
Journal of Engineering and Development, Vol. 13, No. 1, March (2009)          ISSN 1813-7822 

 

 127 

FPGA Implementation of Parallel and Pipelined Turbo 
Encoder for Real -Time Applications  

 

 

 

 

 

 

 

 

 

 

Abstract 
 

The main keywords defining the quality of communication system are the data rate 

and the data transmission reliability. Error correcting codes are generally employed to 

achieve the reliability of the data transmission.  The present trend is to achieve high data 

rates on low-cost designs (such as FPGAs), especially in real time application including 

multimedia transmission. Most of the time, parallel, architectures are required to process 

error correcting codes with high data throughput.  

In this paper, an effective parallel architecture is proposed for the classical Turbo 

encoder based on parallel and pipelining designing of RSC encoder and the 

implementation of interleaver using register file. The simulation results shows that the data 

rates up to 142.918 M bits/s can be achieved on FPGA implementations. 

 

 

 

 ةـــــــلاصـالخ

ٌيحددا  ااالٌحة  أساسحٌٌ المستلم بشكل صحيٌ  احاملٌ   إلىٌمثل معدل نقل المعلومات ووثوقٌة وصول المعلومات 
 إ لزٌحاد  الوثوقٌحة بوصحول المعلومحات بشحكل صحيٌ     الأخطحاءأي منظومة اتصالات التً تستخدم اٌها مصحييات  أداء

ت نقححل البٌانححات باسححتخدام تقنٌححات مجححال البوابححات المنطقٌححة المب مجححة معححدلا أالححى إلححىالتوجححا اليححدٌض ٌتاححم  الوصححول 
تيدثنا ا  تطبٌقحات الحزم  اليقٌقحً والتحً تشحمل نقحل  إذاوخاصة  التأخٌ ال خٌصة التكلفة نسبٌا والعالٌة المساية والقلٌلة 

الم محزات مح  معالجحة ٌكحو  الهحده  حو امحل تصحمٌم متحوازي لكحً تحتمك   الأيٌحا معلومحات وسحا ط متعحدد  افً ا لح  
 المعلومات بس اة االٌة  

اً  ذا البيض تم تقدٌم نمحوذ  ميحو  للم محز النفحاض التقلٌحدي بيٌحض إ  الم محز النحات  متحوازي المعالجحة ومتعحدد 
لتصحمٌم المبعثح  بحدلا مح   register file مح  اسحتخدام الحـ RSCالم ايحل وذلحب بااحاد  تصحمٌم النمحوذ  التقلٌحدي للم محز 

م الحذاك   العادٌحة   بحال  م مح  الزٌحاد  احً يجحم الم محز المقحدم إلا انحا اثبحت كفحاء  االٌحة لنقحل المعلومحات بسح اة استخدا
 المستخدمة  FPGAالى قطعة الـM bit/sec 142.918تجاوزت 

Dr. Raghad. Z. Al-Macdici 
Computer & Software Engineering Department, College of Engineering 

Al-Mustansiriya University, Baghdad, Iraq 

 



Journal of Engineering and Development, Vol. 13, No. 1, March (2009)          ISSN 1813-7822 

 

 128 

1. Introduction 
 

The standard on 3rd generation wireless communications, for instance, recommends 

increasing the data rates in order that the delay in which the data is processed remains small 

enough to be acceptable to the end-user 
[1,2]

. Most of the time, error correcting codes are 

employed, Real-time processing of such codes when high data rates are considered may be a 

rather difficult task 
[2]

. Different strategies can be considered to achieve the real-time 

constraint. Selecting a fast technology can be an adequate solution as it significantly reduces 

the design process complexity 
[3]

. However, this strategy is not compatible with the usual  

low-cost constraint on end-user applications. Cost-effective designs usually require improved 

architectural designing techniques such as parallelization. Pipelining can be a very effective 

parallelization technique allowing high data rates on low-cost technologies such as FPGA 

devices (Field Programmable Gate Arrays) 
[3,4]

. This strategy is adopted in this paper for the 

implementation of RCS (Recursive systematic Convolutional encoder) which is the 

constituent code in Turbo-encoder 
[1,5,6]

. Therefore, the Turbo encoder is a parallel 

concatenation of two systematic convolutional encoders RSC1 and RSC2 as depicted in 

Fig.(1). 

 

RSC2

RSC1IL 

C1

C2

u1

C

u

 

Figure (1) The block diagram of Turbo Encoder 

 

The component encoder RSC2 is preceded by an interleaver (IL), which permutes the 

data sequence. Thus, both components encoders encode the same data apart from the order. 

The output from the encoder (C) is the concatenation of bit streams from the two component 

encoders encoded data is modulated and fed to the channel.        

 

2. Recursive Systematic Convolutional Encoder RSC  
 

In 
[1]

 a slightly complex structure was presented over traditional convolutional encoder 

(non-recursive systematic convolutional encoder NSC).This structure was called a Recursive 

Systematic Convolutional (RSC) encoder. It is made by including feedback in the encoder   

(in similar way to the finite impulse response filter IIR), because (NSC) is not systematic that 

is one of the outputs is not the input itself, the use of a NSC is also unacceptable because of 



Journal of Engineering and Development, Vol. 13, No. 1, March (2009)          ISSN 1813-7822 

 

 129 

the poor distance properties of the resulting code 
[1,5,6,7]

. Hence, the unit weight input will 

always produce a low weight codeword at the input of the second encoder                           

(for Turbo-Encoder). The RSC encoder is systematic and recursive since the state of the 

internal shift register depends on past outputs. Note that the interleaver has no effect on the 

weight distribution of the overall codeword in the case of NSC encoder .However the RSC 

(recursive systematic convolutional encoder) due to the IIR property could generates an 

infinite weight output codeword 
[1]

. The influence of lower weight codeword is to reduce the 

free distance dfree which is the minimum Hamming distance between any two codewords, 

which leads to lower performance. For rate 1/2 RSC encoder, the input to the encoder at time 

k is a bit dk 

 

kk dX  ………………………………………………………………………. (1) 

 

The bit stored in the first delay element, ak can be found using feedback polynomial g1i 

and feed forward polynomial is g2i. The feedback variable is given by: 

 





K

1i

iki1kk )2mod(a*gda ……………………………………………. (2) 

 

and RSC encoder output Yk which called parity data 
[1,3]

, is: 

 





K

0i

i2ikk )2mod(g*aY …………………………………………………… (3) 

 

For example let the input data 10011 to the RSC encoder depicted in Fig.(2) below with 

memory (m=2) and generator polynomials, G1=[111], and,G2=[101] or simply (7,5)oct.  

Table (1). Demonstrates the operation of RSC using successive clock periods when the 

encoder is started by all zero states. 

 

D0 D1
k

C

B

A ka

1ka

2ka

kX

kY

kd

s1s0

 
 

Figure (2) Recursive systematic convolutional (RSC) encoder 



Journal of Engineering and Development, Vol. 13, No. 1, March (2009)          ISSN 1813-7822 

 

 130 

Table (1) RSC encoding process for an input sequence (10011) 
 

dk ak S0 S1 Xk Yk 

1 1 0 0 1 1 

0 1 1 0 0 1 

0 0 1 1 0 1 

1 0 0 1 1 1 

1 1 0 0 1 1 

 

Due to the recursive structure of the RSC encoder it is not sufficient to set the last     

(m)-bits (memory elements) to zero to derive the encoder to all zero state (as the case of 

conventional convolutional encoder) 
[7]

. Solving a state variable equation at the feedback 

elements bringing a RSC encoder to all zeros state. For example in the Fig.(2), the state 

equation at the feedback element is:  

 

2k1kkk aada    ………………………………………………………….. (4) 

 

Solving this equation for kd yield: 

 

2k1kkk aaad    ……………………………………………………. (5) 

 

Since we want to bring the encoder to all zeros state we set ka in above to zero and thus: 

 

2k1kk aad   ……………………………………………………………... (6) 

 

This is the input to the encoder required to force the encoder into all-zeros states. 

Generally the most commonly used trellis termination was first presented in 
[7]

. For the RSC 

encoder shown in Fig.(2), includes a switch with two positions A and B, the switch is at 

position A for the first N-clock cycles (where N-is the frame length),and at position B for the 

additional m-cycles to derive the encoder to all-zero states and hence overcome the problem 

of termination. Two forms of RSC realization will be presented in the next section. 

 

2-1 Serial Encoder   

Figure (3) shows the canonical form of RSC encoder 
[3]

. In this Figure, the encoder 

memory size, corresponding to the state width is m=3-bits. The following equations describe 

the encoder operation during one clock cycle: 

 

)0,...,0,d(F*RR kk1k  ……………………………….……………. (7) 

 

1k1n01k )y,.....,y(Y    = H*]G*R)0,....,0,0,d[( k1k  …………………... (8) 



Journal of Engineering and Development, Vol. 13, No. 1, March (2009)          ISSN 1813-7822 

 

 131 

Where ( yi)  is parity bit , k1m0k )r,...,r(R  . The matrix H is equal to: 

 





























1n,1m0,1m

1n,10,1

1n,00,0

h.h

...

h.h

h.h

H ………………………………………………………. (9) 

 
g0 g1 g2

r0 r1 r2

h3h2h1h0
Yk

g3

dk

kX

  
Figure (3) Serial RSC encoder 

 

And matrix F is equal to: 

 

























0.00

1.00

....

0.10

0.01

*GF  …………………………………………………..………. (10) 

 

where, G is: 

 























 1.0g.g

......

0.0g.g

0.1g.g

G

1m0

20

10

…………………………………….……………... (11) 

 

In serial form of RSC encoder the value of g0 is always set to one. If Rk is the value of 

register at time k which represents the state Si then equation 7 calculates the next state Si+1 to 

be stored in Rk+1. Equation 8 calculates the current output Yk .The serial encoder process a 

single bit per clock cycle. Consequently, the highest data rate that can be achieved is equal to 

the maximal clock frequency. One FPGA implementation, this frequency may be insufficient 

which the case is when the maximal clock frequency is lower than or equal to the device 

frequency. In order to improve speed without changing technology, it is necessary to design 

multiple pipeline architecture for the encoder. 



Journal of Engineering and Development, Vol. 13, No. 1, March (2009)          ISSN 1813-7822 

 

 132 

2-2 Pipeline Parallel Implementation of RSC Encoder 

Parallelization means that more than one input bits are processed in a single clock    

cycle 
[8]

. Hence, the data rate is calculated as: 

 

Rdata=p*fclk ……………………………….………………………………….. (12) 

 

where, p is the number of input bits simultaneously applied at the input of the RSC encoder in 

one clock cycle (p-bit are input and p-bits are output). Two main tasks are implemented by 

classical RSC encoder presented in Fig.(2): 

1. Calculation of next state Si+1 from present state Si. 

2. Compute the output Yk  

These tasks also implemented by the proposed parallel design, but now p-states and      

p-output values are to be computed simultaneously. Thus the final generated state is called the 

future state. The (FSG) future state generation block calculates a future state Si+p from initial 

state Si and p-input bits as indicated in the Fig.(4). 

 

FSG

Si

p-input bits

Si+p

 
 Future state

 
 

Present  state

 
Figure (4) Future state generation block  

 

State  Si+p is named future state because it is not the immediate state comes after  state Si 

like Si+1 but the encoder pass through a chain of p-intermediate states calculation internally 

until it reaches the state Si+p . The mechanism of states generation through a parallel-pipelined 

approach is illustrated in the Fig.(5). 

 

S0 S3 S6 S9 S12

S1

S2

S3

S4

S5

S7

S8

S9S6

S10

S11

S12

S13

S14

S15





Input Data

Intermediate states 

Future states 

 

Figure (5) Mechanism of future states deduction p=3 



Journal of Engineering and Development, Vol. 13, No. 1, March (2009)          ISSN 1813-7822 

 

 133 

Hence to go forward in deriving future state Si+p ,the intermediate states must be held 

first, this is possible by construction of the state diagram for RSC encoder which is simply a 

finite state machine (FSM) 
[2,3]

. For RSC encoder with (m=3) and generator polynomial of 

(13,17)oct the state diagram is as illustrated in Fig.(6). 

 

00/0
S1

S4

S2

S5

S3

S6 S7

00/0

11/1

11/1

01/0

10/1

01/0

10/1

01/0

S0S0

00/0

11/1

00/0

11/1

10/1
01/0

10/1

 

Figure (6) State diagram for (13,17)oct RSC encoder 

 

Following the state diagram presented in Fig.(6) with p=3, if the present state is 

S6=(110), and the input sequence is [001] then the future state is deduced through the 

following sequence of intermediate states tracking (the values above arrows are the input bits 

to the RSC encoder) 

S6

0
S7

0
S3

1
S5

 

The future state is equal to S5. In the same way the (FSG) future state generation block 

is constructed, and the complete results of calculating all possible future states is stored in it. 

Table (2) shows the content of FSG block for case of p=3. 

 

       Table (2) The content of FSG block (LUT) for case of p=3 
 

Input 
000 001 010 011 100 101 110 111 

Pstate 

S0 S0 S4 S2 S6 S5 S1 S7 S3 

S1 S5 S1 S7 S3 S0 S4 S2 S6 

S2 S7 S3 S5 S1 S2 S6 S0 S4 

S3 S2 S6 S0 S4 S7 S3 S5 S1 

S4 S6 S2 S4 S0 S3 S7 S1 S5 

S5 S3 S7 S1 S5 S6 S2 S4 S0 

S6 S1 S5 S3 S7 S4 S0 S6 S2 

S7 S4 S0 S6 S2 S1 S5 S3 S7 



Journal of Engineering and Development, Vol. 13, No. 1, March (2009)          ISSN 1813-7822 

 

 134 

The missing intermediate states Si+j with j=1,…, p are generated through a pipeline from 

initial state Si. of course, there is latency in the intermediate states generation path, with 

correct insertion of delays the p outputs can be picked simultaneously. The outputs are 

calculated from the intermediate states are generated by a p-stage pipeline as depicted in 

Fig.(7), (b and c). The input bits are delayed through the shift register array Fig.(7.a). Hence, 

one clock cycle in the parallel design computes the equivalent p clock in serial design. The 

state Si stored in the register Rk in the stage k is generated (applying the equation 7) from state 

Si-1  in stage k+1 or in the FSG block according to Si-1  being or not another intermediate state. 

The corresponding input bits are taken from the shift register array of Fig.(7.a). Hence each 

stage k generates an output parity bit from the corresponding intermediate state register Rk 

using equation 8. 

 

g
1

g
2

g
3

r20 r21 r22

h
3

h
2

h
1

h
0

g
1 g
2

g
3

r10 r11 r12

h
3

h
2

h
1

h
0

g
1

g
2

g
3

r00 r01 r02

h
3

h
2

h
1

h
0

C
2

out

C
1

out

C
0

out

Future 

State_Generation 

Block

0
ind

1
ind

2
ind

0
outd

1
outd2

outd

)(a

)(outputSystematic

a
rr

a
y

re
g
is

te
r

S
h
if

t
_

_

)(C

)(C

)(C

DDD

DDD

DDD

(b)

 
 

Figure (7) Parallel architecture for the RSC encoder with p=3 



Journal of Engineering and Development, Vol. 13, No. 1, March (2009)          ISSN 1813-7822 

 

 135 

3. System Design Consideration 
 

The function of the interleaver is to permute sequences according to static predefined 

pattern. The main objective with interleaver design is to find a solution that has good 

performance under the intended operating conditions. Generally well performing interleavers 

with good distance spectrums has random interleaving pattern 
[6,9]

. The flow chart of the 

proposed random interleaver is given in Fig.(8). 

 

Start  

Input L_total ,i=0;set test=0;

Generate random number(k) between 0 and 

L_total-1   

Compare this number with previously 

generated (0 to i-1) random numbers, then set 

the value of test (test =1) if this number is 

selected previously 

If test ==1

Cancel the number 

selected 
If i==L_total-1

i=i+1

Perm_array(i)=k

End 

YesNo

YesNo

 
 

Figure (8) Flow diagram of random interleaver 
 

In this flow chart the variable test is used as flag, which is setted if the present selected 

random number between 0 and L_total-1 is generated previously. Hence, it is canceled and 

the program return to generate another random number, otherwise if the value of test =0 then 

the selected random number is stored in permutating array (perm_array). This operation 

continuous until the variable i=L_total-1, then the program is stopped.  From the previous 

description of turbo encoder it is clear that the interleaver memory is associated with two 

different addresses, one natural order address and the other is the permutating order address. 

The natural order address is the output of a simple counter which needs no explanation, while 

the permutating order addresses are derived directly from the interleaving algorithm described 

previously using Lookup-table or (mapper) which map natural order input from counter  to 

one of interleaving memory array locations. Figure (9) illustrates a block diagram of 

proposed random interleaver. 



Journal of Engineering and Development, Vol. 13, No. 1, March (2009)          ISSN 1813-7822 

 

 136 

Permutated  order 

sequence 

Counter 

x=(x+1) mod R 

LUT 

RxR

R

Natural order

 sequence 
 

Figure (9) Block diagram of random interleaver 
 

To get minimum delay at the output of the Turbo encoder, and to preserve parallelism 

obtained with redesigning RSC encoders, the permutated sequence and the natural order 

sequence must be introduced synchronously at the input of the two RSC encoders, for sake of 

that the register file circuit is suggested in the design of interleaver instead of a simple one 

part memory. The basic block diagram of 8-bit width register file cell is shown in Fig.(10). 

 

x8

x8

AEn

BEn

D0-----D7Load
Q0

Q7



ClK

8

8

8

8

8

8
Register file cell

Write port 

Load 

En

Read port 

A

Read port 

B
 

Figure (10) Circuit diagram of single cell in register file 
 

Hence, instead we have single AND gate for single Q-output line (Qi), we need to 

connect two AND gates to each output line, one for port A and the other for port B 
[10]

. The 

read enable lines (AEn, BEn) are used to enable reading word from ports A and B 

respectively. For each read port, the enable signal is connected in common to one output of all 

the eight AND gates. The second input of the eight AND gates connect to the eight lines Q0 to 

Q7. For input frame of size 1024 byte we need (1024)x8-bit register file cells. In order to 

select which register file cell we want to access, three decoders are used to decode the 

addresses, WA9……WA0, RAA9………RAA0, RBA9……RBA0, one  decoder is used for the 

write address and two decoders are used to read from different locations from the register file 

cells. Finally, the block diagram of proposed Turbo-encoder is shown in Fig.(11). Note that 

the input bus width of the RSC encoder indicated in Fig.(8). is 8-bit, not 1-bit width, this 

indicate that the RSC encoder used in the design of proposed Turbo-encoder is the parallel 

and pipelined RSC encoder, where the input bits are applied simultaneously at the input of 

each encoder. 



Journal of Engineering and Development, Vol. 13, No. 1, March (2009)          ISSN 1813-7822 

 

 137 

Counter 

x=(x+1) mod 1024 

LUT 

1024x1024

Register File

Port A Port B

IN 

BUS

1024x8

WE

WA9

WA0



REA

RAA9

RAA0



REB

RBA9

RBA0



ClK

    8

    8

    8

10

10

10

10

10

TO 

RSC1

TO 

RSC2

Clear

CLK

RSC1

RSC2

c1

c2

u

 
Figure (11) The proposed parallel and pipelined turbo-encoder architecture 

 

4. Results  
 

The architecture of proposed parallel and pipelined Turbo encoder has been synthesized 

from generic VHDL model (The polynomial generators and the p and m parameters can be 

selected at synthesis). The simulation and verification of the system consist of the basic 

elements of the Turbo-encoder circuit coded in VHDL, and a clock generator. The flow chart 

of the stages of design and verification of proposed system is depicted in Fig.(12). The 

Modelsim is used for the VHDL simulator. The unit delayed functional simulation is 

performed for the pre-routed design to verify the internal operation of the Turbo-encoder 

circuit. After place-and-rout process, the Design pattern matching (DPM) is performed to 

compare the result and verified the logic as well as timings. 

 

VHDL design 

ModelSim

DPM

Xilinx ISE

Virtex-E

XCV600E

pass

fail

Place & 

Route 

 
Figure (12) Design flow of proposed system to Xilinx FPGA    

 



Journal of Engineering and Development, Vol. 13, No. 1, March (2009)          ISSN 1813-7822 

 

 138 

The design was synthesized, laid out and routed for specific target FPGA to estimate the 

size and speed of the Turbo-encoder circuit implemented in FPGA chip. Through the place 

and route process, the design are targeted and routed successfully into FPGA "Virtex-E 

XCV600E" 
[11]

. Typical area and timing results from the device are shown in Table (3). 

 

Table (3) FPGA resource utilization for virtex-E 
 

Number of GCLK 1 out of 4 25% 

Number of External IOBs 27 out of 158 17% 

Number of Slices 4666 out of 6912 67% 

Total delay 6.997ns  

 

The data rate of the system is calculated by reciprocal of the total delay in Table (3). 

Gving data rate of 142.918 M bits/s. Simulation waveforms are given in Figs.(13a,b,c) and 

(14) for (13, 17)8 RSC encoder. The simulation clock in the ModelSim testbeanch is equal to 

50ns. The critical path depends, on the implementation style (serial or pipelined), the value of 

p employed in simulation waveform is p=8. The latency is about p and 2p for respectively the 

systematic output (out_sys1, out_sys2) and the parity outputs (out_par1,out_par2) as 

compared with the input data, whereas the latency between the input to the first RSC 

(inp_intlv) and the input to the second RSC (out_intlv) is about 9ns, which is the time spend 

in interleaving the input data. The serial implementation of the RSC encoder is given in 

Fig.(14), it is clear that the signals out_sys_s and out_par_s, which are the systematic and 

parity outputs from the encoder respectively, appears at the output with latency no greater 

than 25 ns, (faster that the case of proposed architecture of  RSC) but the output is generated 

bit by bit, not byte by byte which is the case of proposed parallel architecture. 

 

 
 

Figure (13a) Parallel and pipelined turbo encoder simulation results (part A)   



Journal of Engineering and Development, Vol. 13, No. 1, March (2009)          ISSN 1813-7822 

 

 139 

 
Figure (13b) Parallel and pipelined turbo encoder simulation results (part B) 

 

  
 

Figure (13c) Parallel and pipelined turbo encoder simulation results (part C) 
 

 
 

Figure (14) Serial RSC encoder simulation results 



Journal of Engineering and Development, Vol. 13, No. 1, March (2009)          ISSN 1813-7822 

 

 140 

5. Conclusion 
 

In this paper ,an Parallel and Pipelined Turbo-encoder Circuit using FPGA technology 

has been successfully implemented and its preliminary functionality verified, with the 

development of the VLSI technology, the price of FPGA is cheaper and cheaper. Using 

FPGA, we can achieve the higher data rates for the Turbo-encode. The architecture proposed 

in this paper, synthesized from a generic VHDL, allows designing 1/n rate RC systematic 

encoders, with the employing of register file for parallel and synchronous reading data to both 

encoders, as a result presenting high data rates (up to 142.918 M bits/s) on low-cost FPGA 

devices. The p and m parameters (parallelism level and memory width of the code) and the 

polynomial generators can be selected at synthesis. The FPGA resource utilization table for 

Virtex-E shows that the trade-off performance/area is favorable to the pipelined architecture 

which not takes large implementation size, where the size is influenced by the polynomial 

generator choice. 

 

6. References  
 

1. A., Glavieux, C., Berrou, and P., Thitimajshima, "Near Shannon Limit Error-

Correcting Coding and Decoding: Turbo Codes", In IEEE International Conference 

on Communications, Pages 1064-10701, May 1993. 
 

2. Ibrahim, A., Al-Mohandes, "Energy Efficient Turbo Decoder for 3G Wireless 

Terminals", Ph.D. Thesis, University of Waterloo, Electrical and Computer 

Engineering Waterloo, Ontario, Canada, 2005 
 

3. R. M., Bnakar, "A Low Power Design Methodology for Turbo Encoder and 

Decoder", Ph.D. Thesis, Dep. of Electrical Engineering, Indian Institute of 

Technology, Delhi India, July 2004. 
 

4. F., Monteiro, A., Dandache, A., M’Sir, and B., Lepley, "A Fast CRC 

Implementation on FPGA using a Pipelined Architecture for the Polynomial 

Division", IEEE International Conference on Electronics, Circuits and Systems, St 

Julian, Malta, September 2-5, 2001. 
 

5. J., Kaza, and C., Chakrabarti, "Design and Implementation of Low-Energy Turbo 

Decoders", IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 

Vol. 12, No. 9, September 2004. 
 

6. S., Benedetto, and G., Montors, "Concatenated Convolutional Codes with 

Interleavers", IEEE Communications Magazine, August 2003. 
 

7. Matthew, C. Valenti, "Introduction to Turbo Codes", Virginia Polytechnic 

Institute, and State University Publications, 1996. 



Journal of Engineering and Development, Vol. 13, No. 1, March (2009)          ISSN 1813-7822 

 

 141 

8. T., Vallino, S., Piestrak, A., Dandache, F., Monteiro, and B., Lepley, "Study of a 

New Parallel Architecture Dedicated to the Family of the DSCC Codes", IEEE 

International On-Line Testing Workshop, Rhodes, Greece, July 1999. 
 

9. M. S. C., Ho, and S. S., Petrson, "Interleavers for Punctured Turbo Coders", 

Institute for Telecommunications Research, University of South Australia, 1999.                 
 

10. B., Castagnolo, and M., Rizzi, "High Speed Error Correction Circuit Based on 

Iterative Cell", International Journal on Electronics, Vol. 14, No. 4, 1993,             

pp. 529-540. 
 

11. XILINX, "The Programmable Logic-Data Book 2000". 

 



Journal of Engineering and Development, Vol. 13, No. 1, March (2009)          ISSN 1813-7822 

 

 142 

Appendix (A)  
 

(VHDL program for FSG block): 
 

library IEEE; 

use ieee.Std_logic_1164.all; 

entity  FSG  is 

port(Pstate:in std_logic_vector(2downto0);Input_seq :in std_logic_vector(2 down to 0) 

;ClK:in std_logic , Future_state:out  std_logic_vector(2downto0)); 

    End FSG; 

Architecture behavioral of FSG is 

   begin 

     process(CLK) 

Variable control : std_logic;  

         begin 

          if CLK'event and CLK='1'then 

Control =>Pstate & Input_seq 

Case (Control) 

          . 

          . 

          . 
When 000 001 =>Future_state<=100 after t ns; 

When 001 001=>Future_state<= 001 after t ns; 

          . 

          . 

          . 
End Case  ; 

end if;  

End process; End behavioral; 

 
 

 

 

 

 

 


