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Abstract 
 

This paper explores the performance of both source coding and error-correction in a 

single coding step. Such joint source-channel coding is done here using codewords of 

varying lengths that have particular distance properties with each other, which allows error 

detection and correction. Hence, these codes are called Variable-Length Error-Correcting 

(VLEC) codes. These codes exhibit memory like convolutional codes but spatial memory 

according to the variable-length nature. These (VLEC) codes are used in image coding and 

show sub error performance over variable length source coding such as Huffman code.                  

 

Keywords : Variable-Length Error-Correcting(VLEC) Codes, Joint Source-Channel 
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 الخلاصة
 

ي أنعمهيأة ىجأض ملأم ٌأزج   ∙مه جشفيش أنمصذس َ جصحيح أنخطأ  خخطأُو َاةأذو يعشض ٌزا انبحث  أمكاوية أوجاص كلا 

نٍا خصائص مسافة معيىة مع خعضأٍا انأبعط َانحأس جسأمح خاكحشأا   ةيث   ‚ٌىا خاسحخذاو كهمات مشفشو مخحهفة ألأطُال

 ∙ (VLEC codesسمى )شفشات جصحيح انخط  انمخحهفة انطُل()نزنك ف ن ٌزي انشفشات ج   وحيجةا  ∙َجصحيح انخط 

( َنكأه convolution codesشبً راكشو انشأفشات انمطُيأة)بيه ٌزي ألأطشَةة أن ٌزي انشفشات نٍا راكشو جسح   

أسحخذمث ٌزي انشفشات فس جشفيش انصُسو َقأذ اهٍأشت أدام مخحأضل نهخطأا ∙نزاكشو معيىة جعُد إنى طبيعة انطُل انمخحهف

 (.Huffman codeأكلش مه شفشات انمصذس انمخحهفة انطُل ملم )
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1. Introduction 

According to the manner in which redundancy is added to amassage,    error-

correcting code can be divided into two classes: block and convolutional. Block codes 

process the information on block–by-block basis, treating each block of information bits 

independently from others. In other words, block coding is a memory less operation, in the 

sense that codewords are independent from each other. In contrast, the output of 

convolutional encoder depends not only on the current input information, but also on 

previous inputs or outputs, either on a block-by-block or on a bit-by-bit basis 
[1]

. 

In this paper a class of error-correcting codes is examined, which is called Variable-

Length Error-Correcting (VLEC) code. As the name implies, the main difference between 

these codes and the standard block and convolutional codes is the fact that the codewords 

are of variable length. The codes investigated here are similar to block codes in the respect 

that each codeword is mapped onto a given set of information symbols irrespective of the 

previous inputs. However, their main characteristics are very similar to those of 

convolutional codes. This similarity is brought about by the fact that the position of any 

codeword within the encoded message depends on the previously occurring codewords and 

hence VLEC codes exhibit a form of spatial memory.  

The paper is organized, as follows: section two presents the fundamentals of VLEC 

codes with basic concepts of this code, and the most important parameters that may affect 

the performance of this code. Section three gives the heuristic construction algorithm for 

VLEC codes. The VLEC codes decoder is described in section four, with a modified version 

of Viterbi decoding algorithm. In section five, VLEC code is used in a practical application 

such as image coding, and compared with variable-length source coder such as Huffman 

code. Finally, section six represents the conclusions.   

 

2. Variable-Length Error-Correcting Code 

2.1 Basic Concepts of Variable-Length Error-Correcting Codes 

Let X be a code alphabet with cardinality assumed to be equal to 2, that means the code 

will be binary, although the results may easily be extended to the general case. A finite 

sequence   x = x1x2x3…xl  of code symbols is called a word over  X  of length  | x| = l, where  

xi   X, for all  i =1,2,….,l. A set C of words is called a code.  

Let the code  C  have  s  codewords { c1, c2, …., cs}  and let  li =| ci | and  p(ci) denote 

the length and the probability of occurrence of data source symbol mapped into word 

)......(
21 il

iiii cccc  , i=1,2,…..,s. Without loss of generality, assume that, l1 ≤ l2 ≤ 

……≤ ls. Further, let  σ  denote the number of  different codeword lengths in the code  C  and 

let these lengths be  L1 ,L2,…..Lσ, where  L1 < L2 < …… < Lσ. 
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 Let the number of codewords with length  Li  be  si, and the number of codewords with 

length less than  Li  be  ŝi, i.e.  s = 




1i

is .      (s1 @ L1, db1; s2 @ L2, db2; …….. ; sσ @ Lσ, dbσ; 

dbmin, dcmin)  should be used to denote such  a code 
[2], [3]

, where dbi, dbmin  and  dcmin  (are 

defined later). 

Let fi  = ci1ci2….….cin,  cij  C     j= 1,2,…….,n   be a concatenation of   n  words  of  

VLEC  code  C.  The set FN ={fi : | fi | = N} is called the extended code of the variable-length 

error- correcting code  C  of order  N  
[4]

. 

Let A be a memory–less data source with  s  source  symbols  {a1 ,a2,….as}, each with 

probability of occurrence  p(ai) , i = 1,2,…….,s, with 


s

i 1

p(ai) =1. Without loss of generality, 

assume that   p(a1)  ≥  p(a2)  ≥…….≥   p(as).The source  A  is encoded using code  C  by 

mapping symbol  ai   to codeword  ci   for all  i=1,2,…,s. In this case, the average codeword 

length is given by: 

                                             Laverage   =  


s

i 1

li p(ai)                                                          (1) 

2.2 Some Parameters of Variable-Length Error-Correcting Codes 

Variable-length error-correcting code will be considered to be trellis codes, their 

"memory" arising not from some storage element, but from the spatial information. 

Consequently, the properties of VLEC codes should be similar to those of trellis codes or 

convolution codes. 

Definition1: the hamming weight W(c) of a word c is the number of non- zero symbols in c. 

The  hamming distance  H(c1, c2)  between two words  c1 and  c2 of equal length is the number 

of  position in which  c1  and  c2   differ 
[2]

.    

Definition2: the minimum block distance  bk  associated to the codeword length  Lk of a code  

C  is defined as the minimum hamming distance between all distance codewords of  C  which 

have the same length  (with length  Lk)  
[3], [4]

 

                             bk = min  {h ( ci , cj ) }                                                                          (2) 

where  ( ci ,cj )  C, i ≠ j  and  | ci |  =  | cj | = Lk. 

There are σ different minimum block distances, one for each different codeword length. 

However, if for some length Lk there is only one codeword, i.e. sk =1, then in this case the 

minimum block distance for length Lk is undefined. The overall minimum block distance, 

bmin, of VLEC code  C  is defined as the minimum value of block distance  bk  over all  k = 

1,2,…..σ.  
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                                            bmin =  min  bk                                                                  (3) 

                                            1≤ k ≤ σ  

Definition3: the diverge distance  d(ci, cj)  between two codewords of unequal lengths  | ci |  

and  | cj |  of a code C is defined as the Hamming distance between the     l-length prefixes 

codewords  ci  and  cj, with  l= min{| ci |, | cj |} 
[3], [4], [5]

. 

                           d (ci , cj) = h (ci1ci2…….cil, cj1cj2……cjl)                                               (4) 

The minimum diverge distance of the variable-length error-correcting code C, dmin, is 

the minimum of all the diverge distances between all possible pairs of unequal length 

codewords of C, i.e. 

                                       dmin = min {d(ci, cj) }                                                                 (5) 

where ci and cj   C, | ci | ≠ | cj |. 

Definition4: the converge distance between two codewords of unequal lengths | ci | and | cj | 

of a code  C  is defined as the hamming distance between the  l-length suffixes of codewords  

ci and  cj, with  l = min {| ci |, | cj |}, where ci and cj  C, | ci | = li  and  | cj | = lj, with  li > lj, 

then  l = lj, so 
[3], [4], [5] 

              ).......,.......(),( 2121 ilyyjl iiijjjji cccccchccC                                           (6) 

where  y = li - lj  . 

The minimum converge distance of the variable-length error-correcting code C, Cmin, is 

the minimum value of all the converge distances between all possible pairs of unequal length 

codewords of C, i.e. 

                                     Cmin =min{C (ci, cj)}                                                                    (7)     

where  ci , cj    C ,  | ci | ≠ | cj | . 

Definition5: The sliding distance  s (ci, cj) between two codewords  ci and cj of lengths | ci | 

and | cj |  of a code  C  is defined as the minimum of the hamming distance between the  l-

length codeword and every sub-word of length  l  of  the other codeword, with  l = min {| ci | , 

| cj |}. 

             )}.......,.......(min{),( 2121 ljjjliiiji vvvuuu
cccccchccs                             (8)  

                             0  ≤ u ≤ li - l 

                             0  ≤ v ≤ lj - l                                                   

where ci  and cj   C, li =  | ci | and   lj = | cj |. 
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The minimum sliding distance  smin   of a code  C  is the minimum value for all sliding 

distances between every possible pair of codewords in  C  
[4]

. 

                                 smin  = min {s ( ci, cj)}                                                                      (9) 

where ci and  cj    C,  i ≠ j. 

Definition6: the free distance dfree is defined as the minimum Hamming distance between all 

paths of the same length in bits diverging in some state and converging in the same or another 

state 
[6]

. In 
[3]

, Buttigieg deduced a lower bound on the free distance from the distance 

between all possible pairs of unequal-length variable-length error-correcting codewords. He 

said that the free distance, dfree, of a VLEC code  C  is defined as the minimum Hamming 

distance in the set of all arbitrary long paths that diverge from some common state  Si and 

converge again in another common state  Sj , j > i, so  

                              dfree  =  min {h(fi, fj) : fi, fj   FN }                                                    (10)  

where  N = 1, 2,….., ∞  and  FN is the extended code of order  N of  C
 
(Note that for certain 

values of N, the set FN may be empty). 

 The free distance of a VLEC code C is bounded by:  

                              dfree  ≥  min (bmin, dmin + cmin)                                                           (11) 

[ 

2.3 Levenshtein Distance   

When dealing with codes capable of correction deletion and insertion errors, 

Levenshtein 
[7] 

introduced a new distance measure. Similar to the Hamming distance, the 

Levenshtein distance 
[8]

 between words is the minimum number of insertions, deletions and 

substitutions necessary to get from one word to another. Let a1 and a2 be two sequences of 

source symbols A, not necessary of equal length. Then, the Levenshtein distance between the 

two sequences is denoted  by  L (a1, a2).  

 

2.4 Symbol Error Probability  

      The symbol error probability (SEP) of the decoded source message  ar  when compared 

with the transmitted source message  at, is defined as the ratio of the Levenshtein distance 

L(at, ar) to the number of source symbols in the transmitted message at 
[2]

. 

               

t

rt

a

aaL
SEP

),(
                                                                        (12) 

where | at | denotes the number of source symbols in at. 
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3. Generation of VLEC Codes                                                                                                                                                                                                                                                                

The Heuristic algorithm first step is; C is initially set to a fixed-length code of length L1 

and minimum distance bmin. This step, as all the following determination of sets of same 

length words at a given distance, is carried out either by the Greedy Algorithm (GA) or the 

Majority Voting Algorithm (MVA) 
[5].

 Therefore, first the flowcharts, of these two algorithms 

are defined and then, the Heuristic algorithm is explained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

Yes 

 

|W| = 0 ?    

Start 

 

Let W be the set of n-

tuples arranged in 

lexicographic order 

 

Put the first 

word  xi  of W 

in C 

 

The next codeword  in C is 

the next one in W xj ,                                                                       

H(xi, xj) ≥ d 

 

Output C 

End of 
GA 

 

 No 

Figure (1): Flowchart of GA 
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|W| = 

0?    

 

Start 

Output C 

End of 

MVA 

 

Let W be the set 

of n-tuples 

 

For each word in W   

determine the number of other 

words in W which are at least 

distance d from the given word 

 

Choose that word xi which 

has the maximum number 

of other words xj, H (xi, xj) 

≥ d 

 

If there is more than one 

such word xi , then choose 

an arbitrary one. 

 

Put this 

word xi in 

C 

 

Delete all words xk 

in W such that H 

(xi, xk) < d 

 No 

 

Yes 

 

Figure (2): Flowchart of MVA 
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3.1 The Heuristic Construction Algorithm 

The basic construction concepts of Heuristic algorithm are, as follows 
[5], [9]

:- 

1. A fixed-length code C with length L1 and with minimum distance equal to bmin with a 

maximum number of codewords s1 must be constructed. For a horizontally linear 

VLEC code, all fixed-length codes constructed with this algorithm must be linear or a 

coset, then this fixed-length code is constructed by using one of the two algorithms 

given in section (3). 

2. All the possible L1-tuples, which are at distance dmin from the codewords of C, are 

listed. Let this set of words be W. 

3. The bound given by expression (11) suggests that it is better to choose bmin = dmin + 

cmin. Therefore, take bmin = 






2
dfree

  and bmin = dfree. In which case, dmin < bmin and 

such words are possible to find, because if  dmin > bmin then W will be empty, so for the 

moment, W will be assumed to be not empty. 

4. The number of words in W is doubled by increasing the words’ length by one bit by 

affixing first a '0' and then a '1' to the rightmost position of all words in W. So now, W 

contains words of length  L1+1.  

5. These words are then checked with the codewords in C. Those words in W which 

satisfy the minimum converge distance required with words in  C are retained, the 

others are discarded. At the end of this operation, the words in W, when compared 

with the words in C will satisfy the required minimum diverge and converge distances. 

6. The words with the same length must have minimum distance at least equal to bmin. 

So, here again the maximum number of words (s2) from what is left in W must be 

chosen such that these words form a fixed-length code with minimum distance at least 

bmin, to achieve this, using GA or MVA. 

7. These words are then added to the codewords already in C to form a VLEC code   

(s1@ L1, bmin; s2@ (L1+1), bmin; dmin, cmin).  

8. This whole procedure is then repeated by the next considering all (L1+1)-tuples which 

satisfy the minimum diverge distance to all the codewords in C and are also at the 

minimum distance dmin to those codewords in C of the same length, then affixing the 

extra bit to those words, extracting those words which satisfy the minimum converge 

distance. 

9. This algorithm stops either when there are no farther possible words to be found or 

else when the required number of codewords is reached. 

  

 

 

 

 



Journal of Engineering and Development, Vol. 14, No. 4, December (2010)    ISSN 1813-7822 

 
207 

4. Decoding of VLEC codes. 

4.1 Modified Viterbi Algorithm. 

The VLEC codes behave very much like convolutional codes. In the case of VLEC 

codes, the Viterbi algorithm is modified to modified version of Viterbi decoding algorithm 
[10]

. This is a maximum likelihood decoder (assuming all paths are equally probable), in the 

sense that it finds the closet coded sequence to the received sequence by processing the 

sequences on an information bit-by-bit. Now a modified version of the Viterbi decoding 

algorithm will be, as follows:- 

Let y = y1y2….yN be the received N-bit sequence, and denote the metric of the surviving 

path at state Si by Mi.  

1. Assign M0 = 0 and Mi = ∞,   i > 0. Let Si denote the current state and initially put i = 

0. 

2. For all codewords cj C, evaluate the branch metric mj = h(cj,                                                                                                                                                                                                                                  

yi+1yi+2….yi+lj).  

3. Flag Si+lj as a visited state. If mj + Mi < Mi+lj, then store this codeword for the transition 

Si → Si+lj (overwriting any other previously stored transitions to state Si+lj), and make 

Mi+lj = mj + Mi. 

4. Increment i  to the next visited state and until  i > N–l1. 

5. Decode the message corresponding to the codeword sequence represented by the 

surviving path to state SN. The surviving sequence of codewords is decoded to state 

SN, hence, the number of bits in the decoded codeword sequence is equal to N, and; 

therefore, the decoded sequence is a codeword of FN.  
 

5. Using VLEC Codes and Peak Signal to Noise Ratio (PSNR) in 

Image Communication. 

VLEC codes can be used in image processes, but these are known to be highly 

susceptible to channel errors. The critical bits need to be protected against channel errors in 

order to prevent the complete loss of a transmitted image. In this section, it will be shown 

that, if VLEC codes are used in image processes, the performance of these codes is better than 

the performance when the variable-length source coding (Huffman code) is used. The image 

is corrupted by transmitting the corresponding bit stream over an AWGN channel model. The 

code rate is given by R is 
[2]

:-
 

averageL

s2log
, it is assumed that the bit stream is modulated using 

Binary Phase Shift Keying (BPSK). The block diagram shown in Figure (3) shows the 

transmitter and the receiver block for image processes. Figure (4) shows the original picture 

of 'Lena image', Figures (5a, 5b, 5c) show a representative pictures of 'Lena image' decoding 

using a modified Viterbi decoding algorithm with various SNR values.  
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The pictures in Figure (5a) are encoded using Huffman code table, whereas the pictures 

in Figure (5b) are encoded using a VLEC code with free distance = 3, and the pictures in 

Figure (5c) are encoded using a VLEC code with free distance = 5. The VLEC codes and 

Huffman code have a total of (256) codewords with code parameters, as shown in Table (1). 

 

Table (1): Types of codes used in image communication 

Code type Laverage (bits) Code rate Maximum length(bits) 

VLEC with dfree=3 10.5415 0.7589 13 

VLEC with dfree=5 13.074 0.6119 17 

VLC (Huffman) 7.828 1.022 11 

     

Figure (6) shows the simulated performance curves of 'Lena image' picture with 

Huffman code and with VLEC codes of dfree =3, 5. The performance of VLEC code as it 

varies with different symbol error probability shows in general a great improvement in the 

SNR values, at the expense of increased complexity although the code rate of Huffman code 

is higher than the code rate of VLEC codes of dfree = 3, 5.  

The improvement in the performance is in the order of (3dB) in terms of SNR values at 

symbol error probability (SEP=10
-3

) for VLEC code with dfree = 3 and in order of (5dB) in 

terms of SNR at symbol error probability (SEP=10
-3

) for VLEC code with dfree = 5, when 

compared with the performance of Huffman code.   

 

 

 

 

 

 

 

 

 

 

 

Read 

image 

 

 Show image 
 Demodulated 

by BPSK 

 

 

Modulated by 

BPSK 

Encoding by using 

VLEC or Huffman 

codes 

   

 

Decoding by using 
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Figure (3): Block diagram of image processes 

AWGN 
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Figure (4): Original 'Lena image' picture 

 

 

 

 

                               

 

      Image at SNR = 3dB         Image at SNR = 3dB            Image at SNR = 3dB 

 

 

 

 

 

       Image at SNR = 9dB        Image at SNR = 9dB              Image at SNR = 9dB 

                     (a)                                       (b)                                            (c) 

 

Figure (5): 'Lena image' picture decoded at different SNR values, (a) Using 

Huffman code (b) Using VLEC code with dfree = 3(c) Using VLEC code with dfree 

= 5, with modified Viterbi decoding. 
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Figure (6): Performance comparison using VLEC codes and VL (Huffman) code 

in image processing 

 

When the original image is transmitted, the noise on the channel will cause some 

amount of distortion between the original image and the same received image. The PSNR is 

employed here to show the performance of VLEC codes compared with Huffman code in 

image process. PSNR is usually measured in dB, PSNR is given by 
[11], [12]

:- 

                           PSNR = 10log10 

 
 




M

r

N

c

crRcrT

LNM

1 1

2

),(),(

)1(**
                                         (13) 

where:- 

M: height of transmitted image (no. of pixels). 

N: width of transmitted image (no. of pixels). 

L: the number of gray scales in the transmitted image, in the present case L=256 and the gray 

scale extends from 0-255. 

r: row number in image matrix 

c: column number in image matrix 
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T(r,c): transmitted image 

R(r,c): received image  

Table (2) shows various computed PSNR for 'Lena image' (shown in figure 4) when 

subjected to AWGN. This table shows how much the performance of VLEC codes is better 

than the performance of Huffman code in image process. 

 

Table (2): Computed PSNR in (dB), using Huffman code and VLEC codes for 

'Lena image' 

SNR(dB) PSNR at Huffman code PSNR at VLEC                                    

code with dfree = 3 

PSNR at VLEC 

code with dfree = 5 

0 13.461 14.9811 18.3300 

1 13.9966 15.9992 20.2356 

2 14.8063 17.4272 22.7813 

3 15.9782 19.2394 25.9981 

4 17.0701 21.4827 29.5483 

5 18.5721 25.246 34.7446 

6 20.3207 28.7642 43.4644 

7 23.1503 32.8024 49.9362 

8 25.983 41.9453 69.9346 

9 29.8497 49.7729 Infinity 

10 35.0787 69.8316 Infinity 

 

6. Conclusion  

VLEC codes incorporate spatial memory due to their variable-length nature. This leads 

to derivation of a maximum likelihood decoding algorithm based on the Viterbi algorithm for 

VLEC code. The three parameters bmin, dmin and cmin are very indicative of the performance of 

VLEC codes, since in most cases the free distance will be directly determined by these 

parameters. For the most VLEC codes considered, the bound on dfree given in expression (11) 

is found to be met with equality.  

One result of this equality is that whereby the minimum block distance of the shortest 

length codewords can be the same as that for the longest length codewords, without affecting 

the performance of the code.  
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Therefore, there is a large probability of correcting errors in the shorter codewords than 

in the longer ones. Notice that the shorter length codewords are more probable (since they are 

mapped to the most probable source symbols). Hence, on average, the error correcting 

capability of a VLEC codes is improved in this way. Using VLEC code in image processes 

gives good improvement in terms of Peak Signal to Noise Ratio (PSNR) of about 20dB if 

compared with variable-length source coder such as Huffman code.  
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