
Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 53

Complete Neural Network on a Single FPGA Chip

Assist. Prof. Dr. Dhafer R. Zaghar

Department of Computer & Software Engineering/College of

Engineering/University of Al-Mustansiriyah /Iraq, Email-drz_raw@yahoo.com

Abstract

This paper presents a hardware implementation approach for Neural Networks

(NNs) on a Programmable System-On-Chip. This is an intrinsic online evolution system

that can be genetically evolved and adapted to change in input data patterns dynamically

without any need for multiple Field Programmable Gate Array (FPGA) reconfigurations to

accommodate various network structure/parameter changes. This will remove a

considerable bottleneck for performance.

The hardware implementation of NN using FPGA has two main problems. First it is

required a large cost because it has a large number of multipliers, lock up tables (LUTs)

and adders. Second the additional error that generate from the truncation of numbers when

each value in software has minimum 64-bit while it has in hardware maximum 16-bit.

 This paper discusses combinations methods to reduce the cost and increase the

speed of NN and propose a novel approaches to removes a considerable bottleneck and

reduce the cost of a NN to plausible range under FPGA hardware.

Key words : Neural networks, System-On-Chip, FPGA, multiplier, carry lookahead adder,

ripple adder, activation function, LUT, piecewise.

 ةــــــــالخلاص

 Neural(لحلشذذثتاخلاحوه٘ذذَل لhardware implementationُذذرالاحث ذذالٌٗذذاليلااذذاح٘ةلاحثٌذذا لاحوذذا ٕل لللل

Networksلتااتهداملاالْبلتٌا لاحٌظاملفٖللطعَلّاحذدٍللاتلذَلحلثسه ذَل للل)Programmable System-On-Chipل.)

دجللطعلهيلهصذوْفحلاحثْاتذاخلاحْااذعَلاحلاتلذَلحلثسه ذَللللللُّرالالاالْبلٗعطٖلًظاملهسىلّللاتللحلتعدٗلل ّىلاح اجَلاحٔلع

 FPGAاىلااذلْبلاحثٌذا لاحوذا ٕلحلشذثتاخللللل (لّلُرالتدّزٍلٗذد ٕلاحذٔلاشاحذحلهعظذنلاحعلثذاخلاحتذٖلنللذللهذيلنوذا ٍلاحٌظذام.لللللللللل

٘ذسلتبذثةلللاحوهَ٘لتااتهداملهصوْفحلاحثْاتاخلاحْااعَلاحلاتلَلحلثسه َلٗولكلهشتلتاىلاااا٘تاىلالاّحٔلاًَلٗتطلذةلح ذنلنثلل

احعد لاحتث٘سلهيلّحداخلاحضسبلّلاح دّحَلّلاح وع.لاهالاحوشذتلَلاحااً٘ذَلفِذٖلًبذثَلاحهطذبلاحتث٘ذسٍلاحتذٖلنٌذتيلهذيلعول٘ذَللللللللللل

ل64خاًَلعلٔلالالللفٖلحاححلاحثساه ٘ذاخلّحتٌِذالفذٖلحاحذحلاحثٌذا لاحوذا ٕللالنتعذدٓللللللللل46نلل٘صلاعَلاحسلنلّلاحتٖلنتواللبل

هسنثَلحتلل٘للاحتلوَلّلشٗا جلاحبسعحلحلشثتاخلاحوه٘ذَلحرذسالاشاحذحلاحعلثذاخلّلنللذ٘صللللللاىلُرالاحث الاٌ٘اليلطسقل خاًَ.

لح وِالت ٘النصثحلذاخلح نلٗوتيلتٌا ٍلفٖللطعحلّاحدٍلهيلهصوْفَلاحثْاتاخلاحْااعَلاحلاتلَلحلثسه َ.

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 54

1- Introduction

An artificial neural network is a network of fully or partially interconnected information

processing elements called artificial neurons, primarily used for input data

classification/approximation/prediction problems.

These networks are massively parallel with inherent concurrency that can be exploited

using custom digital hardware designs to achieve higher performance than equivalent

software implementations. The trial-and-error based training algorithms for obtaining an

optimal network requires frequent changes to the network structure and parameters such as

synaptic weights and biases. Even the popular multilayer perceptron (MLP) models for NNs

have no general solution to determine an optimal network [1].

Massive connection between neurons in this fully connected network makes MLP less

flexible for implementation using digital hardware such as ASICs (Application-Specific

Integrated Circuits) or FPGAs. Every small change in network structure, such as addition of a

neuron to a hidden layer, can result in significant changes to routing structure warranting

modifications in hardware design, which comes at a significant cost of time and resources.

Due to these limitations the training algorithms are traditionally run in software to find

optimal network structure and parameters and the network thus obtained is frozen in an ASIC

to achieve higher connections per second (CPS) processing speeds. To gain the flexibility of

software and the processing speeds of digital hardware many researchers have proposed

FPGA implementations of artificial neural networks, relying heavily on multiple FPGA

reconfigurations [2]. The overhead of FPGA reconfiguration typically requires on the order of

a few milliseconds depending on the specific reconfiguration method used. This delay may

eliminate any learning speedup advantage if the goal is to develop an online adaptable

network. Also, this approach requires that the updated networks have been pre-designed and

stored to reconfigure the FPGAs dynamically.

There has been a strong need for dynamically configurable hardware design which can

accommodate variations in network structure without hardware redesign and multiple FPGA

reconfigurations. The dynamics of many real world applications require a more flexible

network structure that can evolve and re-learn to accommodate changes in the input data

patterns. A typical example of such a system could be individualized classifiers. To train a

single network that performs well for every user is difficult. The classifier may need to be

dynamically re-trained for each different individual. Also, training a neural network with a

large global dataset would be very time-consuming and could result in much larger networks,

assuming the training converges to a suitable solution.

2- The Cost and Delays of Hardware Neural Network

The cost of the NN is depend on the numbers of multipliers, adders and LUTs

multiplied by there costs as in equation (1).

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 55

t LUT LUTs No.*

tNo.*adder adders ttiplier rs No.*mul multiplieNCost of N

cos

coscos




 ---(1)

Hence, the numbers of multipliers, adders and LUTs are fixed for a NN and depend on

the numbers of nodes and number of connections as in equation (2).

t *LUT nodes No.

t.*adder nodes Nottiplier ns No.*mul connectioCost of NN

cos

coscos




 --(2)

The number of nodes is the sum of nodes in the hidden layers and output layer (all nodes

except the input layer nodes), while the number of connections is the number of weights in the

NN. Example1 shows how the number of nodes and number of connections in the NN of Fig

(1).

Example 1: a NN has four layers that have K, M, N and O nodes respectively as in Fig (1).

The number of nodes = M+N+O

The number of connections = K*M+ M*N+ N*O.

However, the key to reduce the NN cost is depending on the reduction of the costs of the

NN components (multipliers, adders and LUTs).

The delay of NN is depend on the maximum delay in all its elements, therefore the

designer must calculate all the delays of the NN then re-design it to reduce the maximum

delay and reduce the cost of the small delay components (that will increase the delay, but its

value must be remain less than the maximum delay in the final design) to achieve the optimal

speed, cost NN.

3- The Cost and Delays of Neural Network Components

This section will discuss in details the calculations of cost and delay of all NN

components. The NN components are adders, multipliers and LUTs. These calculations will

depend on the term in equation (3) that represents a general node in NN [8].









 



K

i
ii xwwfo

1
0

* ------------(3)

Where o is the output, f is the activation function, w is the weight, x is the input and K is the

number of nods in previous layer.

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 56

3.1- The Cost and Delay of adder in NN

The adder part in NN represent the term (




K

i 1

) in equation (3). This part will not

implement as a serial adder but it will be implement as a parallel adder or practically it will be

implemented as a binary tree of adders as in Fig (2).

 If K is the number of inputs each one has n-bit, the tree adders will require to K/2

adders in layer 1 each one has n bit inputs and n+1 bit outputs.

 Layer 2 has half number of adders in layer 1 (K/4) but each one has n+1 input and n+2

outputs, so on the final layer has one adder with n+t bit output, where t is the number of layers

in the binary tree that calculate from equation (4).

Fig (1): The block diagram of 6x5 inputs TDNN [8].

2

3

1

K

M

1

N

1

O

1

Input layer hidden layer 1 hidden layer 2 output layer

 K-nodes M-nodes N-nodes O-nodes

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 57

Fig (2): The block diagram of a 4 binary tree adder each one is n-bits.





 log

2

K

t ----------(4)

Where   is the nearest most integer.

Each n-bit adder in this figure refer to n-bit adder/subtractor as in Fig (3), that represent

a three bits adder (adder/subtractor) as example of the adder. Fig (3) shows each 1-bit adder

require 1 cell for the sum (si) and 1 cell for the carry (Ci) connected parallel or in result it

requires 2 cells as cost with 1 cell as delay. That’s mean each n-bit adder require to n cells

cost with n cell delay.

Fig (3): The block diagram of a 3-bit adder.

Two

n-bits

inputs

Two

n-bits

inputs

Two

n-bits

inputs

Two

n-bits

inputs

n+3-bits

Output

n

n+

1

n+

2

Layer l layer 2

layer3

n+n bits Adder

n

1-bit

Adder/subtractor

s0

Cin

a0 as b0 bs

C0 1-bit

Adder/subtractor

s1

a1 as b1 bs

C1 1-bit

Adder/subtractor

s2

a2 as b2 bs

C2

   

      ccc

c

iii

i

bsbiasaibsbiasai

bsbiasaisi

11

1









Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 58

However, to simplify the calculations of the cost we will propose the number of the two

input adders in the binary tree is K adders with average inputs is 1.5n-bit in each one. While,

the calculations of the delay will use the maximum delay that spent in the last adder in the

binary adder tree or in simple word it is equal to the delay of adder with (n+t)- bits.

The cost of n-bit in Fig (2) is n full adders, each full adder require two cells one for sum

and the other for the carry or in result the cost of n-bit adder is 2n cells. While the delay of n-

bit in Fig (2) is the delay of n full adders, each full adder spent one unit delay or in result it

will spent n gate delays. Summery the cost and delay of adder part in equation (3) are as in

equation (5).

  















log
2

1

3251cos

K

n * tn y Adder dela

nK n * .K * t Adder

 --------------(5)

3.2- The Cost and Delay of Multiplier in NN

The multiplier part in NN represent the term (xw ii
*) in equation (3). This part

implement as in Fig (4).

Fig (4): The block diagram of an 8x8-bits multiplier.

Two

n-bits

inputs

2n-bits

Output

nx1 AND gates set

n+n bits Adder

n

n+1

n+3

n+7

Layer 1 Layer 2 Layer 3 Layer 4

AND

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 59

Let the inputs of the multiplier are m-bit and n-bit, this multiplier will implement in

form of the tree adders as in adder implementation but with two differences first it has

additional layer present an n*1-bit multiplier. The second difference between adder and the

multiplier is the shift between adders in the tree layers that will represent an additional cost

and delay.

The m*n-bits multiplier will require to m*n AND gates in layer 1 each one require 1 cell

cost and 1 gate delay. Layer 2 has m/2 adders each one has n+1 input and n+2 outputs, layer 3

has m/4 adders each one has n+3 input and n+4 outputs so on the final layer has one adder

with n+m bit output.

However, to simplify the calculations of cost and delay we will use the same rules in the

adder cost and delay approximations. These approximations will lead to the m*n multiplier

require to about m adders each one has average inputs is 2n-bit with m*n gates.

While, the calculations of the delay will use the maximum delay that spent in the last

adder in the binary adder tree or in simple word it is equal to the delay of adder with (n+m)-

bits. Summery the cost and delay of n*m multiplier part in equation (3) are as in equation (6).

  mn * mn delay Multiplier

nmm*n n * m * t Multiplier





1

522cos
 --------------(6)

3.3- The Cost and Delay of LUT in NN

The LUT part in NN represent the term  f in equation (3). The cost of n-bit inputs and

m-bit output LUT is as in equation (7).[6]

 LUT delay

for nm*

for nm
t LUT n

1

4

4
cos

2
4










 

 --------------(7)

4- Practical Example for Neural Network

This paper will take the Ten English (Arabic) Digits NN (TDNN) with 6x5 input matrix

as in Fig (5) as example to NN.

The TDNN has 30 input nodes, 10 output nodes with two hidden layers first hidden

layer has 17 node and second hidden layer has 13 nodes.

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 60

.

Fig (5): The block diagram of 6x5 inputs TDNN.

The TDNN has 40 nodes and 861 connections, its require as in equation (2) to 510 1xn-

bit multiplier between input and hidden 1 layers and 351 n x n-bit multiplier between hidden

1, hidden 2 and output layers, 861 n-bit adders and 40 LUTs. The other factor in the

calculations of the TDNN is the data-bus of it. The suitable data-bus for NN is 16-bit that will

give a low error.

The approximated costs and delays of TDNN will calculate as in equations (5, 6 and 7)

as in table (1). While the real costs and delays of the TDNN components are given by the

hardware simulation using ISE 4.1i as in the last two columns in table (1).

Table (1) shows the TDNN required -for 16-bit data-bus hardware implementation- to

about 3,200,000 cells with maximum time delay is about 73 nsec while the capacity of Xilinx

FPGA as example for XCE5VLX330 (largest capacity chip in Xilinx Virtex-5 Family

FPGAs) is 331,776 cells [R1].

This problem solve in the classic methods [4, 5] by using a small general NN (SGNN)

and divided the NN to a multi sub-NN each one covers a section from the NN then use the

SGNN multi-times to execute the total job of NN.

This method has three disadvantages first its slow because it use the single SGNN

serially, second it's require a very complex control circuit with large size of memory and third

its need a special partition for each NN.

30

nodes

Input

layer

17

nodes

Hidden

layer 1

13

nodes

Hidden

layer 2

10

nodes

Output

layer
30 points as input

nodes layer

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 61

Table (1): The costs and delays of the TDNN components.

Component Approximated

cost/ cell

Approximated

delay/

cell delay

Real cost / cell

 for

XCE5VLX330

real delay/

nsec for

XCE5VLX3

30*

16*16-bit

multipliers

1280x351=4492

80

30 795x351

=279045

73

1*16-bit

multipliers

16x510= 0618 1 16x510= 0618 3

16-bit LUTs 65536x48

=2621440

1 65536x48

=2621440

3

16-bit adders in

hidden layer 1

1400x17

=23800

20 965x17 =16405 58

16-bit adders in

hidden layer 2

695x13 =9035 19 590x13 =7670 4
8

16-bit adders in

output layer

460x10 =4600 19 424x10 =4240 4
6

Total adders 37435 20 28315
+
 58

Total system 3117520 30 2936960
+
 73

+

*Each cell delay in XCE5VLX330 is about 2.4 nsec.
+
 Estimated values.

5- Reduction the Cost of the TDNN

This paper proposes a new approach to re-design the components of the NN to become

more suitable with hardware and in result implement a complete NN in a single chip FPGA.

First we will calculate the ratios of the costs in the NN components, and then reduce these

costs. The cost of TDNN in table (1) divided as 89% for LUTs, 10% for multipliers and 1%

for adders.

The reduction of the NN cost start with the highest cost (LUTs), then the next reduces

the cost of the multiplier.

The reduction of the multiplier cost must reduce the delay because this component has

the maximum delay in the NN. The reduction of the costs and the delays will be satisfied in

the three combinational methods.

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 62

5.1- Method 1

The main cost of TDNN fails in the area of activation function (LUTs). However, there

are a large number of methods to reduce the cost but most these methods depends on the

reduction of the data bus and in result it will reduce the resolution of the NN. The proposed

method is to implement the low cost NN activation function (Sigmund, tanh….) is use the

piecewise approach.

The piecewise approach is depends on the division of the activation function to two

parts (functions) as in Fig (6) and in equation (8).

        21 ggfxf  ---------------(8)

Where α is the 8 MSBs of x, β is the 8 LSBs of x, g1(α) is the initial value of line (shift),

g2(α) is the slope of line.

Fig (6): The general form piecewise function.

 The block diagram of the LUT using equation (8) is in Fig (7). The re-design of the

LUT using this method will result to implement the 16x16 bit LUT using two LUTs. First

LUT for shift that use the 8 MSBs inputs with 8-bit outputs that will generate the cores value

of the final output. The second LUT use the 8 MSBs inputs (α) with 8-bit outputs that will

generate the slope value, it will be multiplied with the 8 LSBs (β) to generate the fine value of

the final output. The summation of the cores and the fine values is the final output for LUT.

The cost of each 8x8 LUT (shift or slope) is 128 cells as in equation (7). That is mean

the total cost of the 16x16 LUT will become 486 cells. Hence, this approach will require to 71

cell delay. This delay will capture the system; the solution for this problem is the pipeline

approach. This approach add an internally memory as in Fig (7). That will increase the cost

and reduction the delay. Summary the total new cost of the 16x16 LUT is 510 and the

maximum delay is 15 cell delay.

That is mean the cost of all TDNN LUTs will reduced to 20400 cells, ie about 0.78 %

from the original cost of LUTs with maximum delay is less than the maximum delay of the

system in table (1) (32 cell delay).

g1(α)

g2(α)

α

f(α)

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 63

The total estimated cost for TDNN using this method is 523625 cells, that represent

about 17 % from the original cost of the TDNN, but its a large value in the FPGA techniques.

5.2- Method 2

Method 1 reduced the cost but the total cost is large also because it required to 2 FPGA

chips (XCE5VLX330) at least. The second step is reducing the cost of multipliers. This

method depend on the re-modification of the learning (weight generation) NN algorithm

(back propagation, genetic…) to satisfy two conditions. The first condition is to capture the

values of data in 16-bit (normalized with 16-bit) and the values of weights in 8-bits. This is a

novel method that will reduce the cost of each multiplier to 640 cells (equation (6)) with

maximum delay is 12 cell delay, the cost of the TDNN multipliers in hidden layer 2 and

output layer will reduced to 640*351 = 224640 cells that represent about 50% from the

original cost of these multipliers.

Fig (7): The block diagram of a piecewise implementation

of the NN activation function.

The second condition is a special condition in TDNN but its not general for all NN. This

condition depends on replacing the values of the input matrix from (0, 1) to (-1, 1). That will

enhancement the learning algorithm and in the same time we will replace each 1x16-bit

multiplier by 1x1-bit multiplier (sign multiplier). This condition will reduce the cost of the

multiplier in hidden layer 1 from 8160 to 1x510= 510 cell.

8 MSBs

8 LSBs

8x8 LUT

(shift)

8x8 multiplier

8x8 LUT

(slope)

8+16

bit

adder

8-bits

16 bits 16 bits

input

16 bits

output

Memory

for

delay

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 64

Hence, the total cost after use method 1 and method 2 is 282985 cells, that is mean the

new cost is 9 % from the original cost. These points realize the target and the TDNN can be

implementing in a single chip FPGA (XCE5VLX330).

5.3- Method 3

Methods 1&2 reduced the cost but the total cost now is fit the TDNN in a single FPGA

chips (XCE5VLX330). The FPGA chip has some free space; therefore we will use this space

to re-design the slowest component (20 cell delay in the adder) in a faster component. The

target of this step is reducing the delay of adders. Method 3 depends on the redesign of the

adder using pipeline technique as in Fig (8), that will increase the cost of each 16-bit adder to

53 cells but it will reduce the maximum delay to 8 cell delay.

Now applied this method on the slowest component in the TDNN, and then re-calculate

the cost of the TDNN after the partitioning of the adders. Repeat this method while the total

cost of the TDNN is less than the maximum capacity of the FPGA chip.

Practical note: the NN capacity must allow some space in the FPGA chip for routing.

That is because the full of the FPGA chip will capture the routing process and in result that

will increase the maximum delay time over the detected delay.

[

6- Total Results of the Three Methods

The result in table (2) shows how the good use for the mathematics and logic methods

with the digital circuits and systems can reduce cost and delay which is required to implement

a useful digital system. The most reduction in the cost comes from method 1 because it deals

with the higher cost part (LUT). At this point the digital methods become passive because all

the components in TDNN are classic components. Method 2 depends on the modification of

the NN to execute its job but in lower cost. This method will increase the final error in TDNN

but in acceptable amount, that effect will be discussed later in section 7.

Table (2): The effect of the three proposed methods

on the costs and delays of the TDNN.

component Original Method 1 Method 2 Method 3

cost/cell delay cost/cell delay cost/cell delay cost/cell delay

adders 37435 20 37435 20 37435 20 47755 14

multipliers 457440 30 457440 30 225150 12 225150 12

LUTs 2621440 1 20400 15 20400 15 20400 15

Total

system

3117520 30 523625 30 282985 20 293305 15

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 65

(a) (b)

Fig (8): The block diagram of 16-bit adder a) direct, b) using the pipeline.

The comparation between the initial (original) costs and delays are summarize in table

(3). These results are the proposed values therefore they not give the real results but they are

indicator to the real results. The real results are found using the hardware simulation of ISE

4.1i software. Table (4) shows the final report results of the hardware simulation of ISE 4.1i

software. Some values in this table is scored by the symbol "
+
" because it not available direct

in ISE 4.1i, such example the original cost of the TDNN is larger than the XCE5VLX330 chip

capacity, therefore it can not be calculate in ISE 4.1i, in this case we will implement the

components as multi-units and sum the total cost for all units.

Table (3): The original and the proposed costs and delays of the TDNN.

Component Original cost

/ cell

Original delay

/ nsec

Proposed cost

/ cell

Proposed delay

/ nsec

adders 28315 50 35515 34

multipliers 287205 73 218481 30

LUTs 2621440 3 19920 37

Total

TDNN

2936960 73 273916 38

16-bit

adder

a14-a0

b14-b0

Sign bits

a15

b15

s16 –

s0

7-bit

adder

a14-a8

b14-b8

Sign bits

a15

b15

8-bit

adder

a7-a0

b7-b0

Sign bits

a15

b15

s7 – s0

7-bit

adder

s16 – s8

8-bit

memory

s7 – s0

carr

y

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 66

Other important factor in table (4) is the latency that is the time spent between first

input and first output. This factor is the result of multiply the latency cycles by the time of the

cycle (maximum time delay in the system). This factor is very important for the systems that

have feedback but it is a secondary factor for the direct output system such as the TDNN.

Table (4): The final report of the TDNN hardware simulation

using ISE 4.1i software.

System

performance

Measured unit Original TDNN Final TDNN

Cost Value / cell 2936960
+
 273916

ratio % 100% 9.33%

XCE5VLX330 chips 8.86
+
 0.826

Delay Value/ nsec 73 38

ratio % 100% 52%

Latency In cycles 25 29

In msec 2
+
 1.2

+

+
 calculated value because it not available directly in hardware simulation.

However, the total cost reduced to about 275,000 cells and the maximum total delay is

38 nsec. That means the new cost is 9.33 % from the original cost with speed up to about two

times over the original speed of the TDNN, so it in result the cost of TDNN is suitable for

XCE5VLX330 or less Xilinx FPGA.

7- Additional Error Processing

This section will discus the sources of error in the hardware and proposes a practical

solution for them. The calculation of the error hasn't rules or equations but it's estimated using

a practical example (or examples) with tests. This paper will use the simulation of the TDNN

under C++ to find the value of error (error in this section mean the approximated normalized

value for the accumulated MSE in learning data of the TDNN) for all cases.

The software simulation results in fig (9) with float number has a final error reach to

0.1% while the direct truncation to 16-bit without normalize destroy the result (error up to

70%), while the direct truncation to 16-bit after the normalize increase the error to 25%. The

capture of the data and weights in the learning time to 16-bit such as in method 1 gives an

error less than 3%. While the capture of the data to 16-bit and weights to 8-bit in the learning

time gives an error less than 4% while the method 2 will increase the error to about 4.2%.

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 67

 Fig (9) shows the output error vs learning cycles of TDNN for software learning (64-

bit), 16-bit and 8-bit.

Fig (9): The output error vs learning cycles of TDNN

for software learning (64-bit), 16-bit and 8-bit.

8- Discussion

The large cost is the most bottlenecks in the single chip implementation of NN and the

activation functions take the most shares in the basic design of hardware NN. However, there

are large methods to reduce the cost of the activation functions but most these methods reduce

the accuracy of the output. The proposed method (method 1) is a novel method that will

reduce the cost of LUTs to about 2% from its original cost.

The multiplications cost is the harder bottleneck in the single chip implementation of

NN and there are a few low efficiency methods to reduce this cost. The proposed method

(method 2) is also a novel method that will reduce the cost of multipliers to about 12% from

its original cost and increase its speed up to 13 times with a small additional error. The

problem in this method is that the reduction of the data bus after learning from 64-bits (flout

variable) to 16-bit for hardware will increase (jamb) the error in the output results from 0.1%

to about 70%. The process of this problem is that reduce the data bus before learning to 16-bit

for data and 8-bit for NN weights. This solution increases the error in the output to about 4%

(acceptable output error in the NNs).

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 68

The combination of the proposed methods in this paper will reduces the cost to about 10

% from the classic implementation methods and increase the total speed up to 2 times for the

TDNN. The good point in this paper is that the combination of the proposed methods can be

applied for any NN to reduce its cost and increase its speed to implement it as a fast single

chip NN.

Journal of Engineering and Development, Vol. 14, No. 3, September (2010) ISSN 1813-7822

 69

References

[1] Saumil Merchant, Gregory D. Peterson, Sang Ki Park, and Seong G. Kong, "FPGA

Implementation of Evolvable Block-based Neural Networks", Department of Electrical

and Computer Engineering, The University of Tennessee, Knoxville, TN 37996-2100,

U.S.A. E-mail: {smerchant, gdp, spark14, skong}@utk.edu, 2006 IEEE Congress on

Evolutionary Computation Sheraton Vancouver Wall Centre Hotel, Vancouver, BC,

Canada pp 3129, July 16-21, 2006.

[2] J. Zhu, G. J. Milne, and B. K. Gunther, "Towards an FPGA based reconfigurable

computing environment for neural network implementations," Proceedings of Ninth

International Conference on Artificial Neural Networks (ICANN'99), 1999.

[3] Important: Verify all data in this document with the device data sheets found at

www.xilinx.com/virtex5.

[4] Randall KWeinstein1 and Robert H Lee, "Architectures for high-performance FPGA

implementations of neural models", institute of physics publishing journal of neural

engineering j. Neural Eng. 3 (2006) 21–34 doi:10.1088/1741-2560/3/1/003.

[5] Gilberto Contreras, Patricia Nava, "Design, Implementation and Testing of an FPGA-

based Neuro-Coprocessor", Dept. of Electrical and Computer Engineering, The

University of Texas at El Paso 500 W. University Ave. El Paso, TX 79968

pnava@ece.utep.edu, 2002.

[6] Dhafer R. Zaghar "Low cost and high speed look-up table implementation of XILINX

FPGA", Engineering and development journal/ P 16, Vol. 9, No. 2, June, 2005.

[7] Dhafer R. Zaghar "Design and implementation of general digital down converter using

field programmable gate array"/ Baghdad University / College of engineering /

Electrical Dep. Phd thesis 2002.

[8] Howard Demuth and Mark Beale, “Neural Network Toolbox For Use with MATLAB®”,

Copyright by the MathWorks, Inc, 1992 – 2002.

mailto:skong%7d@utk.edu
http://www.xilinx.com/virtex5
mailto:pnava@ece.utep.edu

