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Abstract: Reverse osmosis is one of the most prevalent 
methods of generating potable water owing to its low 
power usage, excellent rates of contaminant removal, 
simple design, large output capacity, and much cheaper 
initial and maintenance costs than comparable 
alternatives. In this review, the most important published 
research related to the reverse osmosis process was 
reviewed. It was found that the majority of reported 
studies were related to using the reverse osmosis process 
for water desalination and wastewater treatment. 
Research has proven that the reverse osmosis process is a 
very effective method for desalinating water and treating 
industrial effluent containing heavy metals, organics, and 
other pollutants. Fouling was found to be one of the 
greatest obstacles encountered by the reverse osmosis 
method in water treatment, which raises operating costs 
due to the need for frequent cleaning, reduces the 
membrane's lifespan, and reduces the permeate flux. In 
general, microfiltration/ultrafiltration pretreatment and 
backwashing were among the most effective strategies 
suggested by researchers to reduce fouling and ensure the 
longevity and proper operation of the system. 

Keywords: Backwashing; fouling; membranes; 

pretreatment 

1. Introduction  

Water scarcity has become one of the greatest 

concerns. Ineffective water policies, water body 

pollution, unsustainable population increase, and 

climatic changes are the main contributors to 

water scarcity [1]. Water processing methods and 

wastewater treatment processes can help get rid 

of a wide range of contaminants, which is part of 

the solution to the growing amount of pollution 

in water [2]. Membrane is one of the most 

broadly implemented techniques for water 

treatment [3]. Membrane processes include 

microfiltration (MF), ultrafiltration (UF), 

nanofiltration 

 (NF), and reverse osmosis (RO) [4]. The RO 

method is presently regarded as the most 

trustworthy technology for desalinating water 

and wastewater treatment owing to its high 

energy efficiency, simple design, great 

production capacity, and high rate of 

contamination removal [5]. The RO system 

usually has four main parts: the intake system, 

the pretreatment system, the RO system, and the 

post-treatment system [6]. Conventional RO 

membranes are made of thin film composite 

polyamide (TFC-PA), which is made of three 

layers: a polyester non-woven layer, a layer that 

provides support, and a thin polyamide surface 

layer [7]. Due to these membranes' superior 

performance, which includes their extremely 

high permeability and salt-rejection 
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characteristics, desalination frequently employs 

them [8]. Nonetheless, fouling and concentration 

polarization remain key problems for RO 

applications [9]. Fouling has a negative impact 

on membrane performance because it decreases 

filtrate flux, boosts operating pressure, shortens 

the lifespan of the RO membrane, and thus raises 

the cost of producing water [10]. Generally, 

fouling may be divided into four types: 

particulate, organic, inorganic, and biofouling 

[11]. Methods for fouling reduction include 

pretreatment of feedwater, membrane 

modification, membrane cleaning, and the 

adoption of fouling-resistant alternative 

processes [12]. Globally, there is a growing 

commercial interest in RO technology as a result 

of ongoing process advancements, which relate 

to membrane characteristics, module 

development, feedwater pretreatment, and 

energy recovery technologies [13]. 

This paper aims to summarize recent advances in 

the RO process and highlight areas in which more 

research and innovation are required. This review 

also addresses the RO applications, outlines the 

problems of RO, and presents cutting-edge 

solutions for fouling control, such as 

pretreatment and membrane cleaning. 

2. Literature Review 

2.1. Previous Research on Using the RO Process 

to Remove Pollutants from Wastewater  

The use of RO technology to remove 

contaminants from water, primarily from 

industrial wastewater, has been the subject of 

recent investigations. Examples of employing 

RO process to remove various pollutants are 

shown in Table 1. 

 

2.2. Prevention of Fouling Studies 

Fouling is a significant challenge to the effective 

performance of RO systems [20]. Considerable 

attempts have been made to reduce RO process 

fouling, which is mentioned in Table 2. 

2.3. Effect of Pretreatment on RO Performance 

The effectiveness of water pretreatment has a 

direct impact on RO performance. The 

performance and lifespan of a membrane are 

closely related to the quality of the feedwater. 

Fortunately, prior treatment of the feedwater 

could be able to resolve these problems and keep 

the RO process sustainable [25]. 

2.4. Effect of Backwashing on RO Performance 

Due to the RO backwash cleaning method's 

effectiveness and environmental friendliness, it 

has recently grown in popularity [29]. Table 3 

depicts the RO process's pretreatment and 

backwashing research studies. 

2.5. Autopsy Studies for Fouled RO Membranes 

Membrane autopsy can reveal the type and 

causes of fouling, assisting in the development of 

the most efficient cleaning techniques to prevent 

it in the future [31]. The most commonly used 

tools in fouling layer investigations are scanning 

electron microscope (SEM) image, which is 

performed to study the morphology of fouling, 

and the atomic force microscope (AFM) spectra, 

which are employed to determine membrane 

surface roughness and changes in fouling layers. 

An energy-dispersive X-ray spectroscope 

(EDXS) and SEM picture are used together to 

determine the chemical composition of fouling 

[32]. Another spectroscopic tool is Fourier 

transforms infrared spectroscopy (FTIR). Table 4 

provides a summary of several papers on fouled 

membrane autopsy that have been published. 
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Table 1. Examples of the removal of various pollutants by the RO process. 

Pollutant Study Results Ref. 

Heavy metals (Cd+2) The membrane's negative charge gradually neutralized due to the 

ionic strength of the feed solution, which decreased the membrane's 

capacity to extract cadmium. At pH equal to 4 or higher, with a low 

Cd concentration in the feedwater, higher rejection rates were 

observed. 

[14] 

Heavy metals (Fe, Zn, Mn) Whenever the pH and pressure were ideal, RO membranes were able 

to efficiently remove a significant amount of Fe, Zn, and Mn from 

industrial effluent. Additionally, the RO process performed worse 

when the feedwater had additional heavy metals and components. 

[15] 

Heavy metals (Ni+2, Pb+2, Cu+2) Heavy metal rejection and permeate flux rejection demonstrated 

linear correlations with induced pressure, pH, solution temperature, 

and feed flow rate when it comes to removing heavy metal ions, but 

inverse relationships with feed concentration. 

[16] 

Emulsified oil When the emulsifier oil concentration in the feed was raised, it was 

discovered that the permeate flow and water content in permeate 

were decreased. The response was temperature-dependent, and the 

permeate flux was decreased as pressure was raised. 

[17] 

Ammonia  Separating ammonium from wastewater using the RO was 

successful. With a 96.9% recovery rate, the portion of ammonium in 

the feed decreased to 0.2 mg/l. 

[18] 

Fluoride and phosphate For synthetic wastewater and real wastewater, RO membranes were 

able to reject over 80% and over 96% of fluoride, respectively. 

Phosphates, on the other hand, were rejected in amounts more than 

95% for synthetic wastewater and 97% for actual wastewater. 

[19] 

Table 2. Research on reducing RO membrane fouling. 

Methods Study Results Ref. 

Development of 

a novel anti-

scalant 

Calcium phosphate scaling was effectively inhibited in RO units for wastewater reuse 

using the anti-scalant. 

[21] 

Surface 

modification 

Exterior amine functions were deposited over a polyamide TFC membrane using a 

low-pressure plasma method, and silver nanoparticles were subsequently bonded to 

this membrane, which led to increased antibacterial performance. 

[22] 

Surface coating The coated RO membrane's surface was given a more hydrophilic appearance and 

was neutrally charged by a cationic phosphorylcholine polymer anti-adhesive 

coating. 

[23] 

Development of 

a new RO 

membrane 

Irradiating metal organic framework (MOF) nanocrystals with rays of gamma 

generated silver nanoparticles, which were then integrated into layers of polyamide. 

The fabricated membrane has excellent antimicrobial properties. 

[24] 
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3. Reverse Osmosis Process 

A common membrane technology for treating 

water is reverse osmosis. It has been extensively 

employed in a variety of operations, including 

the treatment of brackish and seawater, the 

treatment of sewage, and the creation of ultra-

pure water. It is employed for the separation of 

undesirable ions, salts, microbiological 

components, organic materials, and inorganic 

materials from water [37]. The RO process 

involves forcing water from the area with a high 

concentration of feed solution through the 

semipermeable membrane to the region with a 

low concentration of solution by exerting 

pressure to the area with a high concentration of 

solution that is greater than the osmotic pressure 

 

 

 (Fig. 1). Because of this, water that passes 

through the membrane into one compartment is 

mostly pure, while dissolved solids are rejected 

in the other compartment [39]. For RO, the 

nominal range of pore sizes is 0.0001-0.001 µm 

(0.1-1 nm) [40]. The majority of the time, RO has 

been used to remove pollutants with a molecular 

weight in the range of 150–250 Dalton, such as 

soluble organics, color, nitrate, and low-

concentration dissolved solids [41,42]. In 

industry, dissolved contaminants can be removed 

using the RO process, particularly inorganic salts 

[43]. The applied pressure for RO is higher, 

ranging from 10-150 bar, compared to other 

filtering processes. The most effective pressure-

driven desalination technology is RO because it 

uses NF membranes that can reject monovalent 

salts like sodium chloride (NaCl) [7].  

 

Table 3. Pretreatment and backwashing of the RO process studies. 

Method Finding Ref. 

UF pretreatment The UF pretreatment delivered excellent quality permeate water. For example, the 

SDI was lowered by 96.8% using UF. 

[26] 

UF pretreatment The UF membrane system functioned effectively to remove COD, and RO had the 

ability to get rid of the phenol in the UF permeate. 

[27] 

MF/UF 

pretreatment 

A two-phase membrane system could polish treated wastewater to be used in the 

District's feedwater pipeline. 

[28] 

The 

effectiveness of 

backwashing 

The system was operated at various NaCl solution concentrations (6900, 14200, 

27600, 50300, and 59700 mg/L) until it reached a stable state, at which point the 

operating pressure was shut off and backwashing was carried out. Up to the 

prescribed NaCl concentration, the collected volume rose; however, above the 

prescribed concentration, the volume decreased due to concentration polarization 

(CP) occurring on the permeate portion. 

[30] 

The effect of 

backwashing 

water 

concentrations 

Different circulating water concentrations (20000, 35000, and 50000 mg/L) were 

used to investigate the effectiveness of backwashing. When the concentration of the 

circulating water was higher, the concentration polarization took place more quickly 

on the permeate side. 

[29] 
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Numerous models can be used to explain how 

mass moves through RO membranes. The most 

accurate way to explain how RO membrane 

performance works is with the solution-diffusion 

model [44]. Water flows over an RO membrane 

in three steps according to the solution-diffusion 

model, often known as the "non-porous" model: 

absorption over the membrane surface, diffusion 

through the membrane thickness, and desorption 

from the membrane permeating the surface. Once 

a water molecule has been caught up by the 

membrane's surface, the difference in the 

concentration of water across the membrane 

causes the water molecule to move to the 

permeate side of the membrane. The water 

molecule is consequently freed from the 

membrane and contributes to the bulk permeate 

[45]. 

 

Figure 1. The principle of reverse osmosis process [38]. 

4. RO Process Challenges 

Water produced by the reverse osmosis method 

is practically devoid of dissolved ions. There are 

some negative aspects, like short membrane 

lifetimes, limited selectivity, significant capital 

and operational costs, the requirement for 

extensive pretreatment, and handling the brine 

solution and its potential issues. Concentration 

polarization and fouling are two issues that RO 

membrane water filtering systems encounter 

[46]. 

4.1. Fouling  

Filtered particles that precipitate on the 

membrane's surface and build up as foulants over 

time cause membrane fouling [7,47]. Fouling of 

RO membranes is commonly considered to be 

the most critical problem in the design and 

operation of RO membrane systems. Water flux 

across the RO membrane is reduced if the 

membrane becomes fouled because of increased 

mass transfer resistance [48]. In order to provide 

the greatest possible membrane performance and 

reduce costs, accurate forecasting and the total 

eradication of fouling are essential [37]. The 

problem can be resolved by changing the 

operating parameters, using anti-scalants, and 

washing the membrane to remove the fouling 

layer. Surface modification and material 

selection can lessen fouling tendencies [49]. 

Membrane fouling is affected by the feedwater 

characteristics, membrane properties, and 

operational conditions [50]. However, fouling is 

highly influenced by the quality of the pretreated 

feedwater (Fig. 2). As a result, a good 

pretreatment approach may greatly lower the 

membrane's fouling proclivity [39]. Fouling is 

categorized by the prevalent mechanism, 

involving complete pore blockage, standard 

blockage, intermediate blockage, and cake layer 

development (Fig. 3), as well as whether it can be 

cleaned (reversible or irreversible), and by the 

substance generating it. Cleaning can get rid of 

reversible fouling, but irreversible fouling caused 

by organic fouling and biofouling is not affected 

by physical cleaning and is only eliminated by 

chemical cleaning [48]. 
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Figure 3. An illustration of the mechanisms of fouling 

[51]. 

Membrane fouling is classified into four types: 

organic; inorganic; colloidal; and biological [52]. 

When organic compounds gather on the 

membrane surface, organic fouling occurs [49]. 

Organic materials include humic, proteins, lipids, 

organic acids, and natural organic matter, which 

is produced by the breakdown of plants, 

microbes, and viruses [52,53]. Organic fouling 

was shown to be the most detrimental fouling and 

should be minimized as much as possible 

because the dissolved organic components in the 

feedwater serve as nutrition to the organisms  

 

 

 

 

 

 

 

 

 

 

whose development might contribute to 

significant biofouling [54]. Inorganic fouling, 

also known as scaling, is the deposition of 

soluble salts on membrane surfaces, which is one 

of the key challenges encountered throughout the 

desalination process [49]. Scaling occurs when 

the concentration of inorganic salts in the 

retentate exceeds their solubility limitations. 

These salts precipitate and form a scale on the 

RO membrane surface when the water becomes 

supersaturated [48]. The principal inorganics 

responsible for scaling are sulfates, fluorides, 

iron, carbonates, calcium, magnesium, and silica 

[10,49]. Furthermore, the membrane may 

become fouled by colloidal particles that are 

present in the feedwater and are deposited there. 

Colloidal foulants include inorganic pollutants 

and organic molecules [53]. Silt, clay, silica, and 

metal oxides make up the majority of the 

inorganic colloids in natural water, whereas 

proteins, oils, and humic acids make up the 

majority of the organic colloids [10]. Biofouling, 

or the attachment and growth of microorganisms 

on a membrane surface, is another hindrance 

Figure 2. Factors influencing RO membrane fouling [50]. 
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resulting in a loss in membrane performance. 

This process raises the pressure drop across the 

membrane and reduces its permeability 

[12,53,48]. Images of four distinct types of 

fouling from a SEM analysis are shown in Fig. 4. 

 

Figure 4. SEM images for (a) Biofouling; (b) Organic 

fouling; (c) Inorganic scaling; (d) Colloidal fouling [53]. 

4.2. Concentration Polarization (CP) 

On the membrane surface, a buildup of salt ions 

is known as concentration polarization. As water 

passes across a membrane and salts are rejected, 

the retained salts might accumulate near the 

membrane surface, where their concentration 

progressively rises. The concentration buildup at 

the membrane will cause a diffusive flow of salts 

back into the feed (Fig. 5). Concentration 

polarization reduces the efficiency of the RO 

process by increasing osmotic pressure at the 

surface, increasing salt passage, decreasing water 

transport over the membrane, and promoting 

fouling [8]. It can be reduced by modifying the 

fluid's parameters (such as viscosity and 

temperature) and increasing the feed velocity. 

This lowers the solutes' osmotic pressure on the 

membrane, which necessitates applying less 

pressure [56]. 

 

Figure 5. Diagram of membrane fouling and 

concentration polarization layer [55]. 

The permeate flux (𝐽𝑊) may be expressed as (1) 

if it is assumed that CP occurs only on the feed 

side [57]. 

 

 𝐽𝑊 = 𝐾𝑂𝑉 (𝐶𝑓 − 𝐶𝑝)                                               (1) 

 

where Cp and Cf are the concentrations of the 

permeate and feed solution, and kov is the total 

mass transfer coefficient. 

 

The flux across the fluid layer close to the surface 

can be expressed as (2) [57]: 

 𝐽𝑊 = 𝐾𝑓 (𝐶𝑓 − 𝐶𝑚)                                           (2) 

where Cm is the fluid boundary layer 

concentration and kf is the fluid boundary layer's 

mass transfer coefficient. 

 

Additionally, the flux across the membrane may 

be represented as (3) [57]: 

 

𝐽𝑊 = 𝐾𝑚 (𝐶𝑚 − 𝐶𝑝)                                               (3)                                       

 

where km is the membrane's mass transfer 

coefficient [57]. 

5. Ro Process Applications 

There are numerous uses for the RO technique 

[39,44,58]. Below is a discussion of the two RO 

process applications that are most popular. 
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5.1. Desalination 

The RO desalination market has quickly 

developed into the preeminent choice for new 

plant deployments. Seawater and brackish water 

are the two primary media for RO desalination 

[45]. The most energy-efficient method was 

thought to be RO. As a result, when energy 

efficiency is the main concern, RO is the 

preferred desalination technique. Additionally, 

RO is characterized by its exceptional 

productivity, high salt rejection, high water 

permeability, and inexpensive membranes [59]. 

RO is the most cost-effective process to 

desalinate water, which has contributed to a 

decline in desalination expenses over the last 

decade. Currently, RO makes up about 45% of 

the world's desalting capacity and 80% of all 

desalination plants around the world. One 

promising method of utilizing RO for water 

desalination is the use of closed-circuit RO 

(CCRO). Compared to conventional RO systems, 

CCRO reduces the required feed pressure, 

enhances membrane performance, and reduces 

the need for power recovery equipment [60].  

5.2. Industrial Wastewater Treatment 

RO was initially used to desalinate seawater and 

brackish water. Due to the increasing industrial 

need to recover valuable components from waste 

streams, reduce energy use, conserve water, and 

limit contamination, new uses of RO have 

become economically desirable [61]. Industrial 

operations release wastewater into waterways, 

which raises the most significant worries about 

contamination. Consequently, these wastewater 

must be treated before they can be disposed of 

[62]. Because heavy metals are toxic, poorly 

biodegradable, and readily incorporated into the 

food chain, heavy metal pollution of water from 

industrial operations is a global concern. Zinc, 

copper, nickel, mercury, cadmium, and 

chromium are toxic metals that are frequently 

released. Wastewater from refineries, coal-fired 

power plants, mining, tanneries, electroplating, 

and pesticides are the main sources of these 

minerals [63]. Oil is a different contaminant that 

is released by industrial operations and poses a 

significant concern [64]. Numerous sources 

produce oily wastewater, including offshore oil 

extraction, refining, and oil drilling [52]. It has 

been determined that using RO to remove salts, 

heavy metals, and organics from water is an 

efficient way to improve water quality. In light of 

this, it is appropriate for the treatment and 

recycling of wastewater streams [58,65]. 

6. Fouling Mitigation Methods 

6.1. Pretreatment Methods 

The water used to feed the RO system must be 

free of any impurities in order to prevent fouling 

[39]. Pretreatment lessens the need for frequent 

membrane cleaning, lowers the frequency of 

membrane replacement, and lessens the 

possibility that constituents in feedwater will 

damage membranes [45]. There are three 

methods of pretreatment: physical, chemical, and 

biological. Physical pretreatment can be 

accomplished by a variety of methods, including 

mechanical and thermal pretreatment [66]. Fig. 6 

illustrates the conventional pretreatment methods 

that can be utilized before the membrane 

processes. 
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Figure 6. Conventional pretreatment prior to the membrane process [67]. 
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 However, slight alterations in a conventional 

treatment might have a detrimental influence on 

the RO process. For instance, chemical 

overdosing and incorrect use of chemicals can 

lead to permanent fouling and additional 

cleaning processes. According to these 

constraints, membrane filtration is frequently 

used as a pretreatment technique in RO facilities 

[39,52]. At the industrial scale, both MF and UF 

are employed as pretreatment techniques before 

the RO membrane, but UF currently dominates 

among the membrane pretreatment strategies in 

many research investigations, notably at the pilot 

scale [48]. In terms of filtration effectiveness, UF 

outperforms MF. This is primarily because UF 

has extremely small pores (0.01-0.1 µm), which 

facilitate the separation of colloidal particles and 

organic and inorganic compounds [52,60]. 

However, both MF and UF are effective 

membrane processes for the pretreatment of the 

RO system to reduce the concentration of 

suspended solids, decrease the capital and 

operating expenses of the downstream RO 

process in terms of size reduction, and enhance 

production capacity. Another economic 

advantage includes reduced chemical usage, less 

waste disposal, and a smaller footprint [60]. 

6.2. Cleaning the Membrane 

Regular RO membrane cleaning is necessary, 

and the frequency will depend on the feedwater's 

quality. Cleaning assists in restoring permeate 

flux, which lowers salt passage [45]. 

Additionally, cleaning is an essential step in 

preventing the need for regular membrane 

replacement [48]. It may be either physical or 

chemical [68]. Physical cleaning entails exerting 

mechanical pressures that are larger than those 

required to hold foulants to the membrane in 

place, allowing for their removal from the surface 

[69]. Backwashing and forward or reverse 

flushing are the physical cleaning techniques. To 

eliminate contaminants from the membrane 

surface, forward flushing requires moving 

permeate water through the feed side at a high 

cross-flow velocity. In the operation of "reverse 

flushing," the permeate flush alternates for a brief 

period between forward (feed to brine) and 

backward (brine to feed) motion (Fig. 7). 

Colloidal particles can be effectively removed by 

forward flushing [70]. Conversely, the only 

methods of cleaning foulants that adhere to 

membrane pores are backwashing and chemical 

cleaning [48]. Backwashing involves flushing 

permeate from the permeate side to the feed side 

to remove the foulants from the surface and 

discharge them to the feed side, as shown in Fig. 

8. 

 

Figure 7. Flow direction for flushing both forward and 

reverse [70]. 

Figure 8. Flow direction during backwashing [70]. 
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7. Concluding Remarks and Perspectives  

Through our review, it was concluded that the 

RO process had the ability to desalinate water 

and treat industrial wastewater containing many 

pollutants with high efficiency. One of the main 

challenges faced by RO technology was fouling. 

Presently, a variety of fouling control strategies 

are in practice, and these approaches play a 

significant role in fouling reduction. Generally, 

pretreatment and backwashing were among the 

most successful solutions recommended by 

researchers to address the fouling issue that 

strikes RO membranes. Further studies on the 

behavior of fouling are required to get a clearer 

knowledge of fouling phenomena, which might 

give a stronger basis for the enhancement of 

fouling mitigation approaches. Reviewing the 

research also showed that the biggest challenge 

of the RO process was its energy consumption. 

Future research should therefore concentrate on 

finding techniques to utilize green or sustainable 

power, employing energy recovery techniques 

(for instance, using a pressure exchanger device), 

discovering the best solutions to the problem of 

brine handling to render the RO process far more 

achievable, and accomplishing the ideal 

situation, which is a zero liquid discharge In 

order to treat the brine water, another process 

(such as the crystallization process) is added to 

the RO system. 
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