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Abstract

The main keywords defining the quality of communication system are the data rate
and the data transmission reliability. Error correcting codes are generally employed to
achieve the reliability of the data transmission. The present trend is to achieve high data
rates on low-cost designs (such as FPGAs), especially in real time application including
multimedia transmission. Most of the time, parallel, architectures are required to process
error correcting codes with high data throughput.

In this paper, an effective parallel architecture is proposed for the classical Turbo
encoder based on parallel and pipelining designing of RSC encoder and the
implementation of interleaver using register file. The simulation results shows that the data
rates up to 142.918 M bits/s can be achieved on FPGA implementations.
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1. Introduction

The standard on 3rd generation wireless communications, for instance, recommends
increasing the data rates in order that the delay in which the data is processed remains small
enough to be acceptable to the end-user 2. Most of the time, error correcting codes are
employed, Real-time processing of such codes when high data rates are considered may be a
rather difficult task [?. Different strategies can be considered to achieve the real-time
constraint. Selecting a fast technology can be an adequate solution as it significantly reduces
the design process complexity !, However, this strategy is not compatible with the usual
low-cost constraint on end-user applications. Cost-effective designs usually require improved
architectural designing techniques such as parallelization. Pipelining can be a very effective
parallelization technique allowing high data rates on low-cost technologies such as FPGA
devices (Field Programmable Gate Arrays) 4. This strategy is adopted in this paper for the
implementation of RCS (Recursive systematic Convolutional encoder) which is the
constituent code in Turbo-encoder ™51 Therefore, the Turbo encoder is a parallel
concatenation of two systematic convolutional encoders RSC1 and RSC2 as depicted in

Fig.(1).
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Figure (1) The block diagram of Turbo Encoder

The component encoder RSC2 is preceded by an interleaver (IL), which permutes the
data sequence. Thus, both components encoders encode the same data apart from the order.
The output from the encoder (C) is the concatenation of bit streams from the two component
encoders encoded data is modulated and fed to the channel.

2. Recursive Systematic Convolutional Encoder RSC

In ™M a slightly complex structure was presented over traditional convolutional encoder
(non-recursive systematic convolutional encoder NSC).This structure was called a Recursive
Systematic Convolutional (RSC) encoder. It is made by including feedback in the encoder
(in similar way to the finite impulse response filter 1IR), because (NSC) is not systematic that
is one of the outputs is not the input itself, the use of a NSC is also unacceptable because of

128



Journal of Engineering and Development, Vol. 13, No. 1, March (2009) ISSN 1813-7822

the poor distance properties of the resulting code ™°®". Hence, the unit weight input will
always produce a low weight codeword at the input of the second encoder
(for Turbo-Encoder). The RSC encoder is systematic and recursive since the state of the
internal shift register depends on past outputs. Note that the interleaver has no effect on the
weight distribution of the overall codeword in the case of NSC encoder .However the RSC
(recursive systematic convolutional encoder) due to the IIR property could generates an
infinite weight output codeword ™. The influence of lower weight codeword is to reduce the
free distance diee Which is the minimum Hamming distance between any two codewords,
which leads to lower performance. For rate 1/2 RSC encoder, the input to the encoder at time
k is a bit dy

The bit stored in the first delay element, ax can be found using feedback polynomial gs;
and feed forward polynomial is g,i. The feedback variable is given by:

For example let the input data 10011 to the RSC encoder depicted in Fig.(2) below with
memory (m=2) and generator polynomials, G1=[111], and,G2=[101] or simply (7,5)ct.
Table (1). Demonstrates the operation of RSC using successive clock periods when the
encoder is started by all zero states.

k2
ag_1
B
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Figure (2) Recursive systematic convolutional (RSC) encoder
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Table (1) RSC encoding process for an input sequence (10011)

dx ak So S; Xk Yk

Rlr|lo|lofr
Rlo|lo|lr|r
olo|r|r|o
oflr|r|lolo
Rlr|lo|lofr
Rl |~

Due to the recursive structure of the RSC encoder it is not sufficient to set the last
(m)-bits (memory elements) to zero to derive the encoder to all zero state (as the case of
conventional convolutional encoder) . Solving a state variable equation at the feedback
elements bringing a RSC encoder to all zeros state. For example in the Fig.(2), the state
equation at the feedback element is:

This is the input to the encoder required to force the encoder into all-zeros states.
Generally the most commonly used trellis termination was first presented in [”!. For the RSC
encoder shown in Fig.(2), includes a switch with two positions A and B, the switch is at
position A for the first N-clock cycles (where N-is the frame length),and at position B for the
additional m-cycles to derive the encoder to all-zero states and hence overcome the problem
of termination. Two forms of RSC realization will be presented in the next section.

2-1 Serial Encoder

Figure (3) shows the canonical form of RSC encoder .. In this Figure, the encoder
memory size, corresponding to the state width is m=3-bits. The following equations describe
the encoder operation during one clock cycle:

Ri: = Ry *F b (dy 10,01, 0) couieeeieieiesesesessessesesesssssssssesesesnnns 7)

Yier = Voo Yoot kst =[(0431,0,0,, 0) + R, *GI* H ot (8)
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Where (y;) is parity bit, R = (rg ,---» rm—1 )k - The matrix H is equal to:

I‘-‘0 0 hO,n—l
Ho| Mo Mt | ettt 9)
hrn—l 0 hm—l,n—l

L L/ L/

Figure (3) Serial RSC encoder

And matrix F is equal to:

1 0 .0
01 .0

F=G* R (10)
00 1
00

where, G is:
9% - 9 1 .0
Gl 90 Tz O O e (11)

9% + 9na O .1
In serial form of RSC encoder the value of go is always set to one. If R is the value of
register at time k which represents the state S; then equation 7 calculates the next state S;.; to
be stored in Ry+;. Equation 8 calculates the current output Yy .The serial encoder process a
single bit per clock cycle. Consequently, the highest data rate that can be achieved is equal to
the maximal clock frequency. One FPGA implementation, this frequency may be insufficient
which the case is when the maximal clock frequency is lower than or equal to the device

frequency. In order to improve speed without changing technology, it is necessary to design
multiple pipeline architecture for the encoder.
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2-2 Pipeline Parallel Implementation of RSC Encoder
Parallelization means that more than one input bits are processed in a single clock
cycle B Hence, the data rate is calculated as:

Rdata=p*fc|k .............................................................................. (12)

where, p is the number of input bits simultaneously applied at the input of the RSC encoder in
one clock cycle (p-bit are input and p-bits are output). Two main tasks are implemented by
classical RSC encoder presented in Fig.(2):

1. Calculation of next state S;;; from present state S;.

2. Compute the output Yy

These tasks also implemented by the proposed parallel design, but now p-states and

p-output values are to be computed simultaneously. Thus the final generated state is called the
future state. The (FSG) future state generation block calculates a future state S+, from initial
state S;and p-input bits as indicated in the Fig.(4).

Present state

Si

Si+p
FSG

p-input bits

Figure (4) Future state generation block

State S;.p is named future state because it is not the immediate state comes after state S;
like Si+1 but the encoder pass through a chain of p-intermediate states calculation internally
until it reaches the state S;:, . The mechanism of states generation through a parallel-pipelined
approach is illustrated in the Fig.(5).

Future states

Input Data
—_—

Figure (5) Mechanism of future states deduction p=3
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Hence to go forward in deriving future state S;., ,the intermediate states must be held
first, this is possible by construction of the state diagram for RSC encoder which is simply a
finite state machine (FSM) 3. For RSC encoder with (m=3) and generator polynomial of
(13,17)oct the state diagram is as illustrated in Fig.(6).

Figure (6) State diagram for (13,17),.. RSC encoder

Following the state diagram presented in Fig.(6) with p=3, if the present state is
S¢=(110), and the input sequence is [001] then the future state is deduced through the
following sequence of intermediate states tracking (the values above arrows are the input bits
to the RSC encoder)

0
86—0> S;, —» S; —» S;

The future state is equal to Ss. In the same way the (FSG) future state generation block
is constructed, and the complete results of calculating all possible future states is stored in it.
Table (2) shows the content of FSG block for case of p=3.

Table (2) The content of FSG block (LUT) for case of p=3

Input
000 001 010 011 100 101 110 111

Pstate
SO SO S4 S2 S6 S5 S1 S7 S3
S1 S5 S1 S7 S3 SO S4 S2 S6
S2 S7 S3 S5 S1 S2 S6 SO S4
S3 S2 S6 SO S4 S7 S3 S5 S1
S4 S6 S2 S4 SO S3 S7 S1 S5
S5 S3 S7 S1 S5 S6 S2 S4 SO
S6 S1 S5 S3 S7 S4 SO S6 S2
S7 S4 SO S6 S2 S1 S5 S3 S7

133



Journal of Engineering and Development, Vol. 13, No. 1, March (2009) ISSN 1813-7822

The missing intermediate states S;.j with j=1,..., p are generated through a pipeline from
initial state S;. of course, there is latency in the intermediate states generation path, with
correct insertion of delays the p outputs can be picked simultaneously. The outputs are
calculated from the intermediate states are generated by a p-stage pipeline as depicted in
Fig.(7), (b and c). The input bits are delayed through the shift register array Fig.(7.a). Hence,
one clock cycle in the parallel design computes the equivalent p clock in serial design. The
state S; stored in the register Ry in the stage Kk is generated (applying the equation 7) from state
Si1 in stage k+1 or in the FSG block according to Si.; being or not another intermediate state.
The corresponding input bits are taken from the shift register array of Fig.(7.a). Hence each
stage k generates an output parity bit from the corresponding intermediate state register Ry
using equation 8.
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Figure (7) Parallel architecture for the RSC encoder with p=3
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3. System Design Consideration

The function of the interleaver is to permute sequences according to static predefined
pattern. The main objective with interleaver design is to find a solution that has good
performance under the intended operating conditions. Generally well performing interleavers
with good distance spectrums has random interleaving pattern ©°. The flow chart of the
proposed random interleaver is given in Fig.(8).

Input L_total ,i=0;set test=0;

y
| Generate random number(k) between 0 and
v L_total-1

v

Compare this number with previously
generated (O to i-1) random numbers, then set
the value of test (test =1) if this number is
selected previously

A

Cancel the number
selected

i=i+1 End

Perm_array(i)=k

Figure (8) Flow diagram of random interleaver

In this flow chart the variable test is used as flag, which is setted if the present selected
random number between 0 and L _total-1 is generated previously. Hence, it is canceled and
the program return to generate another random number, otherwise if the value of test =0 then
the selected random number is stored in permutating array (perm_array). This operation
continuous until the variable i=L_total-1, then the program is stopped. From the previous
description of turbo encoder it is clear that the interleaver memory is associated with two
different addresses, one natural order address and the other is the permutating order address.
The natural order address is the output of a simple counter which needs no explanation, while
the permutating order addresses are derived directly from the interleaving algorithm described
previously using Lookup-table or (mapper) which map natural order input from counter to
one of interleaving memory array locations. Figure (9) illustrates a block diagram of
proposed random interleaver.
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Counter
x=(x+1) mod R

v v

Natural order Permutated order
sequence sequence

Figure (9) Block diagram of random interleaver

To get minimum delay at the output of the Turbo encoder, and to preserve parallelism
obtained with redesigning RSC encoders, the permutated sequence and the natural order
sequence must be introduced synchronously at the input of the two RSC encoders, for sake of
that the register file circuit is suggested in the design of interleaver instead of a simple one
part memory. The basic block diagram of 8-bit width register file cell is shown in Fig.(10).

Write port
{ 8 AE”! Read port
A 8
Load 8
En ——3| Load Dy D, QO . _
Register file cell 7> .

CIK —>> Qr -
i Read port
BEn B

Figure (10) Circuit diagram of single cell in register file

Hence, instead we have single AND gate for single Q-output line (Q;), we need to
connect two AND gates to each output line, one for port A and the other for port B % The
read enable lines (AEn, BEn) are used to enable reading word from ports A and B
respectively. For each read port, the enable signal is connected in common to one output of all
the eight AND gates. The second input of the eight AND gates connect to the eight lines Qo to
Q. For input frame of size 1024 byte we need (1024)x8-bit register file cells. In order to
select which register file cell we want to access, three decoders are used to decode the
addresses, WAq...... WAy, RAAg......... RAA,, RBA,...... RBA,, one decoder is used for the
write address and two decoders are used to read from different locations from the register file
cells. Finally, the block diagram of proposed Turbo-encoder is shown in Fig.(11). Note that
the input bus width of the RSC encoder indicated in Fig.(8). is 8-bit, not 1-bit width, this
indicate that the RSC encoder used in the design of proposed Turbo-encoder is the parallel
and pipelined RSC encoder, where the input bits are applied simultaneously at the input of
each encoder.
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Figure (11) The proposed parallel and pipelined turbo-encoder architecture

4. Results

The architecture of proposed parallel and pipelined Turbo encoder has been synthesized
from generic VHDL model (The polynomial generators and the p and m parameters can be
selected at synthesis). The simulation and verification of the system consist of the basic
elements of the Turbo-encoder circuit coded in VHDL, and a clock generator. The flow chart
of the stages of design and verification of proposed system is depicted in Fig.(12). The
Modelsim is used for the VHDL simulator. The unit delayed functional simulation is
performed for the pre-routed design to verify the internal operation of the Turbo-encoder
circuit. After place-and-rout process, the Design pattern matching (DPM) is performed to
compare the result and verified the logic as well as timings.

VHDL design
v
ModelSim hl
v
Xilinx ISE Place &
Route
¢ fail

pass

Virtex-E
XCV600E

Figure (12) Design flow of proposed system to Xilinx FPGA
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The design was synthesized, laid out and routed for specific target FPGA to estimate the
size and speed of the Turbo-encoder circuit implemented in FPGA chip. Through the place
and route process, the design are targeted and routed successfully into FPGA "Virtex-E
XCV600E" ™. Typical area and timing results from the device are shown in Table (3).

Table (3) FPGA resource utilization for virtex-E

Number of GCLK 1outof4 25%
Number of External IOBs 27 out of 158 17%
Number of Slices 4666 out of 6912 67%
Total delay 6.997ns

The data rate of the system is calculated by reciprocal of the total delay in Table (3).
Gving data rate of 142.918 M bits/s. Simulation waveforms are given in Figs.(13a,b,c) and
(14) for (13, 17)s RSC encoder. The simulation clock in the ModelSim testbeanch is equal to
50ns. The critical path depends, on the implementation style (serial or pipelined), the value of
p employed in simulation waveform is p=8. The latency is about p and 2p for respectively the
systematic output (out_sysl, out sys2) and the parity outputs (out_parl,out par2) as
compared with the input data, whereas the latency between the input to the first RSC
(inp_intlv) and the input to the second RSC (out_intlv) is about 9ns, which is the time spend
in interleaving the input data. The serial implementation of the RSC encoder is given in
Fig.(14), it is clear that the signals out_sys s and out_par_s, which are the systematic and
parity outputs from the encoder respectively, appears at the output with latency no greater
than 25 ns, (faster that the case of proposed architecture of RSC) but the output is generated
bit by bit, not byte by byte which is the case of proposed parallel architecture.

Figure (13a) Parallel and pipelined turbo encoder simulation results (part A)
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Figure (14) Serial RSC encoder simulation results
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5. Conclusion

In this paper ,an Parallel and Pipelined Turbo-encoder Circuit using FPGA technology
has been successfully implemented and its preliminary functionality verified, with the
development of the VLSI technology, the price of FPGA is cheaper and cheaper. Using
FPGA, we can achieve the higher data rates for the Turbo-encode. The architecture proposed
in this paper, synthesized from a generic VHDL, allows designing 1/n rate RC systematic
encoders, with the employing of register file for parallel and synchronous reading data to both
encoders, as a result presenting high data rates (up to 142.918 M bits/s) on low-cost FPGA
devices. The p and m parameters (parallelism level and memory width of the code) and the
polynomial generators can be selected at synthesis. The FPGA resource utilization table for
Virtex-E shows that the trade-off performance/area is favorable to the pipelined architecture
which not takes large implementation size, where the size is influenced by the polynomial
generator choice.
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Appendix (A)
(VHDL program for FSG block):
library IEEE;
use ieee.Std_logic_1164.all;
entity FSG is

port(Pstate:in std_logic_vector(2downtoQ);Input_seq :in std_logic_vector(2 down to O0)
;CIK:in std_logic , Future_state:out std_logic_vector(2downto0));
End FSG;
Architecture behavioral of FSG is
begin
process(CLK)
Variable control : std_logic;
begin
if CLK'event and CLK="1'then
Control =>Pstate & Input_seq
Case (Control)

When 000 001 =>Future_state<=100 after t ns;
When 001 001=>Future_state<= 001 after t ns;

End Case ;
end if;
End process; End behavioral;
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