
Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 86

Design and Implementation of a High Speed and Low Cost
Hybrid FPS/LNS Processor Using FPGA

Assist. Prof. Dr. Dhafer R. Zaghar

Department of Computer & Software Engineering/College of

Engineering/University of Al-Mustansiriyah /Iraq

Email-drz_raw@yahoo.com

Abstract

In the world of the computer data processing there are two main groups of processors

first the microprocessor group that use the floating point system (FPS) and the TMS

processor group that use logarithmic number system (LNS). There are many works and

ideas to improve the two types and mixed between them but the main drawback of these

works is that "there are no common rules to measure the efficiency of each work and

compare between them". This paper presents some logical and fair rules to measure the

efficiency of the processor as a first step on the true way to implement a good process.

Hence, this way has three main phases. First, classify the mathematics operations and

deduce the approximation weight of each operation in the computer data processing such

as general digital signal processing (DSP) fields, fast Fourier transform (FFT), filtering

and neural network (NN). The second phase is proposing the design of an optimal process

that has a high speed and low cost. The third phase is modifying the optimal design to

implement it in the field programmable gate array (FPGA) media. Then, this paper will

use the new rules to measure the efficiency of the proposed design and compared it with

previous works. Also it will give the most important conclusions that will to steer the

designer to implement a high speed and low cost processor.

Key words : Floating point, LNS, DSP, FFT, NN, FPGA, processor, mathematical

operations, piecewise.

 ةــــــــاىخلاص

ٝ٘جددذي ددٜيٍٞددذاُيٍالىيددةياىاٞلّددل يجلىعلادداةيٍيَ٘الددلُيٍددِياىَالىيددل يامٗىددٚيزالَددذيايددٚيّ ددلًياى ددلسص ياىعددش ييييي

(.ياُيْٕلكياذديماٞشيٍِياماَلهياىلٜيزلْلٗهيٕدزاييLNS(يٗيامخشٙيزالَذيايٚياىْ لًياىاذدٛياىي٘غلسزَٜي)FPSاىاذدٛي)

ام نلسياىلٜيزسلاذيايٚيزعسِٞياداءيٕزٓياىَالىيدل ياٗياىَضاٗجدةيجْٖٞدللايامياُييييياىَٞذاُيٗيزسلاشضيمٌيماٞشيٍِياىطشقيٗ

 اىَشنيةياىَشلشمةيجِٞيٕزٓياماَلهيزنَِي ٜياذًيٗيج٘ديق٘ااذيٍل قيايٖٞليىقٞدلطياىن دلءٓيىندوياَدويٗياىَقلسّدةيجْٖٞدل.يييييي

عٞحيىاْلءيٍالىجيجٞذلايٗيٕزٓياىاَيٞدةيياٞعلٗهيٕزاياىاعثيٗيضعييق٘ااذيالدىةيىقٞلطياىن لء يمخط٘ ياٗىٚي ٜياىطشٝقياىص

زلضددَِيثددلاويخطدد٘ا ياالاددٞٔيامٗىددٚيزقددً٘ييجلصددْٞيياىاَيٞددل ياىشٝلضددٞةيٗيزعددلٗهيزخَددِٞياىَقددذاسياىلقشٝاددٜيىْسدداةييييييييييي

اماددلخذاًيىٖددزٓياىاَيٞددل يٗيرىددلي ددٜياىَيددلم ياىعلادد٘جٞةياىَخلي ددةيضددَِيّطددلقيٍالىيددةياىاٞلّددل يٍ ددويٍالىيددةيام ددلس يييي

(.ياٍددلياىخطدد٘ ييNN(يٗياىشددانل ياىاصدداٞةي)يfiltering(يٗياىلش ددٞحي)FFTع٘ٝددوي دد٘سٝشياىسددشٝعي)يي(يٗيزDSPاىشقَٞددةي)

اى لّٞةي للضَِيٗصييزصٌَٞيٍادلىجيرٗيادشاةيالىٞدةيٗيمي دةيقيٞيدة.ياٍدلياىخطد٘ ياى لى دةي لقدً٘يجلعد٘ٝشياىلصدٌَٞيى دشضييييييييييييي

ىق٘ااذياىيذٝذ يمخلالسيم لء ياىَادلىجييجاذيرىلياْسلخذًيا (.FPGAجْلءٓيج٘ااطةيٍص ٘ ةياىا٘اجل ياىَاشٍيةياى٘اااةي)

اىَقلشحيٗيٍقلسّلةيٍعيياماَلهياىسلجقةيٗياخٞشاياٞاطٜياىاعثيخلاصدةيزسدلاذياىَصدٌَيىاْدلءيٍادلىجيرٗيادشاةيالىٞدةيٗيييييييي

يمي ةيقيٞية.يييي

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 87

1- Introduction

Most papers and thesis that deal with the design and implementation of FPS, LNS or

hybrid processors discuss the result from one side. As an example M. Haselman et al.
[1]

discuss the speed and cost for operations without log and exp converter cost and time. While

some papers that use FPS discuss the result with additional log and exp (cost and time) for

each operation processing. However, the two sides are not fair because the ratio of converter

(log and exp) to operations is not one-to-one and not very small ratio (cannot be neglected) at

the same time.

The second drawback in the discussion is that it compared the operations with the same

weights for each operation while that is not true in the computer data processing. For

example, the integer addition operation is use a more than 4 times larger than the division

operation as will be shown in section 4.

The third drawback is found in some works like Chen and Chow
[2]

. Here, the

comparations of the speed depend on the number of clocks, but a fair comparations must

depend on the execution time that depend on the number of clocks in additional to the time of

each clock (note that some works use a low storage internally that result in small number of

clocks with large clock time hence a long execution time).

This paper will discuss the two main types of numeric systems for FPS that used IEEE

754 and the format of the internally LNS in section 2. Section 3 classify the operations in a

symmetric groups and calculate the number of clocks for each operation in FPS and in LNS,

the weight of each operation in the computer data processing field will be deduced in section

4. Section 5 shows the parameters of the optimal processor, with its design in section 6, while

the implementation of this process is discussed in section 7. Section 8 compare the result of

the optimal process with the most powerful previous works. Section 9 has the conclusions that

can be used to improve the characteristics of the processor.

2- FPS and LNS

2.1 Floating point [3]

The floating point number has a multi formats, the most formats used is the IEEE 754.

In this format a floating point number F has the value:

F = −1
S
 ×1. f × 2

E
 (1)

Where S is the sign, f is the fraction, and E is the exponent, of the number. The mantissa

is made up of the leading “1” and the fraction, where the leading “1” is implied in hardware.

This means that for computations that produce a leading “0”, the fraction must be shifted.

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 88

The only exception for a leading one is for gradual underflow. The exponent is usually

kept in a biased format, where the value of E is

E = E
true

 + bias. (2)

The most common value of the bias is

2
e−1

 −1

Where e is the number of bits in the exponent. This is done to make comparisons of

floating point numbers easier. Floating point numbers are kept in the following format:

The IEEE 754 standard sets two formats for floating point numbers: single and double

precision. For single precision, e is 8 bits, m is 23 bits and S is one bit, for a total of 32 bits.

The extreme values of the exponent (0 and 255) are for special cases, so single precision has a

range of ±(1.0 × 2
−126

) to ±(1.11... × 2
127

) ≈ ±1.2 ×10
−38

 to ±3.4 ×10
38

 and resolution of 10
−7

.

For double precision, where m is 11 and e is 52, the range is ±(1.0 × 2
−1022

) to ±(1.11... ×

2
1023

) ≈ ±2.2 ×10
−308

 to ±1.8 ×10
308

 and a resolution of 10
−15

.

2.2 LNS [4]

Logarithmic numbers can be viewed as a specific case of floating point numbers where

the mantissa is always 1, and the exponent has a fractional part. The number A has a value of

A = −1
SA

 × 2
EA

 (3)

Where SA is the sign bit and EA is a fixed point number. The sign bit signifies the sign

of the whole number.

EA is a 2’s complement fixed point number where the negative numbers represent

values less than 1.0. In this way LNS numbers can represent both very large and very small

numbers. The logarithmic numbers are kept in the following format:

1 bit e bits m bits

S Exponent E Unsigned Significant f

Sign integer fraction

SA EA

1 bit k bits j bits

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 89

If k=e and j=m the LNS has a very similar range and precision as floating point

numbers. For k=8 and l=23 (single precision equivalent) the range is ±2
−129+ulp

 to ±2
128−ulp

, ≈

±1.5 ×10
−39

 to ±3.4 ×10
38

 (ulp is unit of least precision). The double precision equivalent has

a range of ±2
−1025+ulp

 to ±2
1024−ulp

, ≈ ±2.8 ×10
−309

 to ±1.8 ×10
308

. Thus, an LNS representation

covers the entire range of the corresponding floating-point version.

2.3 Computer Arithmetic Operations in LNS [4]

Arithmetic operations in LNS are different from the normal due to the nature of the

logarithmic number. If YYXX
bb

loglog and  then,

 YXZYXZ 

 YXZYXZ 

  b
YX

b
XZYXZ


 1log (4)

  b
YX

b
XZYXZ


 1log

The operations for multiplication and division will become addition and subtraction.

Multiplication and division now can be done within one instruction which will be a lot faster

in floating point number system.

3- Execution Time of the Operations

There are a large number of methods to classify the operations such as the priority, type

of output, extra. This section will classify the operations in groups depending on the

requirements of execution in the processor. These groups are:

a- integer add/sub, b- float add/sub, c- integer multiplication, d- float multiplication, e-

division (normally float), and f- other operations such as x
a
, a

x
, log x, exp x, cos x, sin x, etc.

These operations in fact is a functions (normally floating).

The second aim of this section is finding the execution time for the above operations in

FPS, LNS and hybrid FPS/LNS processors measured by the number of clocks for each

operation. The number of clocks for the operation depends on the type of operation and the

characteristics for the processor. The number of execution clocks depends on the number of

bits in ALU, number of registers, additional units and finally the control hardware and

software design. The characteristics for the processors that will be use in this section are the

ALU has 23-bit, 10 registers each one has 23-bit, extra auxiliary units and ideal hardware

design and software for the control units.

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 90

The number of clocks for each operation using IEEE 754 standard and processor of 23-

bit ALU can be summarized in table (1).

Note that, all the operations in table (1) has a specific characteristics therefore it has a

fixed number of clocks except the type 6 (other) such as functions solved by Taylor Series
[5]

and has an approximate number of clocks. For example a high accuracy exponential function
[5]

 to be solved in Taylor Series required 20 terms each has in average 10 multiplications, 1

division and 1 addition. So in total the exponential function required 200 multiplications, 20

divisions and 19 additions (not all functions has this requirements). However, the other

operations will need as an average 100 floating multiplications, 10 divisions and 10 floating

additions.

Table (1): The number of clocks using IEEE 754 and 23-bit ALU processor.

Operation FPS clocks LNS clocks Hybrid FPS/LNS

Integer add/sub 1 25* 1

Floating add/sub 4 125* 4

Integer multiplication 15 1 1

Floating multiplication 24 4 4

Division 72 4 4

Other* 3160 1690 480

FPS to LNS converters

(FLC)

---- M1** N1**

LNS to FPS converters

(LFC)

---- M2** N2**

* Approximation value.

** times to transfer from number system to another.

4- Weights of the Operations

This section will try to answer on the question "What is the ratio of used (execution in

computer) for each operation in section 3 in the real world?".

The answer comes from two sources. The first source comes from a statistical search by

using the internet to deduce these ratios in the field of computer data processing. The second

source comes from using the MS-DOS instructions to monitor some computers in the library

of the computer department. The final result in table (3) is the average of both results for the

two sub-sections given below.

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 91

4.1- Statistics of Operations in Computer Data Processing

This sub-section will try to answer on two questions, first "what are the main fields in

the world of the computer data processing and what is the weight of each one?" and the

second is "what is the mathematical requirements of each field?".

 The answer to the first question will be deduced from the ratio of the works (paper and

thesis) for these fields on the internet.

 The answer of the second question will require making some logical rules then applied

them with examples. These rules can be summarized as, first rule (all the results will be

calculated statistically), the second rule (the statistical calculation will be specialized to the

most famous data processing fields such as FFT, wavelet, filtering, neural networks and other

applications such as DCT, coding and matrices). The third rule (take the most used case in

each type). The fourth rule (normalized the number of operations and multiplies them by

100%). These rules can be explained in the following examples.

Example 1: FFT

To calculate the number of operations in FFT
[6]

 we must decide on the type of FFT, the

number of points and the type of input data. Applying rule three will select Radix-2, 256 point

with integer input data. The execution of this transform require that 256 integer add/sub for

the first stage, 256x255x2 floating add/sub for other stages, 256 other (256 exp to

calculateW
i

256
) and 256x256x2 (the number 2 in here is for complex) floating

multiplications. The fourth rule for 256-point Radix-2 required 0.1 integer add/sub, 49.8

floating add/sub, 0.1 others and 50 floating multiplications. This example also required a 256

FLC and 256 LFC for LNS processor and 256x256x2 FLC and 256x 256x2 LFC for hybrid

FPS/LNS processor.

Example 2: NN

This example deal with a neural network (NN)
[7]

 that has three layers to detect the voice

of 40 persons. This NN has 256 nodes in input layer, 200 nodes in hidden layer and 40 nodes

in the output layer.

The execution of this NN require 256x200 integer add/sub, 256x200 floating

multiplications and 200 activation function (other) for the hidden layer, 200x40 floating

add/sub, 200x40 floating multiplications 40 activation function (other) for the output layer.

 Under fourth rule the NN required 43 integers add/sub, 6.8 floating add/sub, 50

floating multiplications and 0.2 activation functions (others). This example required also 256

FLC and 40 LFC for LNS processor and 256x200+200x40+40 FLC and 256x200+200x40

LFC for hybrid FPS/LNS processor.

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 92

The second part of this section is to use the above results in order to calculate the

approximation results as in table (2). The final results for the last column in this table are

calculated using equation (5).

  %100ratioOperation *operation ofWeight sum weightedTotal  (5)

Table (2): The most computer data processing fields with their weights.

operation FFT Wavelet

filtering neural

networks

Other

applicatio

ns

Total

weighte

d sum

Using Weight of the

operation

14 12 7 16 51 100

Integer add/sub 0.1 57 0 42.8 28 28

Floating add/sub 49.8 0 50 7 20 22

Integer multiplication 0 43 0 0 12 11

Floating multiplication 50 0 50 50 26 32

Division 0 0 0 0 9 4.5

Other 0.1 0 0 0.2 5 2.5

M1* 0.1 14 0.1 0.3 12 8

M2* 0.1 13 0.1 0.1 9 6

N1* 50 50 50 51 41 45

N2* 50 50 50 50 38 44

*see table (1)

4.2- Monitoring of the Operations in Computer

The results of monitoring some computers in the library of computer department using

an assembly program can be summarized in the third column of table (3). This program uses

some facilities of MS-DOS with program-counters
[8, 9]

. This program counts each assembly

instruction at the time of fetching. Then the program calculates the number of operations in

the compiled programs and stores the results in a file. The program is designed to monitor the

classic operations (add, sub, mult and div) without possibility of separation for the sources of

these operations. The result of monitoring is used to improve the result given in table (2).

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 93

Table (3): The results of monitoring in the library with the results of table (2).

Operation Statically Monitoring Approximation

total results

Integer add/sub 28 69 30

Floating add/sub 22 NA
+
 20

Integer multiplication 11 26 10

Floating multiplication 32 NA
+
 30

Division 4.5 5 7

Other 2.5 NA
+
 3

M1* 8 --- 8

M2* 6 --- 6

N1* 45 --- 45

N2* 44 --- 44

 NA
+
 means not available value.

Table (3) can be summarized in equation (6) that used to calculate the number of

clocks/operation (CPO).

 /on clocks)conversatiion ratio* conversat

* Other* Divisiontionmultiplica*Floating

ion ultiplicat*Integer madd/sub*Floating dd/sub*Integer a (CPO

100

3730

102030







 (6)

That can be rewritten as equation (7) if we take the other operations required in average

to 100 floating multiplications, 10 divisions and 10 floating additions.

 /on clocks)conversatiion ratio* conversat

* Divisiontionmultiplica*Floating

ion ultiplicat*Integer madd/sub*Floating dd/sub*Integer a (CPO

100

37330

105030







 (7)

5- Optimal Processor

The combinations of sections 3 and 4 can be shown in table (4). The calculations of this

table come from the multiplication of the results in table (1) with the last column in table (3).

The approximation sum in the last row can be calculated from equation (8) below:

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 94

%100*
 processor FPSfor operation theof clocks

processorfor operation theof clocks
 ratio sum eApproximat



 (8)

Table (4): Number of clock*ratio for each operation

using IEEE 754 and 23-bit ALU Processor.

Operation FPS CPO LNS CPO Hybrid FPS/LNS

CPO*100

Integer add/sub 30 750 30

Floating add/sub 80 2500 80

Integer multiplication 150 10 10

Floating multiplication 720 120 120

Division 504 32 28

Other 9480 5070 1440

FPS to LNS (FLC) 00 8*M1 45*N1

LNS to FPS (LFC) 00 6*M2 44*N2

Approximate sum 10964 8482 +14M 1688 +89N

Approximate sum ratio 100 77 +0.13M 15 +0.81N

The results of table (4) shows that:

1- The speed of the LNS processor depends on the value of M that required at least 4 clocks

in [1]. In result the minimum approximation sum ratio is about 77.

2- The speed of the hybrid processor depends on the value of N that required at least 4

clocks in [1]. In result the minimum approximation sum ratio is about 18.

3- The speed of the hybrid processor depends mainly on the value of N. However, the

reduction of N will increase the speed directly.

The method of FLC and LFC in [1] is a powerful method because it will give a

processor that has a speed equal to 5.5 times higher than the classic (FPS) processor with 10

times higher cost. The additional key to increase the speed is by using a parallel processing.

This paper proposed a new method that depends on two points. First, it uses the parallel

processing to separate the FLC and LFC units with a twin memory one for floating form and

the other for LNS form. The second form use the piecewise to FLC and LFC with a good

optimization between number of pipelines and clock time.

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 95

6- The Proposed Design

The study of the results and conclusions reached in section 5 help us to propose a high

speed and low cost hybrid processor. The proposed design is a hybrid FPS and LNS which

expected to have very fast process, since it depends on four main points:

1- Use parallel processing to process (fetch and execute) the operations and convert the data

at the same time as shown in Fig (1).

2- It has a twin memory with the same addresses so each one is a 32-bit/word. The first one

store the values of variable in floating point form while the other store the same variables

in same address but in the LNS form.

3- Extra fast LFC and FLC that depend on the piecewise approach and direct implementation

for multipliers in LFC and FLC units as shown in figures (2- 4).

4- Its units have a pipeline internally approach with a good optimization between the internal

pipeline and the clock rate similar to that given in reference [10].

6.1- The Registers Unit

It has 10 registers (R0 to R9) each one is a 23-bit used as a temporizer internally

memory. R0 is connected to ALU1 as main register and R1 is connected to ALU2 as main

register.

6.2- The 23-Bit General ALUs

They are the execution units of the processor that use for all logic operations (add, sub,

etc.) for floating point and LNS variables. For floating variables ALU1 is used for mantissa

processing while ALU2 is used for exponential and sign part that work at the same time. For

LNS variables ALU1 is used for fraction processing while ALU2 is used for integer and sign

part that work at the same time. This will reduce the number of CPO in the processor.

6.3- The I/O Unit

It is the input and output unit for the external data that is controlled by using the central

unit. The main component is a buffer with pack processor.

6.4- The Floating Point and LNS Memory

This unit is an internally or externally (but it has a direct connection with processor) unit

for processor depending on the media of its implementation. This unit has twin memory the

first store the floating form of variables while the second store the LNS form of variables. The

two memories word size is 32-bits; it is managed as one memory that has the same address for

same variables value.

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 96

 Each word address has an additional bit in MSB called type-bit used internally to select

the type of variable. The value of the type-bit received from the central unit depends on the

type of the instruction code. The implementation of this unit required 2 to 16 KB depending

on the designer selection or on the available RAM in the platform.

6.5- The FLC Unit

This unit is the more important unit in the processor design because the properties of

this unit are the main factor in the processing speed. The basic design idea to implement this

unit in Fig (2) depends on the piecewise approach that used to divide the interval from [1, 2)

to 128 straight line, the logarithm value of this interval fall in the interval [0, 1). Each line has

initial value (shift) found from first 7x7 LUT that used the first 7 MSBs of the floating

number in input and the output of the shift LUT is a 7-bits. Also the line has slope value

found from second 7x7 LUT that used the first 7 MSBs of the floating number as input and

the output slope value is a 7-bits.

Fig (1): The main blocks of the proposed processor.

Floating point memory

LNS memory

LFC unit

FLC unit
23-bit general

ALU2

Memory

management

Registers unit

(R0 to R9)

Central

unit

I/O unit

Instruction code

input

32-bit data bus

23-bit general

ALU1

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 97

Fig (2): The basic design of FLC unit that used the piecewise approach.

The shift value is the course part of the output while the fine part calculated using the

slope value with the 16 LSBs (reminder) of the input multiplied by the slope value. The 7x16

multiplier is the most important sub-unit in this unit because it is the most complex and lower

speed part. The implementation of this sub-unit can be made using one 18x18 HMULT but

this approach has a low speed. The other approach in Fig (3) required three LUTs used as

multipliers and two stage shift and adder with store to sum and sort the output 23-bit data.

This combination gives a high speed and low cost unit with low error output. The FLC unit

implement to give an optimal storage separation that will balance between the number of

clocks (latency) and the maximum delay (clock time). It has two internally storage points first

in the output of multiplier and the other in the total output. That will give two latency clocks

with a maximum delay of 7 gates if this unit is implemented in FPGA.

Fig (3): 7x16-bit multiplier using three LUTs as sub-multipliers.

7 MSBs

16 LSBs

7x7 LUT

(shift)

7x16 multiplier

7x7 LUT

(slope)

7+23

bit

adder

with

23

bits

reg

7-bits

23 bits 23 bits

flouting

input

23 bits

log

output

7x6-bits

LUT

A

B1

7x5-bits

LUT

A

B2

Shift

with

16-bit

two

stage

adder

23-bit

output

7x5-bits

LUT

A

B3

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 98

6.6- The LFC Unit

This unit in Fig (4) has been built with the same idea and form of the FLC unit with

reveres intervals of input and output. Also this unit has same speed and cost of FLC.

Fig (4): The basic design of LFC unit that used the piecewise approach.

6.7- The Memory Management Unit

This unit is controlled the read and write in the twin memory also it managed the timing

of used LFC and FLC units. Moreover, its tasks can be summarized in the following tasks:

1- Receive the value and type (floating or LNS) of variable from the central unit.

2- If the variable is float store it in floating memory unit and send another copy to FLC, then

receive the LNS equivalent value and store it in LNS memory unit at same address of

floating memory unit.

3- If the variable is LNS store it in LNS memory unit and send another copy to LFC, then

receive the floating equivalent value and store it in floating memory unit at same address

of LNS memory unit.

4- Read the values of variables and sending them to the central unit with the specific type

depending on the order of the central unit.

The cost and timing of this unit depends on the internal details of the implementation.

The basic design shows that this unit required in FPGA to less than 100 slices.

7 MSBs

16 LSBs

7x7 LUT

(shift)

7x16 multiplier

7x7 LUT

(slope)

7+23

bit

adder

with

23

bits

reg

7-bits

23 bits 23 bits

LNS input

23 bits

floating

output

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 99

6.8- The Central Unit

This unit is the core of the processor that controlled on the all the fetch and execute

instructions in the processor. It has a multi sub-unit such as integer to floating sub-unit,

control unit, log/float selector. Moreover, this unit has the following tasks:

1- Receive the data and instruction code.

2- Classify the operations to float or LNS data requirement.

3- Ask the memory management to send or receive the data.

4- Send the data with operation code to ALU1 and ALU2.

5- Read and write the data in registers unit.

6- Convert the integer variables to float form when it's necessary.

7- The other entire control mission in details of the processor.

The cost of this unit depends on the internal details of the implementation while this unit

will dissipate 1 clock to fetch the instruction with maximum 3 clock latency. The basic design

shows that this unit required in FPGA to less than 200 slices.

7- Implementation of the Proposed Processor

The details for the implementation of the proposed processor using xc2v6000 [11]

required about 1500 slices as shown in table (5).

The actual speed for the proposed processor can be calculated from equations (6) and

(7). So calculation result for the number of clocks for each operation is shown in table (6).

Table (5): The implementation of the proposed processor using xc2v6000.

Unit name Cost

Slice

Max delay

nsec

No of

clocks

Latency

clocks

Registers 230 1.72 1 0

ALUs 60 14.28 1 0

I/O 64 4.76 1 1

FLC 414 19.04 2 2

LFC 414 19.03 2 2

Memory management 100 4.76 1 3

central 200 4.76 1 2

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 100

The overall design 1482 19.24 -- 5

Table (6): The details of the fetch and execution speed in the proposed

processor.

Operation Ratio of

operation

Number of

clocks

Proposed

CPO

Integer add/sub 30 1 30

Floating add/sub 20 3 60

Integer multiplication 10 1 10

Floating multiplication 30 2 60

Division 7 2 14

Other 3 250 750

FLC ∆ 3 3∆

LFC ∆ 3 3∆

The approximation sum ratio ---- ----- 8.5

 ∆ a small value.

Note that in the ideal case the converting units (FLC and LFC) not effected on the

processing time because they work parallel with the other units. But, practically they have

some intersection because the latency in the converting units, this intersection depends on the

applications and the type of programming that will be used. However, this value is small and

can be neglected for most cases.

8- Comparations With Previous Works

This section compares the speed and cost of the most three powerful pervious works and

one from the standard floating processor design with the proposed processor as shown in table

(7).

1- First work is a standard design floating point processor
[2]

 that requires 1247 slices with

deduced max delay under xc2v6000 Xilinx FPGA chip of about 16.66 nsec. The average

of the operation can be calculated using the tables of reference with equations (6) & (7). It

is equal to 110 clocks per operation (CPO) or 1833 nsec in the average for each operation.

2- Second work is a hybrid FPS/LNS processor by Chichyang Chen and Paul Chow
[2]

 that

has more than one model. The most used model require to 3415 slice. The design for this

process is very complex and heavy and the deduced max delay under xc2v6000 Xilinx

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 101

FPGA chip is about 124 nsec. The average of the operation can be calculated using the

tables of reference with equations (6) & (7). It is equal to 14 CPO or 1736 nsec in the

average for each operation.

3- Third work is a LNS processor by Mark G. Arnold
[12]

 that has more than one model. The

most used model require to 3904 slice. The design for this processor depends on the

pipeline approach that increases the speed and reduced the cost but it has a large latency.

The average time of the operation can be calculated using the tables of reference with

equations (6) & (7). The max delay under xc2v6000 Xilinx FPGA chip is about 95 nsec

for each operation.

4- Fourth work is an LNS processor by M. Haselman et al.
[1]

 that is the most powerful

processor in the previous works. The sum (from tables) of all its parts required 2054 slice.

The design for this process depends on the parallel and independent units approach that

increase the speed but increase the cost, also the design use a good approaches to

implement the add/sub units and converting units, these approaches will reduce the cost

and increase the speed at the same time. However, the average time of operation can be

calculated using the tables of reference with equations (6) & (7). The max delay under

xc2v6000 Xilinx FPGA chip is about 84 nsec for each operation.

5- The proposed work is a hybrid FPS/LNS parallel processor that required 1482 slice. The

design for this process has a max delay under xc2v6000 Xilinx FPGA chip of about 58

nsec.

Table (7): Comparations of speed and cost for pervious works with the

proposed processor.

work Cost

slice

Max

speed

nsec

CPO Time of

operation

nsec

Floating point processor [2] 1247 16.66 110 1833

Chichyang Chen and Paul Chow [2] 3415 124* 14 1736

Mark G. Arnold [12] 3904 NA
+
 NA

+
 95

M. Haselman et al. [1] 2054 NA
+
 NA

+
 84

proposed 1482 19.24 3 58

 Approximation value.

 NA
+
 means not available value.

The results in table (7) are rewritten as rational values with respect to the floating point

processor to give a more focusing view as shown in table (8). However, the rational cost or

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 102

rational speed can not give a real view to the efficiency of the design. Another factor

(efficiency factor) will be added in last column of table (8) that will sum the rational

advantages of the processor design.

It can give a good idea about the processor properties and efficiency for the method of

its design. The efficiency factor can be calculated using the following equation (9).

tRational

peedRational s
 factor efficiency

cos
 (9)

Table (8): Comparations of the efficiency factor for the pervious works with the

proposed processor.

work Cost

slice

Max

speed

MHz

Rational

cost

Rational

speed

efficiency

factor

Floating point 1247 0.546 1 1 1

[2] 3415 0.576 2.743 1.055 0.385

[12] 3904 10.526 3.136 19.251 6.139

[1] 2054 11.905 1.65 21.802 13.213

proposed 1482 17.241 1.19 31.574 26.533

 The results in table (8) can be summarized in the following points:

1- The proposed design is the higher speed for all types. It has a speed equal to bout 1.5

times faster than the maximum speed of the previous works and more than 30 times over

the classical floating processor.

2- The propose design is the lower cost for all types. It has a cost equal to bout 0.72 times

less than the minimum cost of the previous works and about 1.2 times over the classical

floating processor.

3- The efficiency factor for the propose design is the higher value for all types. It has an

efficiency factor equal to bout 2 times higher than the maximum gain factor of previous

works and more than 26 times over the classical floating processor.

9- Conclusions

This work helps the designer to design and implement a good parameters processor.

These conclusions can be summarized as:

1- A fair comparations between the processors must include the converting times and costs.

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 103

2- The speed comparations between the processors must depends on the processing (fetch

and execution) times and not affected by the number of clocks.

3- The speed comparations between the processors depends on the ratios of using each

operation multiplied by its execution time.

4- The hybrid FPS/LNS is the highest speed type while the classic FPO processor is the

slower speed.

5- The parallel processing is the optimal solution to increase the speed of the hybrid

FPS/LNS processor and increase the value of CPO.

6- The FLC and LFC are the most complex units, so the cost and speed of the hybrid

processor depend on those characteristics.

7- The good optimization between the internal pipeline and the maximum delay (clock) time

is an important factor to increase the speed of the processor.

8- The twin memory approach that has same addresses to store the values of variable in

floating point and LNS form at the same time is a good approach to increase the speed of

the processor.

9- The piecewise approach with FPGA LUTs gives a low cost and high speed for the FLC

and LFC units.

10- The use of LUTs and adders to design and to implement the multiplier in FPGA increase

the speed and reduce the general cost.

11- The processor that used a parallel processing and hybrid approach with a piecewise

approach for the FLC and LFC units is the most powerful solutions to increase the speed

and reduces the cost of the processor.

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 104

References

 [1] M. Haselman, M. Beauchamp, A. Wood, S. Hauck, K. Underwood and K. Hemmert, "A

Comparison of Floating Point and Logarithmic Number Systems for FPGAs", IEEE

Symposium on Field-Programmable Custom Computing Machines, pp 181-190, 2005.

[2] C. Chen and P. Chow. "Design of a Versatile and Cost-Effective Hybrid Floating-

Point/LNS Arithmetic Processor." In GLSVLSI '07: Proceedings of the 17th Great Lakes

Symposium on VLSI, ACM, pages 540-545, March 2007.

[3] S. W. Smith. "The Scientist and Engineer's Guide to Digital Signal Processing", Second

Edition, California Technical Publishing, 1999.

[4] N. Wing, "Logarithmic number system and its application to image processing", Oregon

State University School of Electrical Engineering and Computer Science, ECE 577 - Fall

2003, ngwi@engr.orst.edu.

[5] J. Mathews and K. Fink, "Numerical Methods Using Matlab", 4th Edition, ISBN: 0-13-

065248-2, Prentice-Hall Inc. Upper Saddle River, New Jersey, USA, 2004,

http://vig.prenhall.com.

[6] C. Van Loan, “Computational Frameworks for the Fast Fourier Transform”, Frontiers in

Applied Mathematics, SIAM, Ithaca, New York, 1992.

[7] Z. Runxuan, "Efficient Sequential and Batch Learning Artificial Neural Network Methods

for Classification Problems", Ph. D thesis, School of Electrical & Electronic

Engineering, 2005.

[8] G. Krzysztof, "Program-counter-based prediction in operating systems" Ph.D. thesis,

Purdue University, 2005.

[9] R. Hyde, "The Art of Assembly Language Programming", the Art of Assembly Language

Programming.htm, 1996.

[10] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker and P. Roussel, "The

Microarchitecture of the Pentium 4 Processor ", Desktop Platforms Group, Intel Corp,

Intel Technology Journal Q1, pp 1, 2001.

[11] XC2V6000-6BF957C datasheet pdf datenblatt - Xilinx, Inc – "Virtex-II 1.5V Field-

Programmable Gate Arrays", ALLDATASHEET.htm., Contact us Privacy Policy

Bookmark Link Exchange Site link Manufacturer, 2008.

[12] M. Arnold, "A VLIW Architecture for Logarithmic Arithmetic" dsd, Euromicro

Symposium on Digital Systems Design (DSD'03), University Bethlehem, p. 294, 2003,

PA 18015 USA marnold@eecs.lehigh.edu.

http://students.washington.edu/haselman/Research/papers/haselman_FCCM05.pdf
http://students.washington.edu/haselman/Research/papers/haselman_FCCM05.pdf
mailto:ngwi@engr.orst.edu
http://www.alldatasheet.com/contactus.html
http://www.alldatasheet.com/privacy.html
javascript:addbookmark()
http://www.alldatasheet.com/link.html
http://www.alldatasheet.com/link7.html
http://www.alldatasheet.com/manufacturer/index.jsp
mailto:marnold@eecs.lehigh.edu

