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Abstract

Composite laminated plates are found in many types of structural and aeronautical
weight sensitive applications, such as, ships, automobiles. This work includes developing
the equations of motion of composite laminated plates to obtain deformations and stresses
under impact loading.

The Hertzian impact law is modeled to describe the contact force between the
projectile and the laminated plates. Analytical solution using (Navier solution) and theories
(First Order Shear Deformation Theory ‘FSDT’ and Higher Order Shear Deformation
Theory ‘HOST 5°) is presented. The results show the parametric effect of number of layers,
lamination angle, and orthotropy ratio on the behavior of the laminated plates.
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1. Introduction

Deformation engineering of modern composite materials has had a significant impact on
the technology of design and construction. The advanced composite materials are lighter,
stiffer and stronger than any other structural material man has ever used. Composite materials
are ideal for structural applications where high strength-to-weight and stiffness-to-weight
ratios are required. Aircraft and spacecraft are typical weight-sensitive structures in which
composite materials are cost-effective.

Although the response of composite material to particle or foreign-body impact could be
studied using empirical or semiempirical approaches, this appears undesirable because of the
large and costly efforts that would be required to cover the various combinations of
constituent material, layups, stacking sequences and constructions. The determination of the
available fibers for impact response would constitute a monumental task. When designing for
impact response, it appears desirable to have a criterion for determining how the various
properties of the target and the impact parameters influence target damage. The analytical
approach described here is oriented towards that goal.

In early days, Classical Lamination Theory (CLT) based on the Kirchhoff hypothesis
was adopted for the analysis of laminated composite plates. It was soon realized that this
theory which neglects shear strain and transverse normal strain and stress is inadequate for the
analysis of laminated composite plates as transverse shear effects are more pronounced, even
in thin composite plates. This realization was the starting point in the development of the First
Shear Plate Theory, in which the displacements are taken linearly over the thickness of the
entire laminate of each layer with the assumption that the normal to the middle surface need
not remain normal after deformation. Reissner ™ and Mindlin ™ initiated this work. However,
both of these theories ™% neglected the effects of transverse normal strain and stress and were
based on a non-realistic (constant) variation of the transverse shear strain and stress through
the plate thickness. This necessitated the introduction of a shear correction factor. Later, these
discrepancies were rectified by introducing higher-order functions in the displacement model
leading to the higher-order plate theories. Yang, P. C. et. al. ¥ extended the Rissner-Mindlin
shear deformation theory of isotropic homogeneous plates to laminates composite plate.
Whitney and Pagano ' incorporated plane Stress State into the theory of Yang P! in
connection with the analysis of thick laminated plates. Whitney ! applied this theory to
calculate the in-plane stresses, which in turn are used in equilibrium equations to evaluate the
inter-laminar transverse stresses. A generalized Le'vy-type solution in conjunction with the
closed form solution was developed for the bending, buckling and vibration of antisymmetric
angle-ply laminated plates by A. A. Khdeir !, A higher-order shear deformation theory of
laminated composite plates was developed by J. N. Reddy ). This theory contains the same
dependent unknowns as in the first-order shear deformation theory of Whitney and Pagano 1.
P. Bose and J. N. Reddy ™! presented a unified third-order laminated plate theory that contains
classical, first and third-order theories as special cases. Analytical solution using the Navier
solution procedure was presented.
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2. First Order Shear Deformation Theory (FSDT)

The displacement in x, y and z directions can take the following form :

u(X,y,z)=Uo (X,y)*+Z ¢ x(X.y)
V(X,Y,Z)=Vo(X,Y) FZP y(X,Y) oo 1)
W(X,y,Z)=Wo(X,y)

The strain components will be derived, based on the displacement, as:
_ou_ou,  0p,

g, =
oxX  0OX OX

8V aVo a¢y
8y=a—= +Za—
y oy oy
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Substituting eq.(2) in the stress-strain relation of the lamina, the constitutive relations
for any layer in the (x , y) can be expressed in the form 1°!:

5 5 6. (e ow,
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[T]: Transformation matrix given by:

2 2

c S sc 0 O
s2 ¢ —-sc 0 O
[T]=|-2sc 2sc c2-s? 0 O
0 0 c -5
0 0 0 s C |
where:
c: cos 4,
s=sin 0

Qu=E/(1-V12Va1), Q12=Vi2E1(1-V15Va1), Q2o=E2/(1-V12V21), Q33=G12, Qa4=Gos, Qs5=GC13

The transformation eq.(5) can be represented in the following form:

Q 11=QuiC™+2(Q1+2Qa3)s’c*+Qys8"

Q 12=(Q11+Q22-4Qg3)s°c*+Qyp(s*+¢*)

Q 2=Qu15"+2(Q12+2Q33)s’c’+QpC”

Q 16=(Q11-Q12-2Q33)5C+(Q12-Q2+2Q33)5°C wvvrrvvererererreeereceeerereseeeeerreeen (6)

6 26=(Q11-Q12-2Q33)cs’+(Q12-Q22+2Qs3)sC”
(3 66=(Qo6+Q22-2Q12-2Q33)s°C’+Qa3(s*+¢”)
6 24=QuaaC?+Qss8, 6 45=(Qs5-Qu4)sC, 6 55=QaaS’+QssC’

all other elements of [Q;;] and [(3 ij] are zero.

The entire collection of forces and moments resultants for N-layered laminate is defined

as.
N Ml o 1o Q, " Ty,
N, M, :j o, (,2)dz =j UZ e, )
ny Mxy _A TX)’ k QX _% b -

Nx A11 A12 A16 82 Bll BlZ BlG Rx
N, t=| A, A, AgRed t4[By By Bog [{ R, b eeernnrninnnns (8a)
ny A16 Aze Aee ’ng BlG Bze Bee ny
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Mx Bll BlZ BlG Si D11 D12 D16 Rx
M, p=[By, B, By [el t+|Dy Dy Dy SRy feveviiiiiinn (8b)
Mxy BlG Bze Bee Y?(y D16 Dze Des ny
+6W0
{Qy} _ |:A44 A45j| Y ay (8C)
Qx A45 Ass ¢ 6W0
00X
where:
Aij kZ( ) (Zk Zk—l)’
JEE> N CHNCEETR =28 ©
1SN (=
Dij = _Z(QIJ)k(Zi _Zi—l)
ij — KZZ(QIJ) (Zk Zk 1 i’j=4’5

and K;; are the transverse shear correction factors. Kij:ﬂz /12 ™

3. Differential Equations of Equilibrium of Laminated Plates
The equilibrium differential equations in terms of the moments and forces resultants for
a plate are ©':
NyoxtNyyy=lit+12¢,
NuystNyy=l1 g+,
QuxtQyy =l FAOGY L) e (10)
Myyy -Qu=lati 3¢,
Myyx+Myy-Qy=la i+l ¢,

where, a comma denotes differentiation of principal symbol with respect to the subscript,

q(x,y,t) is the applied load and Iy, I, I3 ,are the normal, coupled normal- rotary and rotary
inertia coefficients, defined as:

(1L, 12, 13)= fp(l,z,zz)dz -y pr<k>(1,z,22)dz ........................................... (11)
-hy k=lg,
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4. Higher Order Shear Deformation Theory (HOST 5)

A higher-order laminated plate theory involves, the in plane displacement (u,v)
expanded up to the cubic term in the thickness term z, and the transverse displacement w
which is constant through plate thickness is considered. This is done to take into account the
parabolic variation of the transverse shear stresses through the thickness of the plate .

u(x,v,z,t)=u,(x,y,t)+z

v(x,v,z,t)=v,(x,y,t)+2

w(x,y,z,t)=w,(xy.t)

_¢X(><.y,t)

¢, (x.y.1)

4@

-3 h]2(¢x(x,y,t)+

4(%]2(¢y(x,y,t)

3

aW(x,y,t))}

OX

ow
~ ’ yt
+ay(><y

The constitutive relations for any layer in the (x,y) can be expressed in the form 1%

Oy §11 §1z §l6 £ \ R, Sy
o, ¢ =|Qu Qxz Qu ) P+ Z3 R P+ Z°{S, Phereiiins (13 a)
Ty ), Qi Qz Qg ‘ ’Y?(yJ R,y S,y
_ — ¢ + aWO j
{Tﬂ} {Q“ Q“S} Toy >+3z2{ey} ........................................ (13b)
Txe)i [ Qas Qss ) +6Wo 0,
T oX
where:
0 4 éﬂﬂbx
e e O et (14 a)
0, 3n|ow
A
[, X [,
Sl (Rl 2 | g2
g’ L=/ aVO > {R = & - S =4 ¥y e (14b)
y ay y ay y ay
o) au, ov | o) oy, an | O foe, oe,
[0y  OX | oy  ox | oy  ox |

The following definition for stress-strain is resultant expressions appropriate to the

higher order shear deformation theory:

20



Journal of Engineering and Development, Vol. 13, No. 1, March (2009) ISSN 1813-7822

Nx Mx M: N hisa X

N, M, M |= o, (L. 2, 22 o (15 a)
* L=1 h,

ny I\/Ixy Mxy Xy

after substituted eq.(13) into eq.(15) yielding:

NX [ Ay Ap AlG [ By B, Blﬁ_ En Ep E16 | Ex
0
NY Ap Ay By, By Ey Ex &y
N,y SYM As| |SYM B | |SYM Ee | || (&%
M, D, Dy, Dy Fo Fo Fg R,
<< My Cr= Dzz Dze F22 F26 < RY ((
My |SYM Des | |SYM Fes Ry ]
(M: Hy, Hp, Hy S,
IMJ ¢ SYM Hy Hy S, ¢
| \M:y L SYM Hes | | \ Sxy)
g ¢ + aWO
Q, Ass Ay Do Dy || T px
J Qi/ _ A44 D45 D44 J ¢y + 6W° L
Qx Fis  Fas 308y
Q; SYM Fu X
L8, (16)
where: Aj;, Bj;, etc., are the plate stifnesses, defined by:
%—(k)
(Ay.By.DyEy FiHy )= [Q 0Lz 22.2% 24 2k (1,i=1,26)
X e (17)
2
_(k) 2 _4 d -
Ay Dy Fy)= [Qy (1222 )z (i,i=45)
Bz
2

5. Differential Equations of Equilibrium of Laminated Plates

The equilibrium differential equations in terms of the moments and forces resultants for
a plate are *%:

y 4
* Ny x + Nyyy = il + gy T3 ALY

. - 4 ..
* ny’X+Ny,y:I1V+F2¢y—ﬁl4w,y
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* QX,X + Qy,y - %(Q:(,X + Q:/,y)+ %(M;,XX + 2M>*<y,><y + M;,yy)

:Il\'/\'/—;—ril7(w'xx+w,yy)+%l4(u +V, t o7 (¢XX+¢yy)) a(x,y.t) .

.. (18)
4 4( . )
* MXVX+MXW—QX+FQX—W MX,X+Mny 1“u+1"3<|>y hzl"sw
( * a) . L 4 .
* My yy Qy+h2Q 3h2 ny+My'y =1“2v+1"3¢y—ﬁl"5w,x
where:
4 4 8 16
r2=|2—wl4 y r5=|5—wl7 y r3=|3—wl5+wl7 ...... (19a)

Zk41

(|1,|2,|3,|4,|5,|7)_Zj 1,2,22,2°,2 202 oo (19 b)

k=1 Zy

6. Exact Solution for Simply Supported Rectangular Plates

The exact analytical solution of the differential equations (10) (FSDT), and (18)
(HOST 5) for a general laminate plate under arbitrary boundary conditions is impossible task.
However, closed-form solution for ‘simply-supported’ rectangular plates is to be considered.
The following simply supported boundary conditions are assumed, see Fig.(1).

u(x,0)=u(x,b)=v(0,y)=v(a,y)=0 cross-ply
Ny(x,0)=Ny(x,b)=Nx(0,y)=Nx(a,y)=0
v(X,0)=v(x,b)=u(0,y)=u(a,y)=0 angle-ply oo, (20)

Nyy(X,0)=Ny,(X,0)=Nyy(0,y)=Nyy(a,y)=0
w(X,0)=w(x,b)=w(0,y)=w(a,y)=0
M *,(x,00= M " y(x,0) = M " ,(0,y) = M *(a,y)=0 cross-ply & angle-ply
My(x,0) = My(x,b) = Mx(0,y) = Mx(a,y)=0
Py (x,0)= @y (x,b)= ¢y 0,y)= ¢y (ay)=0

| a |

Figure (1) Geometry and the co-ordinate system of a rectangular plate
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The analytical solution can be obtained by using the equations of (FSDT) as in the
following:
Substituting eq.(8) into eq.(10) yields:
Allu,xx+(A12 + Ag )v,xy+2A16u,Xy+A16v,xx+Bllq>xvxx + (B12 + By
+2B0, . + Bighy o + AV, FAGU, + Bogdy o +Beed, ) = LU +10,

y. Xy

A16u +2A26V'Xy+(A66 + AlZ ’xy+A66V'xx+Bl6¢x,xx + ZB2(5(I)y,xy

+ (BBG + BlZ )¢x,xy + B66¢y,xx + A22V'yy+A26u’yy+BZZ¢y,yy + BZG¢x,yy = Ilv'tt+|2¢y,tt

IXX

A45(¢y,xw!yx)+ A55(¢x,x + W'xx)"' A44(¢y,y + W'yy)
+ A45(¢x,y + W’xx)= |1W,H+CI(X,Y)

Bllu’xx+(812 + BGG)V’xy+2816u’xy+BlGV'xx+Dll¢x,xx + (D12 + D66 )¢y,xy vee (21)
+ 2D16cl>><,><y + D16¢y,><>< + BZGV’yy+BGGU’yy+D26¢y,yy + D66¢x,yy - A45(¢y + W’y)

- A55(¢x + W’x) = I3¢x,tt +1,U,,

Blﬁu'xx+2826v’xy+(BGG + Blz)u'xy
+ (DGG + DlZ + D66¢ + BZZV'yy+BZGU’yy+ + D22¢y,yy + D26¢x,yy - A44(¢x + W'x)

— A0, + Wy )= 18, + 1,V

+BGGV’XX+D16¢X,XX + 2D26¢y,xy

X, Xy Y XX

7. Static Solution
The exact static solution exists for antisymmetric cross-ply and antisymmetric angle-ply
rectangular plates, when the inertial loads on the right hand side of eq.(21) are set to zero.
According to the Navier solution, the following form of spatial variation of (W,¢X ,¢y)

that satisfies the differential equations, eq.(21) and the boundary conditions in eq.(20) can be
assumed:

w= Y W, sinaxcosay ,

m,n=1

Oy = D K COSAXSINBY |, ooooevvrvirissssecercessesescceeseess e (22 a)

m,n=1

D" Y, sinaxcosBy

m,n=1

9,

where: « = m% and g = ”%. The variation of u and v is different for antisymmetric

cross-ply and antisymmetric angle-ply laminates.
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u= ) U, cosaxsinpy
m,n=1

. antisymmetric cross-ply
v= >V, sinaxcospy

m,n=1

u= Y» U, sinaxcospy,

m,n=1

. antisymmetric angle-ply
v= )V, cosaxsinBy

m,n=1

By substituting eq.(22) into eq.(21), the solution to these equations exists when the
transverse loading is:

q(x,y)= iansinaxsinBy.. ......................................................................... (23)

m,n=1

where:
Qumn: can be evaluated for different types of loading conditions as !

Qm =(4p/ab)sin(mn/2)sin(nn/2) for point load at the center (PL) ..... (24)

Under these conditions eq.(22) becomes:

[KKAY=AF} e (25)

where:
{A} = {U mn an Wmn an Ymn }
fF}1=0 0 Q.. 00
The elements of the coefficient matrix [K] (Stiffness Matrix) are given in 2%, When the

(HOST 5) is employed, using the same above procedure, the [K] matrix is calculated and given
in [10]
in .

8. Theory Development of Impact

The rate of change of velocity during impact (as the two bodies come in contact) is:

dv,

mlﬁ = —p. ..................................................................................................... (26)

If we denote by the same distance that the impactor and target approach one another
because of local compression at the point of contact, the velocity of this approach is:

24



Journal of Engineering and Development, Vol. 13, No. 1, March (2009) ISSN 1813-7822

T A Y Y (27)

If the contact duration between the impactor and the target is very long in comparison
with their natural periods, vibrations of the system can be neglected. Therefore, the Hertzian
law is applicable.

p= nlp.% TP TP PP PP PRPRURON (28)

The term n4 is defined as:

R )

M3k, +K,)
where:

ky,k»: depend on properties of impactor and target and defined in [%!:

Differentiating (27), combining it with (26), and substituting of (28) into the resultant
equation yields:

. _nl %
= 1 2 e 30
i m. H (30)

If both sides of eq.(30) are multiplied by z and the resultant equation is integrated

yield:
5
) 4n %
(w2 —v2)=—§% e (31)
1
where:

V: is the approach velocity of the two bodies at t = 0, that is, at the beginning of impact.

Maximum deformation, £¢,, occurs when =0 and is

2\%
M:(sml\/] et (32)

4n,

Substituting of eq.(32) in to eq.(28) gives the following final relationship:

pznﬁ[SmiV] ettt bbbttt ettt e e et et e b e e et ettt et et tens (33)
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For the case of the Hertzian contact problem involving a sphere pressed onto a flat
surface by a force P, the area of contact is very small, therefore we assumed that the impact
force is concentrated at the point of contact.

9. Result and Discussion

In the following it is assumed that the material is fiber-reinforced and remains in the
elastic range. The boundary conditions are SSSS, and the analytical procedure (HOST 5) is
used in this work.

The material properties are:

E»=6.92 x10° N/m?, E;= 40E;, G1, =Gi3 =0.5E,, Gy =0.6Ey, v1,=0.25

Dimensions of plate:
a=1lm , b=1lm , h=0.02m

Properties of impactor:

E=200 x10°N/m?> , v=03 , mass=0.1kg , Radius=0.01m

From Figs.(2) and (3) it can be observed that the effect of coupling between bending and
extension on deflections is significant for all modulus ratios except those quite close to
El/Ez =1.

7.00E-3
Angle-ply (457 -457/ ...)

— 6.00E-3 — laminates
E —+— 2-L.ayers
= 5.00E-3 S
- 4.00E-3 —H —— 6-Layers
8 —@— 8-L_ayers
= 3.00E-3 —
©
< 2.00E-3 —
©
= 1.00E-3 —

0.00E+0

0 5 10 15 20 25 30 35 40 45 50
E1/E2

Figure (2) Effect of orthotropic ratio on a maximum deflection of a square
antisymmetric angle-ply laminated plate (V=10 m/sec)
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7.0E-3
6.0E-3 SR
é ' 2-Layers
c 50E-3 4-Layers
(@] 6-Layers
"3 4.0E-3 8-Layers
(]
% 3.0E-3
()]
: 2.0E-3 —
3 -
= 1.0E-3 — o
0.0E+0 — T T T T T T T T |

0 5 10 15 20 25 30 35 40 45 50
E1/E2

Figure (3) Effect of orthotropic ratio on a maximum deflection of a square
antisymmetric cross-ply laminated plate (V=10 m/sec)

Figures (4) and (5) show the relation between similar calculations, which is repeated for
the case of (20 m/sec) velocity of impactor, respectively.

1.6E-2
—~ 14E-2 — angle—ply(lz;?n/i;ﬁels.‘..)
é 1.2E-2 — —f— 2-Layers
S ez e
§ 8.0E-3 —@— 8-Layers
5 60E-3
% 40E3 -
= 20E3 -

0.0E+0

0 5 10 15 20 25 30 35 40 45 50
E1/E2

Figure (4) Effect of orthotropic ratio on a maximum deflection of a square
antisymmetric angle-ply laminated plate (V=20 m/sec)

14E'2 Cross-ply (90./0./...)
laminates

12E'2 2-L.ayers
10E'2 4-Layers

6-L.ayers
80E'3 8-Layers
6.0E-3
4.0E-3
2.0E-3
0.0E+0 T T T T T T T T 1

0 5 10 15 20 25 30 35 40 45 50
E1/E2

Figure (5) Effect of orthotropic ratio on a maximum deflection of a square
antisymmetric cross-ply laminated plate (V=20 m/sec)

Max. deflection (m)
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In general, The central deflection decreases with the increase in orthotropic ratio
(EL/E2) and the number of layers due to increasing the stiffness of the laminate, but it
increases with the increase in the velocity of impactor due to the increase in impact loading.
The difference in deflections between the 2 and 6 or 8 layers is quite substantial due to the
bending-stretching coupling which is vary according to layer numbers.

Figure (6) shows the relation between the lamination angle (6(1°) and the central
deflection of a square antisymmetric laminated plates, which consist of 2, 4, 6 and oo layers.
Clearly, coupling is quite significant for two-layered laminates, which decreases as the
number of layers increases. Increasing N more than 8 for antisymmetric laminate has no effect
on the laminate stiffness because Bj; die out when N=[18[] Moreover the rate of change of
deflection with 0° is large in the range of (10 =5°(] to 0[1=30°, therefore, for design purpose
00 is recommended to be between 30° and 45°.

1.8E-3
E 16E-3
S 14E-3 ‘ Augny
= —=f—  2-Layers
§ 1.2E-3 —— 4-Layers
H_GO-J —&—  6-Layers
5 1.0E-3 —@— 8-Layers
©
S 8.0E-4
6.0E-4 T T T T T T T 1

0 10 20 30 40 50 60 70 80 90
Lamination angle @

Figure (6) Effect of lamination angle on a maximum deflection of a square
antisymmetric angle-ply laminated plate (V=15 m/sec)

As it is indicated from Fig.(7) the central deflection reduces with the increase of (E1/ E;)
ratio due to the increase of laminate stiffness. Furthermore, the minimum deflection occurs
when the lamination angle is equal to [145°.

2.4E-3
2.2E-3
2.0E-3
1.8E-3
1.6E-3
1.4E-3
1.2E-3
1.0E-3
8.0E-4
6.0E-4
4.0E-4
2.0E-4

Angle-ply
= E1/E2=10
e I ELEZS20
— @ Ei/E2=40

Max.deflection (m)

0O 10 20 30 40 50 60 70 80 90
Lamination angle @
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Figure (7) Effect of lamination angle and orthotropic ratio on a maximum
deflection of a square antisymmetric angle-ply laminated plate (V=10 m/sec)

Figure (8) shows the effect of lamination angle on the stiffness-to-weight ratio, for
antisymmetric angle-ply laminates with 2, 4, and 6 layers. This figure shows that increasing
lamination angle from (° [J[Jto [145°), increases stiffness-to-weight ratio by: 8501 and
102[10J for 4, and 6 layers respectively.

1E+8

9E+7 (PR el ey
—fu—  2-Layers

8E+7 —— 4-Layers

7E+7 —&— 6-Layers

6E+7
S5E+7
4E+7

Stiffness / Weight (N/m.kg)

3E+7 N S B B S I R R

0 5 10 15 20 25 30 35 40 45 50
Lamination angle@

Figure (8) Effect of lamination angle on the stiffness-to-weight ratio
of antisymmetric angle-ply laminates

Figures (9) and (10) show the variation of o, and Cy respectively through the

thickness with respect to the point of impact. The distribution of stresses through the
thickness is discontinuous due to change of layers properties. The stress vanishes at the center
of plate (neutral axis of plate). Also, the maximum stress value occurs at the top and the
bottom of the plate due to tension and compression states of plate.

AE+7
3E+7 e
2E+7 xx/a=0.1666
R
1E+7 — R
OE+0 —
A1E+7
-2E+7
-3E+7 -
-AE+T T T T T T T
-1E-2 -8E-3 -5E-3 -3E-3 OE+0 3E-3 5E-3 8E-3 1E-2
z/h

Figure (9) Stress distribution o, through the thickness

cross-ply (0790 /0)

A4

-

Normal stress (ox) (N /m?)
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Figure (10) Stress distribution o, through the thickness

10. Conclusions

The main conclusions of this work for static analyses are the coupling between bending
and extension Bj; decreases the effective stiffness.

The effect of degree of orthotropy (E1/E2) becomes more pronounced as the number of
layers increases (for the same laminate thickness). Increasing (E1/E;) decreases the maximum
deflection.

The number of layers N in the laminated plates affects the laminated plate stiffness, in
two different manners (for symmetric and antisymmetric laminates). For symmetric laminate
(coupling stiffness Bj; = 0) increasing N increases the extensional stiffness A;; and bending
stiffness Dj;, while for antisymmetric laminate, increasing N decreases the coupling stiffness
Bij. For antisymmetric laminates (which consist of equal thickness layers), increasing N more
than 8 does not affect the laminate stiffness, that is at (N = 8) B;; vanish.

For an angle-ply laminated plate, it is found that, (0= 45°) represents the best
lamination angle at which minimum deflection and maximum stiffness-to-weight ratio are
achieved.

Maximum deflection and stresses occurs at the point of contact on the top and bottom
surface of the plate.
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List of Symbols

A Extension stiffness element (N/m).

a,b Dimensions of rectangular plate in x and y directions (m).
Bjj Bending-extension coupling stiffness element (N).

Dj Bending stiffness element (N. m).

E;;, Fij, Hj Higher-Order stifnesses N.m?, N.m® and N.m® respectively.
m, n Longitudinal and Transverse mode shape.

m; Mass of impactor (kg).

My, My, M,y Resultant Moments per unit length (N. m / m) respectively.

My, My, M3y

High-order stress-resultants (N m).

N Number of laminate’s layers.

Ny, Ny, Nyy Resultant forces per unit length (N/m).

P Impact load (N).

Qi Element of elasticity matrix (N/m?).

@j Transformed stress-strain relation (N/m?).

Qx Qy Shear forces per unit length (N/m).

Qx.Qy High-order shear forces (N. m)

R Radius of a spherical impactor (m).

u, v, w Displacement in the x, y and z directions (m) respectively.
Vi, Va Initial velocity of impactor and target (m/sec) respectively.
XX Distance from impact point (m).

Px ,¢y Rotations of the transverse normal in xz and yz plane.

0 High-order transverse cross section deformation mode
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