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Abstract: In this paper, an improved hybrid algorithm 
called differential evolution with integrated mutation per 
iteration (DEIM) is proposed to extract five parameters of 
single-diode PV module model obtained by combining 
differential evolution (DE) algorithm and electromagnetic-
like (EML) algorithm. The EML algorithm's attraction-
repulsion idea is employed in DEIM in order to enhance the 
mutation process of DE. The proposed algorithm is 
validated with other methods using experimental I-V data. 
The results of presented method reveal that simulated I-V 
characteristics have a high degree of agreement with 
experimental ones. The proposed model has an average 
root mean square error of 0.062A, an absolute error of 
0.0452A, a mean bias error of 0.006A, a coefficient of 
determination of 0.992, a standard test deviation around 
0.04540, and 15.33sec as execution time. The results 
demonstrate that the proposed method is better in terms 
of the accuracy and execution time (convergence) when 
compared with other methods where provide less errors. 

Keywords: DEIM, single diode model, DE, parameter 

estimation, photovoltaic system.  

1. Introduction 

In the future, solar energy is expected to be a 

significant source of energy. Because of its near-

zero emissions, low cost, abundant energy 

supply, and advances in semiconductor and 

power electronic devices [1]. The photovoltaic 

(PV) power systems, which convert solar energy 

into electricity, are becoming increasingly 

common as a renewable energy source. It is 

critical to choose a model that closely simulates 

the characteristics of solar modules [2]. There are 

some models introduced over recent years. The 

electrical equivalent models are most commonly 

used in PV applications. The widely used models 

are single diode model [3] and 

double diode model [4]. The important obstacle 

of using these models is accurate parameter 

estimating to estimate exactly the productivity of 

PV system. For the purpose of parameter 

estimation of the PV module, there are several 

proposed techniques. In general, these techniques 

can be categorized into two approaches (1) 

analytical [5,6] and (2) numerical [7]. The 

analytical method is only utilizes selected points 

of the I-V characteristic curve, such as i) the 

open-circuit and short-circuit points ii) the slopes 

at strategic portions [5]. This method is often fast 

and simple to determine parameters, but not 

sufficient accurate. On the other hand, the 

numerical method offers more accurate parameter 

estimation because it utilizes all points belong to 

I-V curve characteristics [8]. In the literature, 

several numerical estimation techniques are 

introduced to estimate parameters of solar cells, 
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such as the Newton-Raphson (NR) method [9] 

and numerical methods based on artificial neural 

network (ANN) [10–14]. Recently the use of 

evolutionary algorithms to extract parameters of 

PV modules has become widespread [15,16] such 

as Genetic Algorithms (GAs) [3, 8, 17, 18], 

Particle Swarm Optimization (PSO) [7, 19], 

Flower Pollination Algorithm (FPA) [20], 

Artificial Bee Colony (ABC) [21], The modified 

flower algorithm (MFA) [22], Bee Pollinator 

Flower Pollination Algorithm (BPFPA) [23] and 

differential evolution (DE) [24]. Ishaque et al. 

[25] proposed a method for extracting the 

parameters of solar PV modules called the 

penalty differential evolution (PDE) algorithm. 

According to [25], the results showed that PDE 

provides better performance than simulated 

annealing (SA), GA, and PSO algorithms. 

Moreover, Jiang et al. [1] developed a new 

version of DE algorithm is called improved 

adaptive differential evolution (IADE), which 

includes a new formula to adapt the mutation and 

crossover stages control parameters in order to 

extract the parameters of a PV module. According 

to [1], the proposed IADE offers an estimation 

with fast convergence and better accuracy than 

GA, PSO and conventional DE. In [26], an 

electromagnetism-like algorithm (EMLA) is 

proposed to estimate the parameters of double-

diode PV module model under various operating 

condition using many sets of experimental I-V 

curves. EMLA offered acceptance results in term 

of accuracy, but it was slow in term of 

convergence to optimal estimated parameters. In 

the same context, the authors of [27] used 

electromagnetism-like algorithm to extract the 

parameters of single diode PV module model 

using an experimental I-V data. An improved 

electromagnetism-like (IEM) algorithm is 

proposed by [28] to estimate the five parameters 

of a single-diode PV module’s model. A 

nonlinear formula is proposed by [28] to adjust 

the length of the particle for each iteration in IEM 

algorithm. Hussein et al. [29] proposed an 

enhanced version of LSHADE method is called 

ELSHADE to extract the parameters of triple 

diode PV module model. According to [29], the 

proposed ELSHADE offers robust and stable 

results, and presents high-quality and accurate 

parameters. 

This paper presents differential evolution with 

integrated mutation per iteration (DEIM) 

algorithm to extract five parameters of the single 

diode PV module model. A novel formula is 

developed to adjust the mutation and crossover 

stages control parameters of DEIM algorithm. 

The formula based on sigmoid function of the 

best values of fitness function of the previous and 

current iterations. Many statistical criteria are 

used to measure the deviation between the 

computed and experimental currents over all I-V 

curve points under various operation conditions. 

Compared to other methods mentioned in the 

literature, the proposed PV modeling method that 

it is believed estimates the five parameters of the 

PV module's model with less error, fast 

convergence, and fewer control parameters. The 

proposed formula for adjusted control parameters 

of DEIM is help to overcome the complexity of 

setting fixed values. 

2. PV Model 

The PV model based on single diode circuit of the 

solar cell is depicted in Fig. 1, which comprises 

of a diode used to represent the output voltage 

connected in parallel with the current source used 

for representing photocurrent (𝐼𝑝ℎ) primarily 

depending on solar irradiance and ambient 

temperature, shunt resistance (𝑅𝑝) is utilized to 

present the saturation current and series resistance 

(𝑅𝑠) which represent the resistive losses within 

the cell. The output current equation of solar cell 

can be written as follows: 
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 𝐼 = 𝐼𝑝ℎ − 𝐼𝑜 [𝑒𝑥𝑝 (
𝑉+𝐼𝑅𝑠

𝑉𝑡
) − 1] −

𝑉+𝐼𝑅𝑠

𝑅𝑝
,            (1)       

where 𝑉 and 𝐼 are respectively refer to the output 

voltage (v) and current (A); 𝐼𝑝ℎ refers to 

photocurrent (A); 𝐼𝑜 refers to the diode reverse 

saturation current (A); 𝑅𝑠 refers to series 

resistance (Ω); 𝑅𝑝 refers to parallel resistance 

(Ω); and thermal voltage (𝑉𝑡) of diode; which can 

be expressed by;  

𝑉𝑡 =
𝑎𝐾𝐵𝑇𝑐

𝑞
,                                                  (2)   

where 𝑎 represents the diode ideality factor, 𝐾𝐵 

is the Boltzmann constant (1,3806503E-23 J/K), 

𝑇𝑐 is the temperature of the solar cell in kelvin, 

and 𝑞 is the change of electron (1.60217646E-19 

C).  

Several authors proposed modifying the single 

diode model by adding an extra diode called a two 

diode model [24]. In comparison to the single 

diode model, this model is more complex and 

needs for more computation efforts for estimating 

its parameters. Therefore, Numerous authors 

have used the single diode model because it 

strikes a strong balance between simplicity and 

accuracy [24].  

 

Figure 1. Single diode circuit model of a solar cell. 

2.1.  Optimization Problem Formulation 

The optimization process aims to extract the 

optimal values of the five unknown parameters 

𝐼𝑝ℎ, 𝐼𝑜, 𝑅𝑠, 𝑅𝑝, and 𝑎 of single diode model by 

minimizing the objective function [1]. Root mean 

square error (RMSE) between the computed and 

experimental currents over 𝑛 data points is 

represented as objective function that should be 

as possible as minimized. The objective function 

can be formulated as follows: 

 ƒ(𝛿) = √1

𝑛
∑ 𝑃(𝑉𝑒 , 𝐼𝑒 , 𝛿)2
𝑛
𝑖=1 ,                          (3) 

where; 

 𝑃(𝑉𝑒, 𝐼𝑒 , 𝛿) = 𝐼𝑒 − 𝐼𝑝ℎ + 𝐼𝑜 [𝑒𝑥𝑝 (
𝑉𝑒+𝐼𝑝𝑅𝑠

𝑉𝑡
) −

1] +
𝑉𝑒+𝐼𝑝𝑅𝑠

𝑅𝑝
,                                                     (4) 

Where 𝐼𝑒 , 𝑉𝑒 are the experimental output current 

(A) and voltage (v), respectively, 𝛿 =

 [ 𝐼𝑝ℎ, 𝐼𝑜 , 𝑅𝑠, 𝑅𝑝, 𝑎]  refers to the vector of five 

parameters that would be extracted, and 𝑛 refers 

to the number of the measured I-V curve points. 

3. Proposed DEIM Algorithm 

DEIM is a random search optimization algorithm. 

There are four phases in DEIM, namely, 

initialization, mutation, crossover, and selection. 

Like the other evolutionary algorithms, DEIM 

also works on population, 𝑆𝐺  of candidate 

solutions. These candidate solutions are known as 

the individuals of the population. The population 

comprises 𝑁𝑃 𝐷-dimensional real-values vectors 

as described below. 

 

𝑆𝐺 = [𝑋1
𝐺 , 𝑋2

𝐺 , … . , 𝑋𝑁𝑃
𝐺 ] = [𝑋𝑖

𝐺],                    (5)    

where; 

𝑋𝑖 = [𝑋1,𝑖, 𝑋2,𝑖, … , 𝑋𝐷,𝑖] = [𝑋𝑗,𝑖],                     (6) 

where 𝑋𝑖 refers to the target vector, and 𝑖 refers to 

the number of individuals belong to the 

population (where 𝑖 = 1, 2, . . , 𝑁𝑃), 𝑗 is the 

dimension (number of decision variables) of the 
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individual vector (𝑗 = 1,2, . . , 𝐷), and 𝐺 is the 

generation index (𝐺 = 1,2, . . , 𝐺𝑚𝑎𝑥), 𝐺𝑚𝑎𝑥 refers 

to maximum number of generations. The four 

phases of DEIM will be discussed in details as 

follows. 

 Initialization 

The first step in the optimization process is to 

create an initial population, 𝑆𝐺 = [𝑋𝑖
𝐺] in which 

𝐺 =0. The 𝐷 parameters’ initial values are 

generated using Eq. 7 randomly, and distributed 

uniformly within the range of [𝑋𝐿𝑗 , 𝑋𝐻𝑗], where  

𝑋𝐻𝑗 and 𝑋𝐿𝑗 refer to the upper and lower bounds 

of the search space region, respectively. 

 𝑋𝑗,𝑖
0 = 𝑋𝐿𝑗,𝑖 + 𝑅(𝑋𝐻𝑗,𝑖 − 𝑋𝐿𝑗,𝑖),                     (7) 

where 𝑅 refer to a random number belongs to [0, 

1] period. 

 Mutation 

For each iteration, DEIM utilizes both 

𝑀𝑑  and 𝑀𝑒 operations. The following criteria is 

utilized to switch between the two types of 

mutation methods. 

 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = {
𝑀𝑒   𝑖𝑓 𝜎𝑙

𝐺 < 휀1𝜎𝑙
0

𝑀𝑑   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,     (8) 

where 𝜎𝑙
0 and 𝜎𝑙

𝐺  are the values of standard 

deviation vectors of the row vectors of 𝑆 

population of initial and 𝐺 generations, 

respectively; 𝑙 refers to a random number selected 

randomly within [1, 𝐷], and 휀1 is a control 

parameter has constant value that dominate how 

frequently 𝑀𝑒 operations are used over the 

population, 휀1 ∈ [0,1]. The mutation vector 

𝑋𝑖
𝐺  of 𝑀𝑑 operation is computed by: 

𝑋𝑖
𝐺 = 𝑋𝛼

𝐺 +𝑀𝐹(𝑋𝛽
𝐺 − 𝑋𝛾

𝐺),                            (9) 

where 𝑋𝛼
𝐺 , 𝑋𝛽

𝐺  and 𝑋𝛾
𝐺  are randomly chosen from 

population;  𝛼, 𝛽 and 𝛾 are distinct indices within 

[1, 𝑁𝑃] period, and 𝑀𝐹 is the mutation factor 

chosen from the range [0.5,1] [1]. It should be 

noted that 𝛼, 𝛽 and 𝛾 indices do not equal to the 

current index, 𝑖, of individual vector. 

Meanwhile, 𝑀𝑒 operation is using the total force 

exerted on  𝑋𝛼
𝐺  by 𝑋𝛽

𝐺  and 𝑋𝛾
𝐺  which is computed 

using the charges between the vectors in the same 

way as in EML algorithm as follows; 

𝑞𝛼𝛽
𝐺 =

ƒ(𝑋𝛼
𝐺)−ƒ(𝑋𝛽

𝐺)

ƒ(𝑋𝑤
𝐺)−ƒ(𝑋𝑏

𝐺)
,                                    (10) 

𝑞𝛼𝛾
𝐺 =

ƒ(𝑋𝛼
𝐺)−ƒ(𝑋𝛾

𝐺)

ƒ(𝑋𝑤
𝐺)−ƒ(𝑋𝑏

𝐺)
,                                    (11) 

where ƒ(𝑋) refers to the value of objective 

function of individual vector X; 𝑋𝑤
𝐺  and 𝑋𝑏

𝐺 refer 

to the worst and best individual vectors which 

expresses the worst and best objective function 

values for 𝐺𝑡ℎ generation, respectively. The force 

exerted on 𝑋𝛼
𝐺  𝑏𝑦 𝑋𝛽

𝐺  𝑎𝑛𝑑 𝑋𝛾
𝐺 are described as 

follows: 

𝐹𝛼𝛽
𝐺 = (𝑋𝛽

𝐺 − 𝑋𝛼
𝐺)𝑞𝛼𝛽

𝐺 ,                                  (12) 

𝐹𝛼𝛾
𝐺 = (𝑋𝛾

𝐺 − 𝑋𝛼
𝐺)𝑞𝛼𝛾

𝐺 ,                                   (13) 

After that, the resultant exerted force on 𝑋𝛼
𝐺  by 

both 𝑋𝛽
𝐺  and 𝑋𝛾

𝐺  is computed as follows; 

𝐹𝛼
𝐺 = 𝐹𝛼𝛽

𝐺 + 𝐹𝛼𝛾
𝐺 ,                                            (14) 

Afterward, the mutant vector, which is created by  

𝑀𝑒 operation can be formulated as follows:  

𝑋𝑖
𝐺 = 𝑋𝛼

𝐺 + 𝐹𝛼
𝐺 ,                                             (15) 

 

 

 

 Crossover 

The trial vector 𝑦𝑗,𝑖
𝐺  is generated by using the 

corresponding target vector 𝑋𝑖
𝐺and the mutation 

vector 𝑋𝑖
𝐺as follows:  

𝑦𝑗,𝑖
𝐺 = {

𝑋𝑗,𝑖
𝐺           𝑖𝑓 𝑅 ≤ 𝐶𝑅 𝑜𝑟 𝑗 = 𝐼𝑖              

𝑋𝑗,𝑖
𝐺           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                            

 (16) 
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where 𝑅 refers to a random number chosen 

randomly from the range (0, 1), 𝐼𝑖 refers to an 

index number, where randomly chosen from 

[1, 𝐷] and 𝐶𝑅 refers to the crossover rate 

parameter belonging to the range [0.5, 1] [1]. 

The estimated parameter values have to ensure 

that are physical values. Thus, the trial vector’s 

elements should be verified if any one lie beyond 

the allowable search space. The parameter will be 

replaced with a new value if it overcomes the 

search space permissible limits as follows: 

𝑦𝑗,𝑖
𝐺 = 𝑋𝑗,𝐿,𝑖 + 𝑟𝑎𝑛𝑑(𝑋𝑗,𝐻,𝑖 − 𝑋𝑗,𝐿,𝑖),               (17) 

 Selection 

The selection operation utilizes both target and 

trial vectors. The objective function value of the 

trial vector if is lower, it swaps the target vector 

in the next generation. Otherwise, the target 

vector remains in the population, which can be 

described as follows: 

𝑋𝑖
𝐺+1 = {

𝑦𝑖
𝐺     𝑖𝑓 𝑓(𝑦𝑖

𝐺) < 𝑓(𝑋𝑖
𝐺)

𝑋𝑖
𝐺     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               

,              (18) 

 

3.1. Proposed Formula for Adjusting the Mutation 

Factor and Crossover Rate 

The crossover rate and mutation scaling factor 

values are typically set constant in the traditional 

DE. It is worth to mention that when the DE 

method is incorrectly set, it may take a prolong 

time to execute and perhaps it fails to converge to 

a global optimal result. As a result, a trial-and-

error approach is often employed to tune the 

control parameters; however, this approach is 

neither acceptable nor optimum and frequently 

results in the requirement for many laborious 

optimization attempts. Some authors earlier 

suggested adjusting the control parameters during 

the search process using various methods. Jiang 

et al. [1] presented IADE, with a basic structure 

that allows the control parameters to be 

automatically adjusted depending on the fitness 

values during the optimization is underway using 

an exponential function to adapt 𝑀𝐹 and 𝐶𝑅 in 

the range [0.5, 1]. Similarly, a simplified and 

accurate approach for adjusting control 

parameters for each generation within the range 

[0.5, 1] using a logistic sigmoid function is 

proposed in this paper as following: 

 

𝑔(𝑥) =
𝐿

1+exp (−𝐾(𝜔−𝜔𝑜))
,                              (19) 

 

The curve's maximum value (𝐿) is chosen 1, the 

steepness of the curve is represented by 𝐾, and 

𝜔𝑜 is the x-sigmoid axis's midpoint (𝜔𝑜 = 0). As 

described in Eq. 20, the parameter 𝜔 represents 

the difference between the values of best 

objective function of previous and current 

generation's, multiplied by a random number 𝑅. 

 

 𝜔 = [𝑓(𝑋𝑏𝑒𝑠𝑡
𝐺 ) − 𝑓(𝑋𝑏𝑒𝑠𝑡

𝐺−1)] ∗ 𝑅,                  (20) 

 

where 𝑋𝑏𝑒𝑠𝑡
𝐺  refers to the best vector of  𝐺 

generation, while 𝑋𝑏𝑒𝑠𝑡
𝐺−1 refers to the best vector 

for 𝐺 − 1 generation and 𝑅 refers to a random 

number chosen from [0, 1] interval, which is 

randomly selected. 

The 𝑀𝐹 and 𝐶𝑅 may be expressed as follows: 

 

 𝑀𝐹, 𝐶𝑅 = 𝑑 (
𝐿

1+𝑒𝑥𝑝(−𝐾(𝜔−𝜔𝑂))
+ 𝑏),           (21) 

 

where 𝑑 and 𝑏 are constants selected to keep 𝑀𝐹 

and 𝐶𝑅 inside the [0.5, 1] range, where d set to be 

0.5 and b equals to 1. 
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Figure 2. Flow chat of DEIM algorithm. 
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3.2. Evaluation Criteria for the Proposed Method 

The performance evaluation criteria for the 

proposed method include: absolute error (AE) 

criterion, root mean square error (RMSE) 

criterion, mean bias error (MBE) criterion, 

coefficient of determination (𝑅2) criterion, 

deviation of RMSE for each solar radiation level 

(𝑑𝑖) criterion and standard test deviation of 

RMSE (𝑆𝑇𝐷) criterion.  

 AE: An absolute error refers to the absolute 

difference between the experimental and 

calculated currents in a particular voltage in 

the presence of certain solar radiation and 

ambient temperature, and it is defined as; 

 𝐴𝐸 = |𝐼𝑝 − 𝐼𝑒|,                                       (22) 

 where 𝐼𝑝 and 𝐼𝑒 refer to the calculated and             

experimental currents (A), respectively. 

 RMSE: The RMSE refers to the standard 

deviation value used to describe the 

difference between calculated and 

experimental currents over 𝑛 data sample 

points as follows; 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝐼𝑝 − 𝐼𝑒)

2𝑛
𝑖=1 ,                 (23) 

Where 𝑛 refers to the number of the measured 

experimental I-V curve points. 

  MBE: It is utilized to evaluate the proposed 

model's performance as described below. 

 𝑀𝐵𝐸 =
1

𝑛
(∑ (𝐼𝑝 − 𝐼𝑒)

𝑛
𝑖=1 ),                    (24) 

 𝑹𝟐: is used to measure the model's prediction 

performance and accuracy. The experiment's 

findings and the simulation are in close 

agreement when 𝑅2 is close to 1, which 

means consistency between the two. 𝑅2 is 

given by; 

 𝑅2 = 1 −
∑ (𝐼𝑝−𝐼𝑒)

2𝑛
𝑖=1

∑ (𝐼𝑒−𝐼�̅�)2
𝑛
𝑖=1

,                             (25) 

where 𝐼�̅� represent the arithmetic mean of 

experimental (𝐼�̅�=
1

𝑛
∑ 𝐼𝑒
𝑛
𝑖=1 ). 

 𝒅𝒊: The RMSE deviation of 𝑖𝑡ℎ solar radiation 

level is the difference between an 𝑖𝑡ℎ RMSE 

and the value of mean RMSE of all solar 

radiation levels.𝑑𝑖 is given by; 

      𝑑𝑖 = 𝑅𝑀𝑆𝐸𝑖 − 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ,                            (26) 

where 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  represent the arithmetic mean of 

RMSE of all levels of solar radiation 

(𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ =
1

𝑚
∑ 𝑅𝑀𝑆𝐸)𝑚
𝑖=1 , 𝑖 represent a certain 

level of solar radiation (where 𝑖 =

1,2, … ,𝑚), and m refers to the total number 

levels of different solar radiation. In this 

work, m equals to 7, which is the total number 

of various operation conditions. 

 𝑺𝑻𝑫: The standard test deviation of the RMSE 

is used to measure the performance of the 

proposed models. 𝑆𝑇𝐷 is calculated by; 

 𝑆𝑇𝐷 = √
1

(𝑛−1)
∑ 𝑑𝑖

2𝑛
𝑖=1 ,                         (27) 

 

4. Result and Discussion 

In order to verify the accuracy of the proposed 

method, the results have been compared with 

other previous methods mentioned in the 

literature. The methods used for comparison are 

PDE algorithm [25], IADE algorithm [1], EML 

algorithm [30],WOA [31] ,and PSO [31]. Seven  

different levels of solar radiation and solar cell 

temperature were used in the comparison, which 

are (118.28, 148, 306,711,780,840, and 

978W/m2) with (318.32, 321.25, 327.7, 324.21, 

329.1, 331.42 and 328.56 K), respectively [32]. 

The search range of 𝐼𝑝ℎ, 𝐼𝑜, a, 𝑅𝑠, and 𝑅𝑝 are 

chosen to be within [1,8]A, [1E-12,1E-5]A, [1,2], 

[0.1,2]Ω and [100,5000]Ω intervals, respectively 

[9] [25]. 

For DEIM implementation, the problem 

dimension is chosen to be 5 because we have five 

PV module parameters: a, 𝑅𝑠, 𝑅𝑝, 𝐼𝑝ℎ, and 𝐼𝑜. The 

population size is assumed to be 10𝐷 the 

parameter 휀1 is set to 0.28 using trial and error 

strategy to get optimal value. The maximum 
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number of generations is set 500, where the 

change in fitness function value is found not 

significant within 500 generations. The mutation 

factor (𝑀𝐹) and the crossover rate (𝐶𝑅) are 

adjusted for each individual vector per 

generation. On the other hand, 𝑀𝐹 and 𝐶𝑅 in 

PDE algorithm are set to be 0.8 and 1, 

respectively [25]. 

Finally, in IADE, both 𝑀𝐹 and 𝐶𝑅 are adaptive 

for each generation [1]. It is worth to mention that 

the DE/best/1/bin strategy is adopted for IADE, 

PDE, and also DEIM. 

The graphs in Fig. 3a and Fig. 3b illustrate the I-

V and P-V characteristics curves for PV module 

design that is calculated using the estimated 

parameters by DEIM algorithm under various 

operation conditions. It is clear the consistency 

between the experimental and computed curves 

under various operation conditions as illustrated 

in Fig. 3. It is noted that many of the present 

deviations occur in the area of the MPP, 

particularly under high solar irradiation due to 

asymmetry of experimental data points. 

(a) 

 

(b) 

Figure 3. Photovoltaic characteristics under seven weather 

conditions (a) I-V curve (b) P-V curves. 

 

The comparison of the degree of convergence for 

objective function values is created under seven 

weather conditions, as shown in Fig. 4. The 

proposed DEIM algorithm achieves the best and 

fastest convergence to optimal parameter values 

in low solar radiation levels for the first 50 

generations compared with high solar radiation 

levels. This is because increasing the number of 

data points with the increase in solar radiation 

levels. 

 

Figure 4. Fitness function values Progress of DEIM 

algorithms under various weather conditions
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The superiority of DEIM in terms of accuracy 

appears when comparing it with other models 

IADE, PDE, EML, WOA, and PSO under various 

weather conditions. The average values of the five 

PV module parameters that extracted using 

various methods namely PDE, IADE, EML, 

WOA, PSO and DEIM, are illustrated in Table 1. 

Table 2 presents the mean values of absolute error 

of various estimating methods under seven 

operating conditions. The DEIM provided the 

minimum mean value of 0.0452 as compared to 

IADE, PDE, and EML with 0.053. On the other 

hand, the highest absolute error values of average 

were recorded for WOA, and PSO which are 

0.0740 , and 0.2481, respectively. According to 

Table 2, it can note that AE values increased with 

increasing solar radiation due to the increasing in 

number of data points of I-V curve. 

Table 3. offers RMSE, MBE, and 𝑅2 and 

execution time of many methods under seven 

different operating conditions. The DEIM 

outperforms other methods with average value 

of 𝑅𝑀𝑆𝐸, 𝑀𝐵𝐸 and 𝑅2 were around 0.062, 0.006, 

and 0.992, followed by IADE, PDE, EML, WOA, 

and PSO, respectively.  DEIM achieves other 

superiority compared to other methods by 

requiring less execution time with an average 

CPU time of 15.33 Sec. Table 4.  shows 𝑑𝑖 and 

𝑆𝑇𝐷 values of various methods under seven 

operation conditions. DEIM has the lowest 𝑑𝑖 and 

𝑆𝑇𝐷 values, where the 𝑆𝑇𝐷 value is 0.0454, and 

𝑑𝑖 values corresponding for seven operation 

conditions are -0.01549, -0.04816, -0.03653, -

0.0338, 0.0332, 0.02638, 0.07439, respectively. 

Finally, it can be perceived that the DEIM is 

always able to outperform other models. The 

lowest mean of average and minimum fitness 

values are 0.06551 and 0.06186, respectively, as 

demonstrated in Table 5.      

  

Table 1. Extracted Parameter of PV module using various EA and weather conditions. 

parameter      IADE           PDE       EM      DEIM 

G1=118.28 W/m2 , Tc=318.32 K     

a 1.193 1.326 1.508 1.077 

𝑅𝑠  1.789 1.551 1.181 1.999 

𝑅𝑃       100.0      100.2      183.9      100.0 

𝐼𝑝ℎ  1.000 1.000 0.929 1.000 

Io 3.3E-7 1.5E-06 7.4E-6 6.7E-08 

G2=148 W/m2 , Tc=321.25 K     

a 1.225 1.362 1.401 1.237 

𝑅𝑠  0.571 0.380 0.395 0.426 

𝑅𝑝       117.8      125.2      139.2      113.9 

𝐼𝑝ℎ  1.001 1.002 1.000 1.000 

𝐼𝑜  7.1E-7 2.9E-06 4.2E-6 8.3E-07 

G3=306 W/m2,  Tc=327.7 K     

a 1.085 1.186 1.359 1.008 
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𝑅𝑠  

𝑅𝑝  

𝐼𝑝ℎ  

𝐼𝑜  

0.762 

     245.8 

1.954 

2.4E-7 

0.727      

    1868.1 

1.937 

9.3E-07 

0.592 

     5000.0 

1.952 

6.0E-6 

0.776      

     152.7 

1.967 

7.1E-08 

G4=711 W/m2,  Tc=324.21 K 

a 

𝑅𝑠  

𝑅𝑝  

𝐼𝑝ℎ  

𝐼𝑜  

 

1.213 

0.548 

     120.0 

4.426 

1.1E-6 

 

1.301  

 0.525                    

     209.9 

4.412   

3.1E-06 

 

1.290 

0.530 

     403.1 

4.386 

2.8E-6 

 

1.211 

0.553     

     119.9 

4.439 

1.1E-06 

G5=780 W/m2 , Tc=329.1 K 

a 

𝑅𝑠  

𝑅𝑝  

𝐼𝑝ℎ  

𝐼𝑜  

 

1.381 

0.266 

    100.0 

5.031 

1.0E-5 

 

1.381   

0.266            

     100.0  

5.031   

1.0E-05 

 

1.380 

0.266 

    100.0 

5.031 

9.9E-06 

 

1.381 

0.270 

     100.0                 

5.037 

  1E-05 

G6=840 W/m2 ,  Tc=331.42 K 

a 

𝑅𝑠  

𝑅𝑝  

𝐼𝑝ℎ  

𝐼𝑜  

 

1.348 

0.209 

     100.0 

5.373 

1E-05 

 

1.348 

0.209 

     100.0 

5.373 

1.0E-05 

 

1.317 

0.220 

     100.0 

5.364 

7.3E-06 

 

1.349                     

     0.198  

     309.1 

      5.186 

1E-05 

      

G7=978 W/m2 ,  Tc=328.56 K 

a 

𝑅𝑠  

𝑅𝑝  

𝐼𝑝ℎ  

𝐼𝑜  

  

 

1.375 

0.215 

     100.0 

6.249 

1.0E-05 

 

1.375 

0.215 

     100.0 

6.249 

1.0E-05 

 

1.363 

0.218 

     100.0 

6.247 

8.9E-06 

 

1.376    

0.217                  

     100.0             

6.246      

1E-05 

 

 

 

    

Table 2. Comparison of different Average AE among different methods under seven operation conditions. 

Solar radiation        𝑰𝑨𝑫𝑬       PDE       EML      WOA        PSO       DEIM 

G1 0.0389 0.0387 0.034  0.0248       0.0436 0.0339 

G2 0.0137 0.0150 0.015      0.0273 0.0149 0.0095 
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G3  0.0238 0.0261 0.028 0.0321 0.0431 0.0170 

G4 0.0265 0.0268 0.026 0.1395 0.254 0.0200 

G5 0.0705 0.0705 0.071 0.0920 0.0867 0.0667 

G6 0.0844 0.0844 0.086 0.0891 0.7111 0.0646 

G7 0.1104 0.1104 0.111 0.1131 0.5832 0.1050 

Mean 0.053 0.053 0.053 0.0740 0.2481 0.0452 

 

Table 3. 𝑅𝑀𝑆𝐸, 𝑀𝐵𝐸, 𝑅2, and execution time values of various estimation methods under seven operational conditions. 

Tool Method       G1      G2      G3       G4      G5      G6      G7 Average 

          

 IADE 0.053 0.017 0.034 0.037 0.105 0.110 0.148 0.073 

 PDE 0.054 0.018 0.035 0.038 0.105 0.110 0.148 0.072 

RMSE EM  0.047 0.019 0.037 0.038 0.105 0.112 0.149 0.073 

 WOA 0.036 0.033 0.039 0.166 0.119 0.109 0.154 0.094 

 PSO 0.059 0.018 0.059 0.298 0.117 0.807 0.805 0.309 

 DEIM 0.046 0.014 0.025 0.028 0.095 0.088 0.136 0.062 

 IADE 0.003 0.000 0.001 0.001 0.011 0.012 0.022 0.007 

 PDE 0.003 0.000 0.001 0.001 0.011 0.012 0.022 0.007 

MBE EM 0.002 0.000 0.001 0.001 0.011 0.013 0.022 0.007 

 WOA 0.001 0.001 0.001 0.027 0.014 0.012 0.024 0.012 

 PSO 0.003 0.000 0.003 0.089 0.014 0.651 0.649 0.201 

 DEIM 0.002 0.000 0.001 0.001 0.009 0.008 0.019 0.006 

 IADE 0.957 0.996 0.997 0.999 0.993 0.993 0.991 0.989 

 PDE 0.956 0.996 0.997 0.999 0.993 0.993 0.991 0.989 

𝑅2 EM 0.966 0.996 0.996 0.999 0.993 0.993 0.991      0.990 

 WOA 0.981 0.986 0.996 0.978 0.991 0.993 0.989      0.988 

 PSO 

DEIM  

0.947 

     0.967 

0.996 

     0.998 

0.989 

     0.998 

0.927 

     0.999 

0.992 

     0.994 

0.772 

     0.995 

0.722 

     0.992 

     0.899 

     0.992 

 

Exe.ti

me(s) 

IADE 

PDE 

EM  

     19.64 

     19.88       

     2465 

     18.74 

     18.71      

     2412 

     20.39 

     19.88    

     2471 

     20.89 

     21.29        

     2677 

     20.14 

     20.59      

     2448 

     21.23 

     21.67    

     2585 

     21.23 

     21.11        

     2588 

     20.45 

     20.32    

     2521 

 PSO      14.17     14.22      12.86      13.69      12.61      17.22      67.08      21.69 

 DEIM      14.19     14.52      15.61      16.23      16.25      15.09      15.39      15.33 
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Table 4. 𝑑𝑖 and 𝑆𝑇𝐷 values of various EA under seven operation conditions. 

Solar radiation       IADE           PDE         EM      WOA        PSO       DEIM 

G1 -0.01882  -0.01904 -0.02510 -0.0580 -0.2498 -0.01549 

G2 -0.05489 -0.05440 -0.05385 -0.0605 -0.2910 -0.04816 

G3  -0.03852 -0.03775 -0.03544 -0.0550 -0.2499 -0.03653 

G4 -0.03553 -0.03493 -0.03469 0.0720 -0.1129  -0.03380 

G5 0.03317 0.03263 0.03269 0.0252 -0.1916 0.03320 

G6 0.03845 0.03791 0.03984 0.0161 0.4975  0.02638 

G7 0.07613 0.07558 0.07655  0.0601 0.4962 0.07439 

STD 0.04914 0.04862 0.04917 0.0032 0.1233 0.04540 

 

Table 5. Max, Min, and average values of fitness function for various EA under seven operation conditions. 

Operation condition Fitness value         IADE         PDE          EM       DEIM 

 Max  0.34639 0.28963 0.39097 0.26139 

G1 Min  0.05317 0.05349 0.04738 0.04638 

 Average  0.05883 0.05861 0.04945 0.04831 

 Max  0.42046 0.50404 0.31271 0.25036 

G2 Min  0.0171 0.01813 0.01863 0.01371 

 Average  0.02408 0.02430 0.03311 0.01597 

 Max  0.4557 0.14225 0.40918 0.10282 

G3 Min  0.03346 0.03478 0.03704 0.02534 

 Average  0.03849 0.03815 0.05465 0.02711 

 

G4 

Max  

Min  

Average 

0.41445 

0.03645 

0.04292 

0.21688 

0.03760 

0.04707 

0.51200 

0.03779 

0.20683 

0.15408 

0.02806 

0.03044 

 

G5 

 

Max  

Min  

Average 

0.59895 

0.10516 

0.11332 

0.47755 

0.10516 

0.11560 

0.58153 

0.10517 

0.26259 

0.47280 

0.09506 

 0.09838 

 

G6 

 

Max  

Min 

average 

0.37149 

0.11044 

0.11894 

0.44513 

0.11044 

0.12115 

0.35345 

0.11232 

0.14844 

0.67596 

0.08824 

0.09199 

 

G7 

Max 

Min 

average 

0.67832 

0.14811 

0.15633 

0.59269 

0.14811 

0.16044 

0.73617 

0.14903 

0.22584 

0.65534 

0.13626 

0.14635 

 

Mean 

Max 

Min 

Average 

0.46940 

0.07198 

0.07899 

0.38117 

0.07253 

0.08076 

0.28399 

0.07431 

0.08471 

0.36754 

0.06186 

0.06551 
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5. Conclusion 

In this paper, a differential evolution with 

integrated mutation per iteration (DEIM) 

algorithm is proposed to extract unknown five 

parameters of a single diode model of PV module. 

The proposed DEIM method mix between the 

mutation stages of conventional DE and EML 

algorithms in order to activate the mutation 

process. Furthermore, a new and effective 

formula based on sigmoid function is adopted in 

DEIM algorithm to adjust the mutation factor and 

crossover rate control parameters. Thus, the 

control parameters of conventional DE algorithm 

is reduced by two in DEIM. The suitability of the 

proposed method has been validated by the 

experimental data and other previous methods 

that proposed in literature. The results show that 

the proposed method exhibits better performance 

than other methods regarding accuracy and 

Convergence rapid. In addition, less control 

parameters as compared to DE and EML 

algorithms.    
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