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Abstract

A new method is presented to compute the switching angles in a multilevel inverter
using the Optimized Harmonic Elimination Stepped-Waveform (OHESW) technique so as
to produce the required fundamental voltage while at the same time not generate higher
order harmonics. Previous work has shown that the transcendental equations
characterizing the harmonic content of the inverter output can be converted to polynomial
equations which are then solved using the method of Resultants from Elimination theory.
However, when there are several DC sources, the degree of the polynomials are quite large
making the computational burden of their resultant polynomials via elimination theory
quite high. The proposed method with fast recursive algorithm is derived that provide the
exact on-line solution to the OHESW problem.

The proposed algorithm optimization technique is applied to a multilevel inverter to
determine optimum switching angles for eliminating low order harmonics while
maintaining the required fundamental voltage to drive an induction motor. The proposed
method contributes to the existing methods because it not only generates the desired
fundamental voltage, but also completely eliminates any number of harmonics. The
complete solutions for (5-15) level OHESW switching patterns to eliminate the (3"-13")
harmonics are given.
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1. Introduction:

A multilevel inverter is a power electronic device built to synthesize a desired AC
voltage from several levels of DC voltages . Multilevel inverters are uniquely suited for
utility applications because of the high VA ratings possible with these inverters @. The
devices in a multilevel inverter have a much lower dv/dt per switching, and they operate at
high efficiencies because they can switch at a much lower frequency than the traditional
PWM controlled inverters. Here a fundamental frequency switching scheme (rather than
PWM) is considered because; this results in significantly lower switching losses.

The key issue for multilevel inverter modulation is the Harmonics Elimination (HE).
The Optimized Harmonic Elimination Stepped Waveform (OHESW) technique @) js very
suitable for a multilevel inverter circuit. By employing this technique along with the
multilevel topology, the low Total harmonic Distortion (THD) output waveform without any
filter circuit is possible.

The Multilevel Fundamental Switching (MFS) method inherently provides the
opportunity to eliminate certain higher order harmonics by varying the times at which certain
switches are turned “on” and turned “off”, which is also called varying the switching angles.

It was mentioned earlier that an increase in the number of DC voltages in a multilevel
inverter results in a better approximation to a sinusoidal waveform and provides the
opportunity to eliminate more harmonic contents which will make it easier to filter the
remaining harmonic content. As a result, filters will be smaller and less expensive.

A key issue in the MFS scheme is to determine the switching angles (times) so as to
produce the fundamental voltage and not generate specific higher order harmonics .

Iterative technique was used to solve for the switching angles for the MFS scheme ©),
though such an approach did not guarantee finding all the possible solutions. In ©, a Genetic
algorithm approach was used to solve for the switching angles. In Kato ©, a Homotopy
technique was used to solve the HE equations for a single DC source inverter. () had shown
that the transcendental equations characterizing the harmonic content of the MFS scheme can
be converted into polynomial equations which were then solved using the method of
Resultants from Elimination theory. However, if there are several DC sources, the degrees of
the polynomials in these equations are large.

As a result, one reaches the limitations of the capability of contemporary computer
algebra software tools to solve the system of polynomial equations using elimination theory
(by computing the resultant polynomial of the system), even if the idea of Symmetric
Polynomials and Power Sums ® are used to simplify these equations, they could become too
complex and need more time to solve.
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To conquer this problem, the switching angles computation of the MFS scheme with
general number is solved by using the proposed fast recursive on-line algorithm.

The work © presents a contribution to the theory of optimal traditional PWM and gives
algorithm for efficient on-line calculation of single-phase PWM switching patterns.

The present work will be to develop and extend the proposed algorithm in © which is
used only for 3-level traditional PWM inverter to be compatible with multilevel inverter for
solving the OHESW problem in © and ) on-line and in real time.

2. Cascaded H-bridges Multilevel Inverter:

The so-called multilevel; starts from three levels. As the number of levels reach infinity,
the output THD approaches zero. There are three main capacitor voltage synthesis-based
multilevel inverters, i.e. diode-clamped, capacitor-clamped, and cascaded H-bridges. The
cascaded H-bridges multilevel inverter is a relatively new inverter structure. This new inverter
does not require any transformers, clamping diodes, or flying capacitors, which are required
in today’s multilevel inverters. It is proposed to solve all the problems of the multilevel
inverters as well as conventional multi pulse or PWM inverters @. A cascaded H-bridges
multilevel inverter is simply a series connection of multiple H-bridge inverters. Each H-bridge
inverter has the same configuration as a typical single-phase full-bridge inverter. By
cascading the AC outputs of each H-bridge inverter, an AC voltage waveform is produced.
Fig. 1 provides an illustration of a single-phase cascaded H-bridges multilevel inverter using
3-Separate DC Sources (SDCS); (s=3, where s is the no. of SDCSs).
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Fig. 1. Cascaded H-bridges Fig. 2 : Voltage Output of
Multilevel Inverter using 3-DC Cascaded H-bridges Multilevel
Sources Inverter
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By closing the appropriate switches, each H-bridge inverter can produce three different
voltages: +V, 0, and -V, . When switch S, and S, of one particular H-bridge inverter in Fig. 1
are closed, the output voltage is +V, . When switches S, and S, are closed, the output voltage
is -V,.. When either the switches S, and S, or the switches S, and S, are closed, the output

voltage is 0.

Fig. 2 also illustrates the idea of “levels” in a cascaded H-bridges multilevel inverter. In
this figure, one notices that three distinct DC sources can produce a maximum of 7-distinct
levels in the output phase voltage of the multilevel inverter. This is used to verify the concept
of the OHESW technique. More generally, a cascaded H-bridges multilevel inverter using s-
SDCS can produce a maximum of 2s+1 distinct levels in the output phase voltage ©.

3. Mathematical Model of the Multilevel Inverter Switching:

Basically, the concept of the OHESW technique is to combine the idea of the Selective
Harmonic Elimination PWM (SHEPWM) with the quarter-wave symmetric idea concept @,

The OHESW shown in Fig. 2 is assumed to be the quarter-wave symmetric. The Fourier
series of the quarter-wave symmetric s H-bridge cell multilevel waveform is written as
follows:

00 =308 S ot s (1)
o N7 (o

, Where ay is the optimized switching angles, which must satisfy the following condition:

0<ar<a,<..<as<ml2, k is the k™ switching angle, n is the harmonic order, s is the number of

SDCS and V. is the DC voltage source.

The method to solve the optimized harmonic switching angles will be explained in this
section. From Eq. (1), the amplitude of all odd harmonic components including fundamental
one, are given by:

an:%icos(nak) 2)

nrz i3
The amplitude of DC component and all even harmonics equal zero. Thus, only the odd

harmonics in the quarter-wave symmetric multilevel waveform need to be eliminated. The
switching angles of the waveform will be adjusted to get the lowest output voltage THD.

Amplitudes of any harmonics can be set by solving a system of nonlinear equations
obtained from setting Eq. (2) equal to pre-specified values. In the optimal HEPWM method
19 the fundamental component is set to required amplitude and n-1 low-order harmonics are
set to zero. This is the most common approach in electric drives since low-order harmonics
are the mostdetrimental to motor performance.
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This task of designing a waveform, the first n Fourier series coefficients of which match
those of a desired waveform has been the subject of many papers @5, Often, the Newton
iteration method in these papers was used to solve the system of nonlinear Egs. (2). This
method is computationally intensive for on-line calculations and the storage of off-line
calculations leads to high memory requirements. Another approach is to simplify the

nonlinear HE equations in order to obtain real-time approximate solutions using modern DSPs
(10)

The current paper uses the recursive algorithm for solving the OHESW problem without
any approximations in the problem statement. The developed algorithm will allow for real-
time generation of switching patterns with high order.

The OHESW problem, as it is considered here, is the design of a waveform gy (w?) so
that it's first Fourier coefficients hy are equal to prescribed values in Egs. (2). Therefore, the
OHESW problem gives rise to the following design equations

COS o + COS &, +COS @3 +...COS &, = hy
Cos 3¢, + €0S 3r, +€0S 33 +...C0S 3r, = hy
: (3)
cos(2n —1)a, + cos (2n —1)a,
+cos(2n —1)a; +...cos(2n—1)a, = h,, ,

Given the n values, hy = kzay 14V4, we have n equations and n unknowns; we would like
to find the n unknowns {1, ay,..., an}, with 0 <oy <o, <....< an < 7/2.

4. Transformation of the OHESW Problem:

Using the trigonometric identities; cos nt = Tn(cost), where T, is the n™ Chebyshev
polynomial, changing the variables; x;j = cosa;, and re-arrangement the necessary equations
listed in © to be compatible with OHESW problem, we get:

Ti() + Ty (%) + Ty (Xg) +.. Ty (X)) =Ty
T3 (%) +T5(%) + T3 (Xg) +... T3 (X)) = hg
5 (4)
Ton1 (%) +Ton (%) + T g (X3) +

o (%) =hony

As the odd-indexed Chebyshev polynomials are odd polynomials, the Egs. (4) can be
writing:

n n K
ZTZk_l(X) =chk,j . ij_l = h2k—1 1< k <n or
i=1 i=1 j=1
k
zck,j'SZj—lthk_l 1<k<n -
j=1
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n .
, Where s; = Z x.! are the sums of powers W of {xi}. Eqg. (5) forms a set of n linear equations
i=1

for sy.1, 1 < j < n. Once the values sy;.1 are obtained by solving the linear system of Eq. (5),
one has the following problem. Given {s1,Sy, ..., Szn-1}, find the solution {xi, X, ..., X, } to the
following system of nonlinear equations:

X Xy ot X, =)

3 3 3
XX Ho X, =S,

(6)

2n-1 2n-1 2n-1
XX et X, =S,

Once x; are obtained, the original variables «; can be found by letting a; = arccos x;. Yet
it is necessary to order o; appropriately such that 0 <oy < ap <....< an < /2.

However, the design Eqgs. (6) are nonlinear, so obtaining the desired solution {x;} is not
so straightforward. In the following sections, this nonlinear system of equations will be
closely examined. In Section V, a systematic procedure is given to obtain the solutions.

For the HE problem, the Fourier coefficients of the OHESW waveform voy(w?) should
match the Fourier coefficients of a pure sine wave. That is, the values h,,.; appearing in Eq.
(3) are given by h;=m, and h,j.; = 0 for 2 <1 < n. For this case, the values s,;.; depend on the
modulation index m only and are given by:

m (2i-1 .
SZil:F(i—l} 1<i<n @)

5. Solving the OHESW Problem:

To solve the OHESW problem, we will first write the polynomial P(x) having roots {xi,
X2 v.ey Xi..., Xn} @S:

(=] T(x-x)

, then the logarithmic derivative is given by:

P(x) & 1
P~ 2 —x)

Expanding each term in the sum, one gets:

00

PX)_ o x' & s n S
W‘ZZ +1_Z 1_;+ij+1 8

i i+
i-1 j=0 X j—0 X =

, Where s; are the sums of the root powers and so = n. Integrating Eq. (8) gives:

o0

In P(x)znlnx—zi

|
=1 1 X
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Raising e to the power of In P(x) and using the last equation gives:
j=1 jx!

P(x)=x"exp [— i S—’J 9)

In order to generalize procedure, we will obtain an expression similar to Eq. (9), but
having only odd s;. To this end, note that:

P(—x):(—l)“xnexp[—isj(‘1)'}

S

, therefore:

P open] -3 o) o capen -2 3
, then:

P(x)=(~1)"P(-x)G(1/x)
, Where

G(x)=e'™,  and  V(x)= —2(51x+—3x3+ 5y, + j
Let:

P(x)=(-1)'P(-x) (10)
, then:

P(x)=P(x)6(1/x) (12)

, Where 5(x) is the monic polynomial related to P(x) by negating the roots of P(x).

Eq. (11) is the counter-part to Eq. (9). Likewise, by setting like powers of x equal, we
can obtain equations that relate px and s;i, where pi is the polynomial coefficients of P(x).
However, in order to do this, we need to expand G(x) = '™ into a power series of x. Such a
power series for '™ can be obtained using the following algorithm. Let:

V(x):ivixi : and G(x)=eV(X)=igixi

i=0 i=0

If vifor 0 <i <j are known, then the values of g; for 0 <i <j are given by:

go=e" (12)
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1% o
g :?Zkvkgi—k I<i<) (13)
k=1

When the first n odd values of s; are known, then v are known for 0 <i < 2n. [v,; = 0 for
0 <i<nand vyi1=-2s.1/ (2i-1) for 1 <i<n]. Therefore, using the relations in Egs. (12) and
(13), we obtain g; for 0 <i <2n, and consequently, we can write out Eq. (11), matching like
powers of x, to obtain linear equations from which pi can be obtained. For example, we write
out the expressions for n = 3 (7-level inverter). That is, we are given s;, S3, and ss, and our
goal is to find the corresponding monic 3™ degree polynomial P(x); P(x) = X3 + pux® + p2 X +
P3.

6. A Recurrence Algorithm for P(x):

The notation P,(x) will be used to emphasize the dependence of P(x) on n. Specifically,
Pn(x) denotes the monic degree-n polynomial associated with the OHESW problem, with
coefficients pp:

P(x)= X"+ pp X" 4.+ Py
With this notation, a recurrence relation:
Pn+1(x) =X I:)n (X)+ cn Pn—l(x) (14)

can be used to compute Pn(x). For the OHESW problem, the initial conditions can be taken to
be Po(x) = 1 and P1(x) = x-m. The coefficients C, in the recursion can be computed using the
following formula:

n

Z(_l)k Oon+1-k pn, k

C,=—-*

n n-1

0 (15)
(_ 1)k O2n-1-k Pn-g, «
k=0

The coefficients pn+1x are then determined recursively as [this implements Eq. (14)]:
Pn+1.k = Pn, ks k=1
Pr+1k = Pkt Cn. Pn-1, k-2, k=2,....n

Pn+1k= Cn. Pn-1, k2 k=n+1 (16)

The Recursive algorithm for computing can be summarized as follows:
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Specify nand m

i
Input Initial Conditions: go,

Pa(x). and P.(x)
!

Compute s;, v;, and g;
v
Compute Cy

v
Compute Polynomial Py ()

<>
Yes

Compute Roots x;

1
Compute ¢;

Fig. 3: Flowchart of a Fast Recursive Algorithm for OHESW Technique

Given n and m, the polynomials P,(x) for are recursively computed as follows:

1) Setgo=1and for k =1 to 2n, find g; from Eq. (13).
2) Set Po(x) =1 and Py(x) =x - mand for k =1 to n-1 let:

k )
(_1)|92k+1—i Py.i
C =—-= , and Pe.1(X)= xR (x)+C P_4(x)

k-1

_ (_1)i Ook-1-i Pri

i=0

Find the roots x; of Pp(X).

3) Setaj=arccos x;, i =1, ..., n. Sort the angles «;.

Fig. 3 illustrates the flowchart of the recursive algorithm for on-line calculation of the
optimized switching angles.

Using a computer algebra system, such as Maple or Mathematica, this recursive
algorithm allows one to obtain P,(x) as an explicit function of m.
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7. Simulation Results:

To perform the necessary calculations, a computer software package Maple was used.
For organizing and analyzing all of the collected optimized switching angles a, the software
package MATLAB were utilized. Using MATLAB, the collected switching angles were
organized into look-up tables to be used later in simulations as shown in Table 1. Also,
MATLAB was used to generate plots of a and THD versus m. The THD mathematically
calculated by @V

)
THD = k=2 (17)

The inverter is loaded by single-phase capacitor-run induction motor with the following
ratings: 175Watt, 220V, 1.22A, and 1275Rpm.

The best compromise between efficiency and quality of the inverter operation is
achieved by the optimal switching pattern technique.

The solutions of the optimum switching angles o« versus m for the MFS scheme are
shown as in the Fig. 4. Note that not all the range of m has a solution, for example, in the case
of 7-level (I =7 or n = 3) OHESW scheme, there are solutions in the intervals: me[1.65-2.07]
and [2.41,2.45] only. On the other hand, for me[0,1.64], [2.08-2.4], and [2.46-3] there are no
solutions that solve the Egs. (2).

The figure also shows the solution of « for 15-level OHESW. It can also be seen that the
range of m decreases with increasing inverter voltage levels I. All the optimized switching
angles (at THDmin) for different values of voltage levels I are illustrated in the Table 1.

Fig. 5 shows the plot of the voltage THD with m for two different values of I. It can be
conclude from the figure that the increasing of | causes decreasing THDmin [See Fig. 6] until
we get the lowest one; THDmin=6.4554 at m=4.925 for 15-level inverter. Fig.7 shows the
instantaneous output voltage OHESW for both 7- and 15-level and with minimized THD. If
the number of | is higher, a near-sinusoidal staircase voltage can be generated with only
fundamental frequency switching.

The voltage spectra at THDmin corresponding to the instantaneous output voltage
waveforms in Fig. 7 are illustrated as in the Fig. 8 which shows two examples, one for 7-
stepped waveform and the other for 15-stepped waveform. The first shows that the 3" and 5"
harmonics are eliminated. Therefore the 7" (350Hz) harmonic will appear in the spectra as a
first harmonic. The second spectra show that the 3™, 5™... 13" harmonics are eliminated.
Therefore the 15™ (750Hz) harmonic will appear in the spectra as a first harmonic. It can be
seen that increasing |, causes increasing the eliminated harmonics. The normalized values of
the first 15" harmonics’ are listed in Table 1.
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The corresponding instantaneous line currents of motor fed by OHESW cascade
multilevel inverter at THDmin are shown in Fig. 9. The ripple of current decreases with
increasing | since increasing | (or n) causes eliminating more harmonics with lower orders,
leaving harmonics with higher orders which cause increase of the motor impedance with
frequency (X=2xzfL); therefore the harmonic currents decreases. So, the induction motor can
be represented as a good low pass filter. As a result, the current waveforms become more
sinusoidal with increasing I. By using the voltage spectra and the equivalent circuit of the
motor, the current spectra can be calculated as in Fig. 10.

8. Conclusions:

In this paper, a new technique is proposed and applied to a multilevel inverter to
determine the optimum switching angles for eliminating the low order harmonics. It can be
concluded that:

1. The current trend of modulation control for multilevel inverters is to output high
quality power with high efficiency. For this reason, popular traditional PWM methods
are not the best methods for multilevel inverter control due to their high switching
frequency.

2. The Selective Harmonic Elimination (SHE) method has emerged as a promising
modulation control method for multilevel inverters. But the major difficulty for the
SHE method is to solve transcendental equations characterizing harmonics, the
solutions are not available for the whole modulation index range, and it does not
eliminate any number of specified harmonics to satisfy the application requirements.

3. To conquer the problem for the SHE method, the resultant method was used to find
all the solutions to the harmonic equations if they exist by converting them into
polynomial equations using trigonometric identities. However, increasing the number
of switching n (or the order of harmonics to be eliminated) will lead to polynomial
equations of higher degree which require several hours to solve. Therefore Resultant
theory which proposed in previous work will not be effective of solving these
polynomials.

4. The current paper presents a contribution to the multilevel inverters and gives fast
algorithm for efficient on-line calculation of OHESW switching patterns and in real
time for general number of the output voltage levels (or the number of the switching
angles).

5. The proposed algorithm extends the 3-level unipolar optimal PWM switching scheme
proposed in the previous work to be also used here for multilevel inverters.

6. By a transformation of variables, the solution to the OHESW problem is given by the
roots of n-degree monic polynomial Pp(X).
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Fig. 10: the Line Current Spectra of Motor Fed by OHESW Cascade Multilevel
Inverter at THDmin with Two Values of |
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Table 1: the Switching Solution and Output Voltage Harmonics (in p.u.) of a

Cascade Multilevel Inverter using the Proposed Algorithm

No. of levels (I) 5 7 9 11 13 15
@, | 146172 | 8.7666 | 8.19508 | 5.67731 | 51996 | 3.9126
3 a; | 45.3828 | 28.6886 | 21.0746 | 16.4853 | 16.5375 | 14.5571
% a3 | 54.9395 | 37.0305 | 30.6968 | 28.4198 | 22.7573
? @ — | 60.0804 | 42.0136 | 41.1376 | 34.5905
.f__s” as —— | 63.6953 | 59.0302 | 45.2749
‘§ s | 87.2327 | 62012
(7p)
a; | 87.647
m 1.67 2.44 3.22 4 415 | 4.925
hs 1.67 2.44 3.22 4 415 | 4.925
hs 0 0 0 0 0 0
hs | -00784| 0 0 0 0 0
h, | 0.0751 | 0.0648 0 0 0 0
R ho 0 0.792 | -0.0903 | 0 0 0
2 hu | -0.1547 | 0.0154 | 0.0518 | 0.1019 0 0
g hi | -0.1252 | 0.1203 | -0.0194 | - 0.0827 | 0.0628 0
% his 0 | -0.0380 | -0.1191 | - 0.0698 | - 0.1079 | - 0.0624
E hy | 0015 | -0.1352 | 0.0443 | 0.0652 | 0.0927 | 0.1429
g his | -0.0346 | - 0.0611 | 0.0677 | - 0.0417 | - 0.0014 | - 0.0248
T Mot 0 | -0.0562 | -0.0631 | -0.0206 | - 0.0379 | 0.0301
hes | 0.0749 | -0.0622 | - 0.0737 | 0.0769 | - 0.0265 | 0.0495
hes | 0063 | 0.0249 |-0.0925 | 0.0194 | 0.1323 | 0.0118
hay 0 0.0280 | - 0.0909 | - 0.0140 | - 0.0383 | - 0.1037
hes | -0.0014 | - 0.0531 | 0.0231 | -0.0858 | - 0.0339 | 0.0732
THDmn (%) | 16.5924 | 11.6262 | 8.9907 | 7.3873 | 7.6396 | 6.4554
THDmax (%) | 32.9620 | 24.8098 | 14.6081 | 12.1832 | 9.1754 | 7.5029
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