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Abstract

The contourlet transform, one of the recent geometrical transform offers the two
important features of anisotropy scaling law and directionality, but non-ideal filters are
used  which results in two important problems, first is the pseudo-Gibbs phenomena around
singularities produced by the Laplacian pyramid stage. Sharp frequency localized
contourlet transform (SFLCT) is a new construction contourlet which succeeded in solving
this problem by replacing the Laplacian pyramid with a new multiscale decomposition
defined in the frequency domain. But the shift variant, the second problem was not solved
by this work due to the downsampling of Laplacian pyramid and DFB stages. In this work,
a high-performance quincunx filter banks are used in the DFB stage of SFLCT and noble
identity is employed to solve the problem introduced by the downsampler and upsampler.
The simulations illustrate significant improvements under the proposed transform when
compared with other transform variations.

Index Terms: cycle spinning, contourlet transform, wavelet transform, quincunx filter,
directional filter banks, aliasing contourlet transform, image denoising.

الخلاصة

توفر لنا میزة مھمة في معالجة الاتجاھیة في التحویل الھندسي والتيانواع ان  تحویل المخطط ھو  أحد 
ة غیر مثالیة مما یؤدي إلى مشاكل مھمة، أول ھذه المشاكل ھو وجود ظاھرةعدم لكن المرشحات المستخدم. الصور

ل الحاد المتمركز قام بحل ھذه المشكلة بأستبدال مرشح ان التحوی. الاستمراریة المزیفة وسببھاھو مرشح لابلاس 
بسبب وجود رافع و ) وھي المشكلة الثانیة(لكن ھذا التحویل لم یقوم بحل مشكلة تغیر الازاحة. لابلاس بأخر متعدد النطاق

ثانیة بأستخدام لذلك تم اقتراح ھذا البحث لمعالجة المشكلة ال. خافض العینات في مرشحات لابلاس والمرشحات الاتجاھیة
وقد اثبتت .مرشح المربع المخموس العالي الكفاءة و ایظا تم الغاء رافع و خافض العینات باستخدام المعادلة النبیلة

.النتائج كفاءة النظام المقترح  
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1. Introduction
A number of image-processing tasks are efficiently carried out in the domain of an

invertible linear transformation. For example, image compression and denoising are
efficiently done in the wavelet transform domain [1], [2], [3].  Owing  to  the  good  nonlinear
approximation property of wavelets for piecewise smooth signals, they have been very
effective in generating efficient representation of 1-D waveforms. In contrast, natural images
contain singularities in the form of edges which need a more efficient transform than the
wavelet transform (WT) [4],[2]. Hence, recently, some new transforms have been introduced to
take advantage of this property like Contourlet transform [6] which proposed by Minh N. Do
and Martin Vetterli is utilized to capture intrinsic geometrical structure and offer flexible
multiscale and directional expansion. In the CT, a Laplacian pyramid (LP) [4], [7] serves as the
first stage and directional filter banks (DFBs) [4], [8] as the second stage. The pyramidal filter
bank structure of the contourlet transform has very little redundancy, which is important for
compression.

However, non-ideal filter are used in the original contourlet result in significant amount
of aliasing components showing up at location far away from the desired support [9], [10] and
exhibit some fuzzy artifacts along the main image ridges. Yue Lu [9], [10] proposed a new
construction of the contourlet, called sharp frequency localization contourlet transform
(SFLCT) and alleviates the non-localization problem even with the same redundancy of the
original contourlet. But (SFLCT) didn’t solve the shift invariant problem caused by the
downsamplers and upsamplers present in DFB. Hence, SFLCT is not shift-invariant, which is
an important in image denoising by thresholding and easily causes pseudo-Gibbs phenomena
around singularities [9] [11]. Shift invariant denoising can be realized through many methods
like the cycle-spinning algorithm [5] [9]. Cycle-spinning, clearly, is not an efficient way to
perform shift invariant denoising since the computational complexity of this procedure for an
image of size N*N is N2 times that of the CT.

2. Contribution of this work

In this paper, quincunx filter banks proposed in [12] are applied to achieve shift
invariance property in SFLCT. The High-performance quincunx filter banks are used in
building the blocks of the DFB while for the Laplacian pyramid; the filter proposed in SFLCT
is still used.

The quincunx filters yield linear-phase perfect-reconstruction systems with high coding
gain, good analysis/synthesis filter frequency responses, and certain prescribed vanishing
moment properties by using lifting based parameterization. Also to eliminate the artifacts due
to the pseudo-Gibbs phenomenon in the DFB stage, the downsampling and resampling is
moved to the end of the synthesis part and to the beginning of the analysis part, using the
Noble identity [12].
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3. Sharp Frequency Localized Contourlet Transform

Fig.  1  shows  a  flow  graph  of  the  contourlet  transform.  At  the  first  stage,  a  Laplacian
pyramid banks (LP) are used, and for the second one directional filter banks (DFB) are used
[10]. Laplacian pyramid is used to capture the point discontinuities, and the directional filter
banks (DFB), is used to link point discontinuities into linear structure. Note that, the
frequency division in Fig.1 (b) is obtained by ideal filters. Fig.(2) explains the frequency
division when non-ideal filters are combined with Laplacian pyramid. Gray regions in the
figure represent the ideal passband, and patterned regions represent the aliasing frequency
areas concentrated along two parallel lines (ω2 = ±π). There are two reasons beyond the
aliasing effect.

The first one is due to the periodicity of 2-D frequency spectrums of discrete signals.
The other reason is intrinsic to the frequency partitioning of the DFB. Furthermore, if the
directional filters are upsampled by 2 along each dimension, the aliasing components will be
folded towards the lowpass regions, as patterned in Fig.2 (b), and concentrated mostly along
two lines ω .

When the directional filters are combined with bandpass filter in Laplacian pyramid, the
contourlet are not localized in frequency, with substantial amount of aliasing components
outside of the desired trapezoid-shaped support [5] as the gray region shown in Fig.2 (d).

Fig.1 The Original Contourlet Transforms. (A) Block Diagram. (B) Resulting
Frequency Division.
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Fig.2: Spectrum Aliasing Of The Original Contourlet. (A) One Directional Filter,
(B) The Directional Filter Upsampled By 2, (C)A Bandpass Filter From The

Laplacian Pyramid, (D)The Resulting Contourlet Subband.

Yue Lu [10] proposed a new construction of the contourlet transform. An important
distinction from the original contourlet is that, instead of using the Laplacian pyramid, they
employed a new pyramid structure for the multiscale decomposition, which is conceptually
similar to the one used in the steerable pyramid. They still use the DFB for directional
decomposition as shown in Fig.(3). An important difference from the Laplacian pyramid
shown in Fig.( 1), the new multiscale pyramid can employ a different set of lowpass and
highpass filters for the first level and all other levels. This is a crucial step in reducing the
frequency-domain aliasing of the contourlet transform. The results presented in [10] indicate
that the frequency non-localization problem is suppressed by the new construction of
contourlet.

Fig. 3. The Block Diagram Of The New Contourlet Transform. Only The Analysis
Part Is Shown, While The Synthesis Part Is Exactly Symmetric.
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4. Developing a Shift Invariant Scheme based on Sharp Frequency
Localized Contourlet Transform

It was shown in [10] that SFLCT significantly outperforms the original transform. But the
drawback of SFLCT is that it still uses the DFB, hence it is not shift-invariant due to the
downsamplers and upsamplers presented in the directional filter banks, which could easily
produce artifacts around the singularities, e.g. edges. Thus quincunx filter banks are used in
building the blocks of the DFB in SFLCT system.

4.1 Quincunx Filter Banks

Consider a shift-invariant, perfect reconstruction (PR) d-dimensional quincunx FB
shown in Fig. (4)

Fig. 4. Single-Level Multichannel Filter Bank.

Fig.5: Ideal Frequency Responses Of Quincunx Filter Banks For The (A)
Lowpass Filters And (B) Highpass Filters.
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The quincunx lowpass and highpass filters are often chosen to have diamond-shaped
frequency responses as shown in Figures 5(a) and (b), respectively. With the diamond-shaped
frequency response, the lowpass filter can preserve high frequencies in the horizontal and
vertical directions, which is a good match to the human visual system as the visual sensitivity
is higher to changes in these two directions than in other directions[8].

The shift-invariant PR condition for the quincunx UMD filter bank is

H0(z)G0(z)+H1(z)G1(z) = 2                                                                                       (1)

 and

H0(−z)G0(z)+H1(−z)G1(z) = 0                                                                                       (2)

Where  {Hk(z)}  and  {Gk(z)} are the analysis and synthesis filter transfer functions,
respectively. M is denoted as d×d sampling matrix.  If N= dM, where dM= det(M)  ,  the  FB is
critically sampled and if N > dM , it is oversampled. The outputs of the analysis filters before
downsampling is denoted as ωi[n], for 0 ≤ i < N, where Hence
yi[n]= ωi[Mn].

To prove the system is shift invariant, the following procedure is stated for obtaining all
possible shifts of a multidimensional and multichannel FB. If in fig.(1), all possible shifts of
ωi[n] are computed by   , (   , where   and
is the set of integer vectors of the form   , then the output of the analysis section
is shift invariant. It is clear that for a multilevel FB that one can apply the above method at
each level for as many inputs as that level has.

According to the above procedure, if in a critically sampled FB, without loss of
generality, then  (under assumption that ko=0) the FB
will be shift invariant. In this case, the analysis and synthesis filters satisfy
and   and  represent the polyphase components of ωo[n].

Consequently, the filter bank boils down to a simple nonsubsampled system with analysis
filter   and synthesis filter  ,where  to ensure perfect
reconstruction. Furthermore, the redundancy of the resulting shift invariant filters bank equals
N [4].

The DFB is realized through iterated quincunx FBs, and some resampling operations
that just rearrange coefficients. In an, l^-level DFB the frequency space is decomposed to 2l^

wedge-shaped partitions (fig.6). Using the noble identities [14], all sampling operation can be
transferred to the end (beginning) of the forward (inverse) transform of the DFB. As a result,
2l^ analysis and 2l^ synthesis filters, Hi

(l^), and Gi
(l^) , are obtained respectively, and the overall

sampling matrices , as given below [15],[14].
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(3)

In order to reduce complexity, it is appropriate to employ vertically and horizontally
oriented DFBs [13][4] (fig.(6)). In vertical DFB (VDFB) and horizontal DFB (HDFB), one can
achieve mostly vertical directions (directions between 45o and 135o )  and mostly horizontal
directions (directions between -45o and +45o ), as depicted in Fig.(6), In these two modified
DFB schemes, decomposing the signal horizontally or vertically is stopped  after the first
level of the DFB. Therefore, the overall sampling matrices for VDFB and HDFB will be

                                                            (4)

                                                              (5)

Where Q is the quincunx sampling matrix. The redundancy factor of the modified

(either vertical or horizontal) will be  .

Fig.6. (A) Frequency Response Of A DFB Decomposed In Three Levels. (B)
Vertical Directional Filter Banks With Three Levels. (C) Horizontal Directional

Filter Banks With Three Levels.

5. Numerical Experiments

In order to demonstrate the effectiveness of the proposed design, several experiments
are performed on a variety of images all of size 512X 512 and is compared with the original
SFLCT [5] and  contourlet  (CT) [2] as  well  as  the  CS-SFLCT [9] also  with  the  NSCT [1] is
compared.

A hard threshold is performed on the subband coefficients of the various transforms.
The threshold: Ti,j= K  σni,j  is chosen for each subband. This has been termed K -sigma
thresholding in [1]. The images are contaminated by a zero-mean Gaussian noise with a
standard deviation of σ.
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From the results, one can see that although CS-SFLCT algorithm is employed to
improve the denoising performance of contourlets, the computational complexity of this
procedure is too high, which consequently makes this algorithm difficult for rather large-size
images.  In  contrast,  the  proposed  method  in  this  paper  achieves  coding  with  less
computational complexity and higher PSNR values. Also in the case of nonsubsampled CT
proposed in [1], despite the system is shift invariant but the zero padding used to solve the
boundary problem makes the number of samples increases due to the effect of linear
convolution, resulting in an expansive transform. Although truncation can be used to obtain
nonexpansive transform, it causes distortion in the reconstructed signal near the boundaries.
Table (1) shows the PSNR (in dB) of the denoised images by using the above transforms. It
can be seen that the method yields superior results in all cases, figure (7) shows that.

Table( 1): PSNR Values Of The Denoising Experiments

Image Noise
Std.
Dev.

Noisy SFLCT CT CS-SFLCT NSCT QF-
SFLCT

Lena 10 28.12 33.03 32.00 33.84 33.38 36.11

30 18.77 27.40 26.67 28.35 28.18 33.07

50 14.73 24.75 24.20 25.89 26.04 28.96

Barbara 10 28.11 31.38 29.90 31.36 29.18 37.45

30 18.72 24.95 23.76 25.11 25.27 35.88

50 14.48 22.57 21.96 23.71 23.74 30.71

Zelda 10 28.13 34.06 33.37 35.33 33.45 36.89

30 18.83 28.67 28.24 30.67 30.00 34.19

50 14.61 25.78 26.05 27.63 27.07 31.94
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                     (a)                                             (b)                                            (c)

                       (d)                                             (e)                                              (f)

Fig. 7. Image Denoising (A) Original”Barbara” Image(B) Noisy Σ=50 (C)
Denoised By CT (D) Denoised By SFLCT (E) Denoised By CS-SFLCT (F) By QF-

SFLCT

6. Conclusion and Discussion

In this paper, quincunx filter bank and noble identity is employed to compensate for the
lack of shift invariance property of Sharp Frequency Localized Contourlet. Experimental
results show that the method is simple and outperform the other transform by eliminating the
artifacts due to the pseudo-Gibbs phenomenon in the DFB stage caused by the downsampling
and resampling operation.
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