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Abstract 

A new method is presented to compute the switching angles in a multilevel inverter 

using the Optimized Harmonic Elimination Stepped-Waveform (OHESW) technique so as 

to produce the required fundamental voltage while at the same time not generate higher 

order harmonics. Previous work has shown that the transcendental equations 

characterizing the harmonic content of the inverter output can be converted to polynomial 

equations which are then solved using the method of Resultants from Elimination theory. 

However, when there are several DC sources, the degree of the polynomials are quite large 

making the computational burden of their resultant polynomials via elimination theory 

quite high. The proposed method with fast recursive algorithm is derived that provide the 

exact on-line solution to the OHESW problem. 

The proposed algorithm optimization technique is applied to a multilevel inverter to 

determine optimum switching angles for eliminating low order harmonics while 

maintaining the required fundamental voltage to drive an induction motor. The proposed 

method contributes to the existing methods because it not only generates the desired 

fundamental voltage, but also completely eliminates any number of harmonics. The 

complete solutions for (5-15) level OHESW switching patterns to eliminate the (3
rd

-13
th

) 

harmonics are given. 
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 الخلاصة

ُّ أتذاء طشَمح ُح اٌّىجح اٌخطىَح ذمٕ تاعرخذاٌَحغاب صواَا اٌرشغًُ فٍ عاوظ ِرعذّد اٌّغرىَاخ  جذَذج ذ
اٌّثاٌُح ٌحزف اٌرىافمُاخ ٌرىٌُذ اٌفىٌرُح الأعاعُح اٌّطٍىتح وفٍ ٔفظ اٌىلد عذَ ذىٌُذ اٌرىافمُاخ راخ اٌّشذثح اٌعاٌُح. 
ُّّضج ٌٍّحرىي اٌرىافمٍ ٌخشج اٌعاوظ َّىٓ  ٌمذ وَجذخ اٌذساعاخ اٌغاتمح تأْ اٌّعادلاخ اٌّثهّح اٌغُش اٌخطُح واٌّ

طشَمح اٌّحصلاخ ِٓ ٔظشَح اٌحزف. وِع رٌه  تاعرخذاَخ جثشَح ِرعذدج اٌحذود وعٕذذز َّىٓ لٍهّا ِعادلا إًٌذحىٍَها 
 لإَجادفعٕذ صَادج عذد ِصادس اٌفىٌرُح اٌّغرّشج, فأْ دسجح هزٖ اٌّعادلاخ ذىىْ وثُشج ِّا َجعً اٌعةء اٌحغاتٍ 

 اٌّحصٍح ٌها وثُشاً ٔىعا ِا.

  ُّ ج خىاسصُِح ِرىشسج وعشَعح وذجّهض ِشىٍح اٌّىجح اٌخطىَح اٌّثاٌُح اٌطشَمح اٌّمرشلح تّغاعذ اشرماقذ
ُّ ذطثُك اٌرمُٕح اٌّثاٌُح ٌٍخىاسصُِح اٌّمرشلح عًٍ عاوظ ِرعذّد اٌّغرىَاخ  ٌحزف اٌرىافمُاخ تاٌحً اٌّثاشش واٌراَ. ذ

لد أتماء اٌفىٌرُح الأعاعُح ٌرحذَذ صواَا اٌرشغًُ اٌّثاٌُح ورٌه ٌحزف اٌرىافمُاخ راخ اٌّشذثح إٌّخفضح وفٍ ٔفظ اٌى
اٌّطٍىتح ٌغىق ِحشن لثٍ. ٌمذ عاهّد اٌطشَمح اٌّمرشلح ِع اٌطشق اٌّىجىدج لأٔها لا ذىٌُذّ اٌفىٌرُح الأعاط فحغة 

ُّ أعطاء اٌحٍىي اٌراِح ٌّٕارج ذشغًُ اٌّىجح اٌخطىَح اٌّثاٌُح   ذحزف أَضا أٌ عذد ِٓ اٌرىافمُاخ تشىً ذاَ. ًوإّٔا ذ
 .(13-3)ٌحزف اٌرىافمُاخ راخ اٌّشاذة  (15-5)اخ راخ اٌّغرىَاخ تحزف اٌرىافمُ
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1. Introduction: 

A multilevel inverter is a power electronic device built to synthesize a desired AC 

voltage from several levels of DC voltages 
(1)

. Multilevel inverters are uniquely suited for 

utility applications because of the high VA ratings possible with these inverters
 (2)

. The 

devices in a multilevel inverter have a much lower dv/dt per switching, and they operate at 

high efficiencies because they can switch at a much lower frequency than the traditional 

PWM controlled inverters. Here a fundamental frequency switching scheme (rather than 

PWM) is considered because; this results in significantly lower switching losses. 

The key issue for multilevel inverter modulation is the Harmonics Elimination (HE). 

The Optimized Harmonic Elimination Stepped Waveform (OHESW) technique 
(3)

 is very 

suitable for a multilevel inverter circuit. By employing this technique along with the 

multilevel topology, the low Total harmonic Distortion (THD) output waveform without any 

filter circuit is possible. 

The Multilevel Fundamental Switching (MFS) method inherently provides the 

opportunity to eliminate certain higher order harmonics by varying the times at which certain 

switches are turned “on” and turned “off”, which is also called varying the switching angles. 

It was mentioned earlier that an increase in the number of DC voltages in a multilevel 

inverter results in a better approximation to a sinusoidal waveform and provides the 

opportunity to eliminate more harmonic contents which will make it easier to filter the 

remaining harmonic content. As a result, filters will be smaller and less expensive. 

A key issue in the MFS scheme is to determine the switching angles (times) so as to 

produce the fundamental voltage and not generate specific higher order harmonics
 (1,4)

.  

Iterative technique was used to solve for the switching angles for the MFS scheme 
(3)

, 

though such an approach did not guarantee finding all the possible solutions. In 
(5)

, a Genetic 

algorithm approach was used to solve for the switching angles. In Kato 
(6)

, a Homotopy 

technique was used to solve the HE equations for a single DC source inverter. 
(7)

 had shown 

that the transcendental equations characterizing the harmonic content of the MFS scheme can 

be converted into polynomial equations which were then solved using the method of 

Resultants from Elimination theory. However, if there are several DC sources, the degrees of 

the polynomials in these equations are large.  

As a result, one reaches the limitations of the capability of contemporary computer 

algebra software tools to solve the system of polynomial equations using elimination theory 

(by computing the resultant polynomial of the system), even if the idea of Symmetric 

Polynomials and Power Sums 
(1,8)

 are used to simplify these equations, they could become too 

complex and need more time to solve.  

 



Journal of Engineering and Development, Vol. 14, No. 4, December (2010)    ISSN 1813-7822 

 
169 

To conquer this problem, the switching angles computation of the MFS scheme with 

general number is solved by using the proposed fast recursive on-line algorithm. 

The work 
(9)

 presents a contribution to the theory of optimal traditional PWM and gives 

algorithm for efficient on-line calculation of single-phase PWM switching patterns. 

The present work will be to develop and extend the proposed algorithm in 
(9)

 which is 

used only for 3-level traditional PWM inverter to be compatible with multilevel inverter for 

solving the OHESW problem in 
(3)

 and
 (7)

 on-line and in real time. 

2. Cascaded H-bridges Multilevel Inverter:  

The so-called multilevel; starts from three levels. As the number of levels reach infinity, 

the output THD approaches zero. There are three main capacitor voltage synthesis-based 

multilevel inverters, i.e. diode-clamped, capacitor-clamped, and cascaded H-bridges. The 

cascaded H-bridges multilevel inverter is a relatively new inverter structure. This new inverter 

does not require any transformers, clamping diodes, or flying capacitors, which are required 

in today’s multilevel inverters. It is proposed to solve all the problems of the multilevel 

inverters as well as conventional multi pulse or PWM inverters 
(2)

. A cascaded H-bridges 

multilevel inverter is simply a series connection of multiple H-bridge inverters. Each H-bridge 

inverter has the same configuration as a typical single-phase full-bridge inverter. By 

cascading the AC outputs of each H-bridge inverter, an AC voltage waveform is produced. 

Fig. 1 provides an illustration of a single-phase cascaded H-bridges multilevel inverter using 

3-Separate DC Sources (SDCS); (s=3, where s is the no. of SDCSs). 
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By closing the appropriate switches, each H-bridge inverter can produce three different 

voltages: +V
dc

, 0, and -V
dc

. When switch S
1 

and S
4 

of one particular H-bridge inverter in Fig. 1 

are closed, the output voltage is +V
dc

. When switches S
2 

and S
3 

are closed, the output voltage 

is -V
dc

. When either the switches S
1 

and S
2 

or the switches S
3 

and S
4 

are closed, the output 

voltage is 0.  

Fig. 2 also illustrates the idea of “levels” in a cascaded H-bridges multilevel inverter. In 

this figure, one notices that three distinct DC sources can produce a maximum of 7-distinct 

levels in the output phase voltage of the multilevel inverter. This is used to verify the concept 

of the OHESW technique. More generally, a cascaded H-bridges multilevel inverter using s-

SDCS can produce a maximum of 2s+1 distinct levels in the output phase voltage 
(3)

. 

 

3. Mathematical Model of the Multilevel Inverter Switching: 

Basically, the concept of the OHESW technique is to combine the idea of the Selective 

Harmonic Elimination PWM (SHEPWM) with the quarter-wave symmetric idea concept 
(3)

.  

The OHESW shown in Fig. 2 is assumed to be the quarter-wave symmetric. The Fourier 

series of the quarter-wave symmetric s H-bridge cell multilevel waveform is written as 

follows: 

     tnn
n

V
t

n

s

k

k
dc

anout 


 sincos
4

1 1

 


 









                          (1)                                       

, where αk is the optimized switching angles, which must satisfy the following condition: 

0≤α1≤α2≤...≤αs≤π/2, k is the k
th

 switching angle, n is the harmonic order, s is the number of 

SDCS and Vdc is the DC voltage source.    

The method to solve the optimized harmonic switching angles will be explained in this 

section. From Eq. (1), the amplitude of all odd harmonic components including fundamental 

one, are given by: 

 



s

k

k
dc

n n
n

V
a

1

cos
4




                                                            (2)                                                         

The amplitude of DC component and all even harmonics equal zero. Thus, only the odd 

harmonics in the quarter-wave symmetric multilevel waveform need to be eliminated.  The 

switching angles of the waveform will be adjusted to get the lowest output voltage THD. 

Amplitudes of any harmonics can be set by solving a system of nonlinear equations 

obtained from setting Eq. (2) equal to pre-specified values. In the optimal HEPWM method 
(10)

, the fundamental component is set to required amplitude and n-1 low-order harmonics are 

set to zero. This is the most common approach in electric drives since low-order harmonics 

are the most detrimental to motor performance.  
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This task of designing a waveform, the first n Fourier series coefficients of which match 

those of a desired waveform has been the subject of many papers 
(3,6,11)

. Often, the Newton 

iteration method in these papers was used to solve the system of nonlinear Eqs. (2). This 

method is computationally intensive for on-line calculations and the storage of off-line 

calculations leads to high memory requirements. Another approach is to simplify the 

nonlinear HE equations in order to obtain real-time approximate solutions using modern DSPs 
(10)

.  

The current paper uses the recursive algorithm for solving the OHESW problem without 

any approximations in the problem statement. The developed algorithm will allow for real-

time generation of switching patterns with high order.     

The OHESW problem, as it is considered here, is the design of a waveform υout (ωt) so 

that it's first Fourier coefficients hk are equal to prescribed values in Eqs. (2). Therefore, the 

OHESW problem gives rise to the following design equations 
(3)

: 

   
    123

21

3321

1321

12cos...12cos

12cos12cos

3cos...3cos3cos3cos

cos...coscoscos
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nn

n

n

hnn

nn

h

h









                                                         (3)               

Given the n values, hk = kπak /4Vdc, we have n equations and n unknowns; we would like 

to find the n unknowns {α1, α2,…, αn}, with 0 ≤ α1 ≤ α2 ≤….≤ αn ≤ π/2.  

 

4. Transformation of the OHESW Problem: 

Using the trigonometric identities; cos nt = Tn(cost), where Tn is the n
th 

Chebyshev 

polynomial, changing the variables; xi = cosαi, and re-arrangement the necessary equations 

listed in 
(9)

 to be compatible with OHESW problem, we get: 

1212

312112112

33332313

11312111

)(...

)()()(

)(...)()()(

)(...)()()(


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
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nnn

nnn

n

n
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hxTxTxTxT
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                                                                     (4) 

As the odd-indexed Chebyshev polynomials are odd polynomials, the Eqs. (4) can be 

writing: 

  nkhxcxT k

n

i

k

j

j
jk

n

i

k  

 





  1. 12

1 1
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,

1

12
     or 

nkhsc k

k

j

jjk  



 1. 12

1

12,                                                                              (5)                     
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, where 



n

i

j

ij xs
1

are the sums of powers 
(1)

 of {xi}. Eq. (5) forms a set of n linear equations 

for s2j-1, 1 ≤ j ≤ n. Once the values s2j-1 are obtained by solving the linear system of Eq. (5), 

one has the following problem. Given {s1,s2, …, s2n-1}, find the solution {x1, x2, ..., xn} to the 

following system of nonlinear equations: 

12

1212

2

12

1

3

33

2

3

1

121

...

...

...




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
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n

n

n

nn

n

n

sxxx

sxxx

sxxx


                                                                       (6) 

Once xi are obtained, the original variables αi can be found by letting αi = arccos xi. Yet 

it is necessary to order αi appropriately such that 0 ≤ α1 ≤ α2 ≤….≤ αn ≤ π/2.  

However, the design Eqs. (6) are nonlinear, so obtaining the desired solution {xi} is not 

so straightforward. In the following sections, this nonlinear system of equations will be 

closely examined. In Section V, a systematic procedure is given to obtain the solutions.  

For the HE problem, the Fourier coefficients of the OHESW waveform υout(ωt) should 

match the Fourier coefficients of a pure sine wave. That is, the values h2n-1 appearing in Eq. 

(3) are given by h1=m, and h2i-1 = 0 for 2 ≤ i ≤ n. For this case, the values s2i-1 depend on the 

modulation index m only and are given by: 

ni
i

im
s

ii 



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








 1,
1

12

4 112                                                                               (7)              

5. Solving the OHESW Problem: 

To solve the OHESW problem, we will first write the polynomial P(x) having roots {x1, 

x2 ..., xi…, xn} as: 

   



n

i

ixxxP
1

 

, then the logarithmic derivative is given by: 
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Expanding each term in the sum, one gets: 
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, where sj are the sums of the root powers and s0 = n. Integrating Eq. (8) gives: 

  



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1
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Raising e to the power of ln P(x) and using the last equation gives: 
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                                                                                         (9)       

In order to generalize procedure, we will obtain an expression similar to Eq. (9), but 

having only odd si. To this end, note that: 
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, therefore: 
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, then:  
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, where 

   xVexG : ,         and            







 ...

53
2: 5

5
3

3
1 x

s
x

s
xsxV  

Let:  
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n
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~

                                                                                              (10)     

, then: 

     xGxPxP /1
~

                                                                                               (11)         

, where  xP
~

 is the monic polynomial related to P(x) by negating the roots of P(x).  

Eq. (11) is the counter-part to Eq. (9). Likewise, by setting like powers of x equal, we 

can obtain equations that relate pk and si, where pk is the polynomial coefficients of P(x). 

However, in order to do this, we need to expand G(x) = e
V(x) 

into a power series of x. Such a 

power series for e
V(x) 

can be obtained using the following algorithm. Let: 

   
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If vi for 0 ≤ i ≤ j are known, then the values of gi for 0 ≤ i ≤ j are given by: 

0

0
v

eg                                                                                                                 (12)      
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
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
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i

g
1

1
                                              1 ≤ i ≤ j                              (13)                                       

When the first n odd values of si are known, then v are known for 0 ≤ i ≤ 2n. [v2i = 0 for 

0 ≤ i ≤ n and v2i-1 = -2s2i-1 / (2i-1) for 1 ≤ i ≤ n]. Therefore, using the relations in Eqs. (12) and 

(13), we obtain gi for 0 ≤ i ≤ 2n , and consequently, we can write out Eq. (11), matching like 

powers of x, to obtain linear equations from which pk can be obtained. For example, we write 

out the expressions for n = 3 (7-level inverter). That is, we are given s1, s3, and s5, and our 

goal is to find the corresponding monic 3
rd

 degree polynomial P(x); P(x) = x
3 

+ p1x
2 

+ p2 x + 

p3. 

 

6. A Recurrence Algorithm for P(x): 

The notation Pn(x) will be used to emphasize the dependence of P(x) on n. Specifically, 

Pn(x) denotes the monic degree-n polynomial associated with the OHESW problem, with 

coefficients pn,k: 

  nn
n

n
n pxpxxP ,

1
1, ... 

 

With this notation, a recurrence relation: 

     xPCxPxxP nnnn 11                                                                                      (14)      

can be used to compute Pn(x). For the OHESW problem, the initial conditions can be taken to 

be P0(x) = 1 and P1(x) = x-m. The coefficients Cn in the recursion can be computed using the 

following formula: 
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C                                                                                (15)         

The coefficients pn+1,k are then determined recursively as [this implements Eq. (14)]: 

                    

                      pn+1,k = pn, k,                              k = 1 

                     pn+1,k = pn,k + Cn . pn-1, k-2,         k = 2, …, n 

                     pn+1,k = Cn . pn-1, k-2                             k = n + 1                                                  (16)  

 

The Recursive algorithm for computing can be summarized as follows: 
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Fig. 3: Flowchart of a Fast Recursive Algorithm for OHESW Technique 

 

Given n and m, the polynomials Pn(x) for are recursively computed as follows: 

1) Set g0 = 1
 
and for k = 1 to 2n, find gi from Eq. (13). 

2) Set P0(x) = 1 and P1(x) = x - m and for k =1 to n-1 let:  
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Find the roots xi of Pn(x). 

3) Set αi = arccos xi, i = 1, …, n. Sort the angles αi.  

 

Fig. 3 illustrates the flowchart of the recursive algorithm for on-line calculation of the 

optimized switching angles.  

Using a computer algebra system, such as Maple or Mathematica, this recursive 

algorithm allows one to obtain Pn(x) as an explicit function of m. 

 

Specify n and m 

Compute si, vi, and gi 

Compute Polynomial Pk (x)   

    Input Initial Conditions: g0, 

P0(x), and P1(x) 

Compute Ck  

Compute Roots xi  

Compute αi  

k = n - 1 

Start 

End 

Yes 

No 
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7. Simulation Results: 

To perform the necessary calculations, a computer software package Maple was used. 

For organizing and analyzing all of the collected optimized switching angles α, the software 

package MATLAB were utilized. Using MATLAB, the collected switching angles were 

organized into look-up tables to be used later in simulations as shown in Table 1. Also, 

MATLAB was used to generate plots of α and THD versus m. The THD mathematically 

calculated by 
(11)

: 

 

1

5.0

2

2

h

h

THD k

k 













                                                                                         (17) 

The inverter is loaded by single-phase capacitor-run induction motor with the following 

ratings: 175Watt, 220V, 1.22A, and 1275Rpm.  

The best compromise between efficiency and quality of the inverter operation is 

achieved by the optimal switching pattern technique. 

The solutions of the optimum switching angles α versus m for the MFS scheme are 

shown as in the Fig. 4. Note that not all the range of m has a solution, for example, in the case 

of 7-level (l = 7 or n = 3) OHESW scheme, there are solutions in the intervals: m[1.65-2.07] 

and [2.41,2.45] only. On the other hand, for m[0,1.64], [2.08-2.4], and [2.46-3] there are no 

solutions that solve the Eqs. (2). 

The figure also shows the solution of α for 15-level OHESW. It can also be seen that the 

range of m decreases with increasing inverter voltage levels l. All the optimized switching 

angles (at THDmin) for different values of voltage levels l are illustrated in the Table 1. 

Fig. 5 shows the plot of the voltage THD with m for two different values of l. It can be 

conclude from the figure that the increasing of l causes decreasing THDmin [See Fig. 6] until 

we get the lowest one; THDmin=6.4554 at m=4.925 for 15-level inverter. Fig.7 shows the 

instantaneous output voltage OHESW for both 7- and 15-level and with minimized THD. If 

the number of l is higher, a near-sinusoidal staircase voltage can be generated with only 

fundamental frequency switching. 

The voltage spectra at THDmin corresponding to the instantaneous output voltage 

waveforms in Fig. 7 are illustrated as in the Fig. 8 which shows two examples, one for 7-

stepped waveform and the other for 15-stepped waveform. The first shows that the 3
rd

 and 5
th

 

harmonics are eliminated. Therefore the 7
th

 (350Hz) harmonic will appear in the spectra as a 

first harmonic. The second spectra show that the 3
rd

, 5
th

… 13
th

 harmonics are eliminated. 

Therefore the 15
th

 (750Hz) harmonic will appear in the spectra as a first harmonic. It can be 

seen that increasing l, causes increasing the eliminated harmonics. The normalized values of 

the first 15
th

 harmonics’ are listed in Table 1.  
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The corresponding instantaneous line currents of motor fed by OHESW cascade 

multilevel inverter at THDmin are shown in Fig. 9. The ripple of current decreases with 

increasing l since increasing l (or n) causes eliminating more harmonics with lower orders, 

leaving harmonics with higher orders which cause increase of the motor impedance with 

frequency (X=2πfL); therefore the harmonic currents decreases. So, the induction motor can 

be represented as a good low pass filter. As a result, the current waveforms become more 

sinusoidal with increasing l. By using the voltage spectra and the equivalent circuit of the 

motor, the current spectra can be calculated as in Fig. 10. 

[ 

8. Conclusions:   

In this paper, a new technique is proposed and applied to a multilevel inverter to 

determine the optimum switching angles for eliminating the low order harmonics.  It can be 

concluded that:    

1. The current trend of modulation control for multilevel inverters is to output high 

quality power with high efficiency. For this reason, popular traditional PWM methods 

are not the best methods for multilevel inverter control due to their high switching 

frequency. 

2.  The Selective Harmonic Elimination (SHE) method has emerged as a promising 

modulation control method for multilevel inverters. But the major difficulty for the 

SHE method is to solve transcendental equations characterizing harmonics, the 

solutions are not available for the whole modulation index range, and it does not 

eliminate any number of specified harmonics to satisfy the application requirements. 

3.  To conquer the problem for the SHE method, the resultant method was used to find 

all the solutions to the harmonic equations if they exist by converting them into 

polynomial equations using trigonometric identities. However, increasing the number 

of switching n (or the order of harmonics to be eliminated) will lead to polynomial 

equations of higher degree which require several hours to solve. Therefore Resultant 

theory which proposed in previous work will not be effective of solving these 

polynomials. 

4. The current paper presents a contribution to the multilevel inverters and gives fast 

algorithm for efficient on-line calculation of OHESW switching patterns and in real 

time for general number of the output voltage levels (or the number of the switching 

angles).  

5. The proposed algorithm extends the 3-level unipolar optimal PWM switching scheme 

proposed in the previous work to be also used here for multilevel inverters. 

6. By a transformation of variables, the solution to the OHESW problem is given by the 

roots of n-degree monic polynomial Pn(x). 
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Fig. 4: the Solution of Switching Angles vs. m for Cascade Multilevel Inverter 

using OHESW Technique with (a) l=7 and (b) l=15 

 

Fig. 5: the Voltage THD vs. m for Cascade Multilevel Inverter using OHESW 

Technique with (a) l=7 and (b) l=15  
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Fig. 6: the Lowest Voltage THD vs. Number of Voltage Levels (l) for Cascade 

Multilevel Inverter using OHESW Technique 
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Fig. 7: the Instantaneous Voltage of OHESW Cascade Multilevel Inverter at 

THDmin with Two Values of Voltage Levels (l) 

 

Fig. 8: the Harmonic Content of OHESW for Cascade Multilevel Inverter at 

THDmin with Two Values of l 

 

 

Fig. 9: the Instantaneous Current of Motor Fed by OHESW Cascade Multilevel 

Inverter at THDmin with Two Values of l 
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Fig. 10: the Line Current Spectra of Motor Fed by OHESW Cascade Multilevel 

Inverter at THDmin with Two Values of l 
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Table 1: the Switching Solution and Output Voltage Harmonics (in p.u.) of a 

Cascade Multilevel Inverter using the Proposed Algorithm  

 

No. of levels (l) 5 7 9 11 13 15 

S
w

it
ch

in
g

 A
n

g
le

s 
(D

eg
.)

 

α1 14.6172 8.7666 8.19508 5.67731 5.1996 3.9126 

α2 45.3828 28.6886 21.0746 16.4853 16.5375 14.5571 

α3 ---- 54.9395 37.0305 30.6968 28.4198 22.7573 

α4 ---- ---- 60.0804 42.0136 41.1376 34.5905 

α5 ---- ---- ---- 63.6953 59.0302 45.2749 

α6 ---- ---- ---- ---- 87.2327 62.012 

α7 ---- --- ---- ---- ---- 87.647 

m 1.67 2.44 3.22 4 4.15 4.925 

H
a
rm

o
n

ic
 M

a
g
n

it
u

d
e 

(P
. 
U

.)
 

h1 1.67 2.44 3.22 4 4.15 4.925 

h3 0 0 0 0 0 0 

h5 - 0.0784 0 0 0 0 0 

h7 0.0751 0.0648 0 0 0 0 

h9 0 - 0.792 - 0.0903 0 0 0 

h11 - 0.1547 0.0154 0.0518 0.1019 0 0 

h13 - 0.1252 0.1203 - 0.0194 - 0.0827 0.0628 0 

h15 0 - 0.0380 - 0.1191 - 0.0698 - 0.1079 - 0.0624 

h17 0.015 - 0.1352 0.0443 0.0652 0.0927 0.1429 

h19 - 0.0346 - 0.0611 0.0677 - 0.0417 - 0.0014 - 0.0248 

h21 0 - 0.0562 - 0.0631 - 0.0206 - 0.0379 0.0301 

h23 0.0749 - 0.0622 - 0.0737 0.0769 - 0.0265 0.0495 

h25 0.063 0.0249 - 0.0925 0.0194 0.1323 0.0118 

h27 0 0.0280 - 0.0909 - 0.0140 - 0.0383 - 0.1037 

h29 - 0.0014 - 0.0531 0.0231 - 0.0858 - 0.0339 0.0732 

THDmin (%) 16.5924 11.6262 8.9907 7.3873 7.6396 6.4554 

THDmax (%) 32.9620 24.8098 14.6081 12.1832 9.1754 7.5029 
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