-Direction on the Y facing face. N/m2 

xE : Young's modules in X-direction. N/m2 

yE : Young's modules in Y-direction. N/m2 

zE : Young's modules in Z-direction. N/m2 

xy : Poisson's ratio, the strain in the x-direction due to strain in the 
y-direction. 

 

yx : Poisson's ratio, the strain in the y-direction due to strain in the 
x-direction. 

 

zx : 
Poisson's ratio, the strain in the z-direction due to strain in the 
x-direction. 

 

zy : Poisson's ratio, the strain in the z-direction due to strain in the 
y-direction. 

 

xz : 
Poisson's ratio, the strain in the x-direction due to strain in the 
z-direction. 

 

yz : Poisson's ratio, the strain in the y-direction due to strain in the 
z-direction. 

 

yzxzxy GGG ,, : Shearing modules N/m2 

12,1323 ,  : Searing strains  

m : Mean stress N/m2 

a : Alternating stress N/m2 

fN : Safety factor  

utS : Ultimate stress N/m2 

 

 


