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Analysis of Composite Plate Subjected to Impact Load 
(Part I: Analytical Solution)* 

 

 

 

Abstract 
 

Composite laminated plates are found in many types of structural and aeronautical 

weight sensitive applications, such as, ships, automobiles. This work includes developing 

the equations of motion of composite laminated plates to obtain deformations and stresses 

under impact loading. 

The Hertzian impact law is modeled to describe the contact force between the 

projectile and the laminated plates. Analytical solution using (Navier solution) and theories 

(First Order Shear Deformation Theory „FSDT‟ and Higher Order Shear Deformation 

Theory „HOST 5‟) is presented. The results show the parametric effect of number of layers, 

lamination angle, and orthotropy ratio on the behavior of the laminated plates. 
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1. Introduction  
 

Deformation engineering of modern composite materials has had a significant impact on 

the technology of design and construction. The advanced composite materials are lighter, 

stiffer and stronger than any other structural material man has ever used. Composite materials 

are ideal for structural applications where high strength-to-weight and stiffness-to-weight 

ratios are required. Aircraft and spacecraft are typical weight-sensitive structures in which 

composite materials are cost-effective.  

Although the response of composite material to particle or foreign-body impact could be 

studied using empirical or semiempirical approaches, this appears undesirable because of the 

large and costly efforts that would be required to cover the various combinations of 

constituent material, layups, stacking sequences and constructions. The determination of the 

available fibers for impact response would constitute a monumental task. When designing for 

impact response, it appears desirable to have a criterion for determining how the various 

properties of the target and the impact parameters influence target damage. The analytical 

approach described here is oriented towards that goal. 

In early days, Classical Lamination Theory (CLT) based on the Kirchhoff hypothesis 

was adopted for the analysis of laminated composite plates. It was soon realized that this 

theory which neglects shear strain and transverse normal strain and stress is inadequate for the 

analysis of laminated composite plates as transverse shear effects are more pronounced, even 

in thin composite plates. This realization was the starting point in the development of the First 

Shear Plate Theory, in which the displacements are taken linearly over the thickness of the 

entire laminate of each layer with the assumption that the normal to the middle surface need 

not remain normal after deformation. Reissner 
[1]

 and Mindlin 
[2]

 initiated this work. However, 

both of these theories 
[1,2]

 neglected the effects of transverse normal strain and stress and were 

based on a non-realistic (constant) variation of the transverse shear strain and stress through 

the plate thickness. This necessitated the introduction of a shear correction factor. Later, these 

discrepancies were rectified by introducing higher-order functions in the displacement model 

leading to the higher-order plate theories. Yang, P. C. et. al. 
[3]

 extended the Rissner-Mindlin 

shear deformation theory of isotropic homogeneous plates to laminates composite plate. 

Whitney and Pagano 
[4]

 incorporated plane Stress State into the theory of Yang 
[3]

 in 

connection with the analysis of thick laminated plates. Whitney 
[5]

 applied this theory to 

calculate the in-plane stresses, which in turn are used in equilibrium equations to evaluate the 

inter-laminar transverse stresses. A generalized Le'vy-type solution in conjunction with the 

closed form solution was developed for the bending, buckling and vibration of antisymmetric 

angle-ply laminated plates by A. A. Khdeir 
[6]

. A higher-order shear deformation theory of 

laminated composite plates was developed by J. N. Reddy 
[7]

. This theory contains the same 

dependent unknowns as in the first-order shear deformation theory of Whitney and Pagano 
[4]

. 

P. Bose and J. N. Reddy 
[8]

 presented a unified third-order laminated plate theory that contains 

classical, first and third-order theories as special cases. Analytical solution using the Navier 

solution procedure was presented. 
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2. First Order Shear Deformation Theory (FSDT) 
 

The displacement in x, y and z directions can take the following form 
[9]

:    

 

u(x,y,z)=uo (x,y)+z x(x,y)   

v(x,y,z)=vo(x,y) +z y(x,y)  .............................................................................. (1)                                                                              

w(x,y,z)=wo(x,y)                 

 

The strain components will be derived, based on the displacement, as: 
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Substituting eq.(2) in the stress-strain relation of the lamina, the constitutive relations 

for any layer in the (x , y) can be expressed in the form 
[10]

: 
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where: 
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[T]: Transformation matrix given by: 
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where:  

c: cos  ,    

s =sin   

Q11=E1/(1-v12v21), Q12=v12E1(1-v12v21), Q22=E2/(1-v12v21), Q33=G12, Q44=G23, Q55=G13                                     
 

The transformation eq.(5) can be represented in the following form: 
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4
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2
c

2
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4
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2
c

2
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4
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3
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3
c  …............................................. (6)                                                                                                           
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all other elements of [Qij] and [Q ij] are zero. 

 

The entire collection of forces and moments resultants for N-layered laminate is defined 

as: 
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After substituted eq.(3) into eq.(7) yielding: 
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and Kij are the transverse shear correction factors. Kij= 12/2  
[11]

. 

 

3. Differential Equations of Equilibrium of Laminated Plates 
 

The equilibrium differential equations in terms of the moments and forces resultants for 

a plate are 
[9]

: 

Nx’x+Nxy’y=I1 u +I2 x
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Qx’x+Qy’y=I1 w +q(x,y,t)  …............................................................................ (10) 

Mxy’y -Qx=I2 u +I3 x
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Mxy’x+My’y-Qy=I2 v +I3
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where, a comma denotes differentiation of principal symbol with respect to the subscript, 

q(x,y,t) is the applied load and I1, I2, I3 ,are the normal, coupled normal- rotary and rotary 

inertia coefficients, defined as: 
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4. Higher Order Shear Deformation Theory (HOST 5) 
 

A higher-order laminated plate theory involves, the in plane displacement (u,v) 

expanded up to the cubic term in the thickness term z, and the transverse displacement w 

which is constant through plate thickness is considered. This is done to take into account the 

parabolic variation of the transverse shear stresses through the thickness of the plate 
[8]

. 
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The constitutive relations for any layer in the (x,y) can be expressed in the form 
[10]

: 
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where: 
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The following definition for stress-strain is resultant expressions appropriate to the 

higher order shear deformation theory: 



Journal of Engineering and Development, Vol. 13, No. 1, March (2009)               ISSN 1813-7822 
 

 21 

 dzz,z,1

MMN

MMN

MMN
3

N

1L

h

h

xy

y

x

xyxyxy

yyy

xxx
1L

l

 
















































….................................. (15 a) 

 

 dzz,1
QQ

QQ
2

N

1L

h

h yz

xz

yy

xx
1L

l

 




 


























…........................................................ (15 b)              

 

after substituted eq.(13) into eq.(15) yielding: 
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where: Aij, Bij, etc., are the plate stifnesses, defined by: 

 

      

      5,4j,idzz,z,1QF,D,A

6,2,1j,idzz,z,z,z,z,1QH,F,E,D,B,A
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42k
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2
h

2
h

6432k

ijijijijijijij













 …..... (17) 

 

5. Differential Equations of Equilibrium of Laminated Plates 
 

The equilibrium differential equations in terms of the moments and forces resultants for 

a plate are 
[12]

: 
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where: 
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dzz,z,z,zz,1,ρI,I,I,I,I,I …..................................... (19 b) 

 

6. Exact Solution for Simply Supported Rectangular Plates  
 

The exact analytical solution of the differential equations (10) (FSDT), and (18)    

(HOST 5) for a general laminate plate under arbitrary boundary conditions is impossible task. 

However, closed-form solution for ‘simply-supported’ rectangular plates is to be considered. 

The following simply supported boundary conditions are assumed, see Fig.(1). 

u(x,0)=u(x,b)=v(0,y)=v(a,y)=0                                      cross-ply  

Ny(x,0)=Ny(x,b)=Nx(0,y)=Nx(a,y)=0                   

v(x,0)=v(x,b)=u(0,y)=u(a,y)=0                      angle-ply   ….......................... (20) 

Nxy(x,0)=Nxy(x,b)=Nxy(0,y)=Nxy(a,y)=0               

w(x,0)=w(x,b)=w(0,y)=w(a,y)=0  

M y(x,0) = 
M y(x,b) = 

M x(0,y) = 
M x(a,y)=0          cross-ply & angle-ply  

 My(x,0) = My(x,b) = Mx(0,y) = Mx(a,y)=0                                       

 x (x,0)= x (x,b)= y (0,y)= y (a,y)=0 

 

a

b

x

y

 

Figure (1) Geometry and the co-ordinate system of a rectangular plate 
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The analytical solution can be obtained by using the equations of (FSDT) as in the 

following: 

Substituting eq.(8) into eq.(10) yields: 

   

 

 
tt,y2tt1yy,x26yy,y22yy26yy22xx,y66xy,x1266
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tt,x2tt1yy,x66yy,y26yy66yy26xx,y16xy,x16

xy,y6612xx,x11xx16xy16xy6612xx11

I,vIBB,uA,vABBB

B2B,vA,uAA,vA2,uA

I,uIBB,uA,vABB2

BBB,vA,uA2,vAA,uA
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



 … (21) 

 

7. Static Solution 
 

The exact static solution exists for antisymmetric cross-ply and antisymmetric angle-ply 

rectangular plates, when the inertial loads on the right hand side of eq.(21) are set to zero. 

According to the Navier solution, the following form of spatial variation of  yx ,,w   

that satisfies the differential equations, eq.(21) and the boundary conditions in eq.(20) can be 

assumed: 
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1n,m

mny

1n,m

mnx

1n,m

mn

ycosxsinY

,ysinxcosX

,ycosxsinWw

 ............................................................................ (22 a) 

 

where:  
b

nand
a

m   . The variation of u and v is different for antisymmetric 

cross-ply and antisymmetric angle-ply laminates. 
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


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









1n,m

mn

1n,m

mn

ycosxsinVv

,ysinxcosUu

antisymmetric cross-ply  

                                                                                                            ................................ (22 b) 


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



1n,m

mn

1n,m

mn

ysinxcosVv

,ycosxsinUu

   antisymmetric angle-ply  

 

By substituting eq.(22) into eq.(21), the solution to these equations exists when the 

transverse loading is: 

 

  





1n,m

mn ysinxsinQy,xq …........................................................................ (23) 

 

where:  

Qmn: can be evaluated for different types of loading conditions as 
[8]

: 

 

       PLcentertheatloadintpofor2/nsin2/msinab/p4Qmn   ..... (24) 

 

Under these conditions eq.(22) becomes: 

 

    FK   …................................................................................................... (25) 

 

where: 

   

   00Q00F

YXWVU

mn

mnmnmnmnmn




      

 

The elements of the coefficient matrix [K] (Stiffness Matrix) are given in 
[10]

. When the 

(HOST 5) is employed, using the same above procedure, the [K] matrix is calculated and given 

in 
[10]

. 

 

8. Theory Development of Impact 
 

The rate of change of velocity during impact (as the two bodies come in contact) is: 

 

p
dt

dV
m 1

1  …................................................................................................... (26) 

 

If we denote by the same distance that the impactor and target approach one another 

because of local compression at the point of contact, the velocity of this approach is: 
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21 VV   ….................................................................................................... (27) 

 

If the contact duration between the impactor and the target is very long in comparison 

with their natural periods, vibrations of the system can be neglected. Therefore, the Hertzian 

law is applicable. 

 

2
3

1np  …......................................................................................................... (28) 

 

The term n1 is defined as: 
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21
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  …........................................................................................... (29) 

 

where:  

k1,k2: depend on properties of impactor and target and defined in 
[10]

: 
 

Differentiating (27), combining it with (26), and substituting of (28) into the resultant 

equation yields: 
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


 …................................................................................................... (30) 

 

If both sides of eq.(30) are multiplied by   and the resultant equation is integrated 

yield: 
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  ….................................................................................... (31) 

 

where:  

V: is the approach velocity of the two bodies at t = 0, that is, at the beginning of impact.  
 

Maximum deformation, 1 , occurs when  =0 and is 
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Vm5




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
 …............................................................................................. (32) 

 

Substituting of eq.(32) in to eq.(28) gives the following final relationship:  
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For the case of the Hertzian contact problem involving a sphere pressed onto a flat 

surface by a force P, the area of contact is very small, therefore we assumed that the impact 

force is concentrated at the point of contact. 

 

9. Result and Discussion 
 

In the following it is assumed that the material is fiber-reinforced and remains in the 

elastic range. The boundary conditions are SSSS, and the analytical procedure (HOST 5) is 

used in this work. 

The material properties are: 

E2 =6.92 x10
9
 N/m

2
, E1= 40E2, G12 =G13 =0.5E2, G23 =0.6E2, v12=0.25 

Dimensions of plate:   

a=1 m   ,     b=1 m     ,   h=0.02 m 

Properties of impactor: 

E=200 x10
6 

N/m
2     

   ,   
 
v=0.3       ,     mass = 0.1 kg    ,    Radius =0.01 m  

 

From Figs.(2) and (3) it can be observed that the effect of coupling between bending and 

extension on deflections is significant for all modulus ratios except those quite close to    

E1/E2 =1.  
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Figure (2) Effect of orthotropic ratio on a maximum deflection of a square 

antisymmetric angle-ply laminated plate (V=10 m/sec) 
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Figure (3) Effect of orthotropic ratio on a maximum deflection of a square 

antisymmetric cross-ply laminated plate (V=10 m/sec) 

 
Figures (4) and (5) show the relation between similar calculations, which is repeated for 

the case of (20 m/sec) velocity of impactor, respectively. 
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Figure (4) Effect of orthotropic ratio on a maximum deflection of a square 

antisymmetric angle-ply laminated plate (V=20 m/sec) 
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Figure (5) Effect of orthotropic ratio on a maximum deflection of a square 

antisymmetric cross-ply laminated plate (V=20 m/sec) 
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In general, The central deflection decreases with the increase in orthotropic ratio 

(E1/E2) and the number of layers due to increasing the stiffness of the laminate, but it 

increases with the increase in the velocity of impactor due to the increase in impact loading. 

The difference in deflections between the 2 and 6 or 8 layers is quite substantial due to the 

bending-stretching coupling which is vary according to layer numbers. 

Figure (6) shows the relation between the lamination angle (

deflection of a square antisymmetric laminated plates, which consist of 2, 4, 6 and   layers. 

Clearly, coupling is quite significant for two-layered laminates, which decreases as the 

number of layers increases. Increasing N more than 8 for antisymmetric laminate has no effect 

on the laminate stiffness because Bij die out when N=

deflection with 

 =5

o
 to  =30

o
, therefore, for design purpose 

 mended to be between 30
o
 and 45

o
. 
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Figure (6) Effect of lamination angle on a maximum deflection of a square 

antisymmetric angle-ply laminated plate (V=15 m/sec) 
 

As it is indicated from Fig.(7) the central deflection reduces with the increase of (E1/ E2) 

ratio due to the increase of laminate stiffness. Furthermore, the minimum deflection occurs 

when the lamination angle is equal to 
o
. 
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Figure (7) Effect of lamination angle and orthotropic ratio on a maximum 
deflection of a square antisymmetric angle-ply laminated plate (V=10 m/sec) 

 

Figure (8) shows the effect of lamination angle on the stiffness-to-weight ratio, for 

antisymmetric angle-ply laminates with 2, 4, and 6 layers. This figure shows that increasing 

lamination angle from (
o
  45


), increases stiffness-to-weight ratio by:  and 
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Figure (8) Effect of lamination angle on the stiffness-to-weight ratio  
of antisymmetric angle-ply laminates 

 

Figures (9) and (10) show the variation of yx and   respectively through the 

thickness with respect to the point of impact. The distribution of stresses through the 

thickness is discontinuous due to change of layers properties. The stress vanishes at the center 

of plate (neutral axis of plate). Also, the maximum stress value occurs at the top and the 

bottom of the plate due to tension and compression states of plate. 
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Figure (9) Stress distribution xthrough the thickness  
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Figure (10) Stress distribution y through the thickness 

 
10. Conclusions 

 

The main conclusions of this work for static analyses are the coupling between bending 

and extension Bij decreases the effective stiffness. 

The effect of degree of orthotropy (E1/E2) becomes more pronounced as the number of 

layers increases (for the same laminate thickness). Increasing (E1/E2) decreases the maximum 

deflection. 

The number of layers N in the laminated plates affects the laminated plate stiffness, in 

two different manners (for symmetric and antisymmetric laminates). For symmetric laminate 

(coupling stiffness Bij = 0) increasing N increases the extensional stiffness Aij and bending 

stiffness Dij, while for antisymmetric laminate, increasing N decreases the coupling stiffness 

Bij. For antisymmetric laminates (which consist of equal thickness layers), increasing N more 

than 8 does not affect the laminate stiffness, that is at (N = 8) Bij vanish. 

For an angle-ply laminated plate, it is found that, (= 45
o
) represents the best 

lamination angle at which minimum deflection and maximum stiffness-to-weight ratio are 

achieved. 

Maximum deflection and stresses occurs at the point of contact on the top and bottom 

surface of the plate. 
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List of Symbols 
 

Aij Extension stiffness element (N/m). 

a, b Dimensions of rectangular plate in x and y directions (m). 

Bij Bending-extension coupling stiffness element (N). 

Dij Bending stiffness element (N. m). 

Eij, Fij, Hij Higher-Order stifnesses N.m2, N.m3 and N.m5 respectively.  

m, n Longitudinal and Transverse mode shape. 

m1 Mass of impactor (kg). 

Mx, My, Mxy Resultant Moments per unit length (N. m / m) respectively. 


xyyx MMM ,,  High-order stress-resultants (N m).  

N Number of laminate’s layers. 

Nx, Ny, Nxy Resultant forces per unit length (N/m). 

P Impact load (N). 

Qij Element of elasticity matrix (N/m2).  

ijQ  Transformed stress-strain relation (N/m2).  

Qx, Qy Shear forces per unit length (N/m). 


yx QQ ,  High-order shear forces (N. m) 

R1 Radius of a spherical impactor (m). 

u, v, w Displacement in the x, y and z directions (m) respectively. 

V1, V2 Initial velocity of impactor and target (m/sec) respectively. 

xx                       Distance from impact point (m). 

x , y  Rotations of the transverse normal in xz and yz plane. 

i  High-order transverse cross section deformation mode 

 

 
 

 


