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Abstract 

This paper presents an investigation on the stabilization and the tracking problem of 

an inverted pendulum-cart system. An open loop subsystem is augmented to the original 

components which comprises an auxiliary stable pendant pendulum, (P.P.), and a jet force 

component. The latter is attached firmly to the auxiliary pendulum in such a way to keep 

the jet force acting in an alignment to this pendulum. The dynamic equations of the system 

are derived using Lagrange formulation. The jet force locates the inverted pendulum in the 

up-right position and holds it stable.  

A scheme based on model reference and error driven control is proposed to track the 

system along a pre-specified trajectory, while the inverted pendulum, (I.P.), maintains it's 

up-right position with fairly negligible oscillation. Real-time dynamic simulation is 

performed and the results of which are presented to illustrate the validity of the proposed 

approach. 

Key words: cart-inverted pendulum system, self erection, tracking, model reference/error 

driven control. 

 

 

 

 الخلاصة

يقدو ىذا انبحث دراسة حول الاسحقزارية وانححبع في ينظوية بندول يعكوس يحًول عهى عزبة. وقد أضيفتث لنيى   

انًكونات الأصهفة ينظوية ثانويية بيدارم يتحوحية يكونية ييو بنيدول بنيدانث انًزيحقز ويي ق نحونفيد قيوم بذي  وييزجب  ىيذا               

ًزاعد بحفث يحافظ عهى جأثفز قوم انبذ  باسحقاية يع ىذا انبندول. جى انحصول عهى انًعادلات الأخفز بذبات لنى انبندول ان

انداينًفكفيية نهًنظوييية باسييحيداو صييفجة لاعييزينة. جعًييم قييوم انبذيي  عهييى وضييع انبنييدول انًعكييوس  يياقونفا وجحييافظ عهييى     

 اسحقزاريحو. 

عية اننًيو و وانيطيأ و نير نجيزع جحبيع انًنظويية        في ىذه اندراسة جى اقحزاح أسهوب نهزفطزم اعحًادا عهيى يزاي 

نًزار يعفو في حفو يحافظ انبندول انًعكوس عهى وضعو انشاقوني بحيأري  ضيلفم يًكيو لىًانيو. وقيد جيى لييزاق يحاعيام         

 نهداينًفكفة في ان يو انحقفقي واسحعزاع اننحائة لإيضاح صلاحفة الأسهوب انًقحزح.    
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Nomenclature 

yyy ,,  Translational position, velocity and 

acceleration of the cart. 

f  System tracking control 

force. 

ddd yyy  ,,

 

Desired position, velocity and 

acceleration of the cart. 

f   Control force per unit mass. 

 ,,  Angular position, velocity and 

acceleration of the I.P. 

eee ,,  Cart error signals. 

 ,,  Angular position, velocity and 

acceleration of the auxiliary P.P. 
PK  Position error gain. 

11 , yy   Horizontal position and velocity of the 

I.P. at mass center.  
VK  Velocity error signals. 

11, zz   Vertical position and velocity of the 

I.P. at mass center. 
n  Natural frequency of error 

dynamics. 

22 , yy   Horizontal position and velocity of the 

auxiliary P.P. at mass center. 

  Damping ratio of error 

dynamics 

22 , zz   Vertical position and velocity of the 

auxiliary P.P. at mass center. 
M  System mass matrix. 

T  Total kinetic energy of the system. C  System damping matrix. 

1T  kinetic energy of the cart. K  System stiffness matrix.  

2T  kinetic energy of the I.P. A  State space system matrix. 

3T  kinetic energy of the P.P. B  State space input matrix. 

V  Total potential energy of the sys. s  Laplace operator. 

L  The Lagrangian. I  Unit matrix. 

jf  Jet force. 
mM  Model total mass. 

w  Generalized displacement vector. m  Cart mass. 

totF  The generalized total forcing vector. 
1m  Inverted pendulum mass. 

yf  External force affecting the cart. 
2m  Pendant pendulum mass. 

y  Total force affecting the cart. 
1B  Cart viscous frictional 

coefficient. 

  Total moment affecting the I.P. 
2B  I.P. viscous frictional 

moment coefficient. 

  Total moment affecting the P.P. 
3B  P.P. viscous frictional 

moment coefficient. 
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mm yy  ,  Model translational velocity and 

acceleration. 
1I  I.P. moment of inertia about 

the lower pivoted end. 

bl 21   Length of the I.P. 
2I  P.P. moment of inertia about 

the pivoted end. 

cl 22   Length of the P.P.   Eigen values. 

 

1. Introduction 

The stabilization and control of a cart-inverted pendulum system has been considered as 

a challenging objective in many experimental and theoretical investigations. Many research 

works are focused on the problem, reach to idea that it is a suitable system on which various 

control techniques can be examined including non-linear and linear control approaches 

[1,2,3]. However, other research works treated the problem in conjunction to the application, 

both theoretically and experimentally. The inverted pendulum have found various application 

motivating a new field concerning the applied dynamics and control. The application ranges 

from mobile robots, [4,5], guidance of space rockets [6], structural dynamics during earth 

quick [7], balancing of a segway which is, simply, a two-wheeled mobile inverted pendulum 

vehicle, [8], etc. As a new and important application of the stabilization of the inverted 

pendulum system, in motion, is the convertible four-two wheel chair for disabled person [9]. 

Different control techniques have been employed to the problem of stabilization and motion 

tracking of an inverted pendulum system. These are ranging from applying techniques such as 

PD and optimal control methods to the use of a modern control strategies [2,10,11]. A PD 

based control was applied for self erecting the pendulum in vertical-upright position, while a 

linear quadratic regulator was adopted to balance the pendulum [2]. Modern control method 

using fuzzy controller was used to guarantee the stability of the inverted pendulum after 

swinging it by a control voltage applied to the motor driving the cart [10].  

Reference compensation technique scheme was used as a neural net work control 

method for a mobile inverted pendulum where experiments are conducted to examine the 

control performance of both balancing and tracking a desired trajectory [11].  In all of these 

works, they used a horizontal control forcing to swing-up and balance the inverted pendulum 

and, or to track the system on some desired trajectory. As an exception, an attempt has been 

made to use vertical control forcing in order to balance an inverted pendulum system, which 

is described as a novel approach where a PD controller is designed to satisfy the stability 

condition, and the proposed hybrid fuzzy control scheme provides a more flexible way to 

stabilize the inverted pendulum via vertical force.  [12]. In the present work, a new and 

different method for up-right positioning and stabilizing an inverted pendulum with cart 

trajectory control has been developed and examined by numerical experiments using 

Matlab/Simulink. Tracking effects of the cart on the inverted pendulum verticality and 

stability have been examined by performing dynamic simulation in the presence of the 

stabilizing jet force. A schematic description of the proposed system is shown in figure (1) 

and the details of the system mathematical modeling and control are as follow;    
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 2. The proposed cart-inverted pendulum system 

The cart-inverted pendulum system proposed in this investigation is new and different 

from the conventional system treated in many previous works. An auxiliary, relatively, light 

pendant pendulum is hinged freely at the tip of the inverted pendulum.  A jet force component 

aligned, firmly, to the auxiliary pendulum such that, the direction of the induced jet force is, 

always, acting downward along the pendant pendulum. This force can bring the I.P. from an 

initial position to the up-right position. The cart on which the inverted pendulum sub-system 

is supported can move horizontally on some desired trajectory by the application of horizontal 

force independent on that induced by the jet. A schematic description of the system is given in 

figure (1). In the proposed system, one concern is the up-right positioning of the inverted 

pendulum based, firstly, on the non-linear system dynamics. In addition, the performance of 

the whole system, including the angular position and velocities of the two pendulum, are to be 

monitored in the presence of a trajectory control of the cart. 

 

 

 

 

 

 

 

 

 

 

Figure (1): Description of the cart-inverted pendulum system. 

[ 

3. Mathematical Modeling of the system 

The modeling of the system is presented. This gives the dynamical equations on which 

the simulation of the system performance is based. The performance includes that just prior to 

the application of the trajectory control and in the presence of the trajectory control.  

Lagrange formulation is utilized in developing and characterizing the dynamic model of 

the system, [13,14]. By considering a plane motion, figure (1), the total kinetic energy of the 

system is due to the translational and rotational motions of the masses, giving : 
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321 TTTT                                                                                                        (1) 

where:  2
1

2

1
ymT      ,    2

1

2

1

2

112
2

1

2

1
 IzymT       and       2

2

2

2

2

223
2

1

2

1
 IzymT    

upon substituting  ( 1y ,  1y ,  1z ,  1z ,  2z , and 2z  ) using the geometry shown in figure (1), 

where; sin1 byy  , cos1 bz  ,  sinsin12 clyy  ,  coscos12 clz  , the 

total kinetic and potential energies of the systems in terms of variables ( y ,  , and  ) and 

their derivatives are obtained as, [14]. The kinetic energy of the system, from equation (1), 

becomes;  
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





ycmcml

ylmbm
II

m
l

ymmmT

coscos

))(cos(
2222

1

221

121
2221

2

2
12

21




























   (2) 

And the potential energy of the system is: 

2211 gzmgzmV   

   coscos 2121 gcmglmgbm                                                                     (3) 

In order to have a closed form dynamic model of this inverted pendulum-cart system, 

the energy expression in (2) and (3) are used to establish the Lagrangian; [13,14] 

VTL                                                                                                                 (4) 

Upon selecting the generalized displacement vector as: 

w [ y       ]
T  

The corresponding generalized total forcing is the following vector; 

totF [ y       ]
T
 

Thus the following set of equations based on the Lagrangian formulation are obtained: 

                  
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

                                               (5)                                 

 

Here, yf  is the external actuating force applied to the cart .  
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By return to figure (1) and using equations 2, 3, 4 and 5, and allowing for the effects of 

damping, drag forces and torque on the system components, the following non-linear 

dynamical equations are obtained after some manipulation; 

         
  



sinsin

sincoscos

21

121212121

jy ffcmyB

lmbmcmlmbmymmm








 

            

   







sinsin

sincoscos

11212

212112

2

1121

lfglmgbmB

cmlcmlImlylmbm

j



 

      sincoscos 232212 gcmBIcmlycm    

The above non-linear dynamical equations are linearized and rearranged. The 

linearization is obtained by assuming small values of angular position changes about the 

nominal up-right position of the inverted pendulum and the auxiliary pendant pendulum, 

hence the following approximations may be used: 

 sin ,          1cos  ,          0
2
 , 

 sin ,       1cos  ,             0
2
  

Equations (6) may be rewritten after linearization in a compact form to obtain; 

FKwwCwM                                                                                                  (7) 

Where, w  and F  are the position and forcing vectors respectively, and; 
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    ,                w [ y       ]
T
 

                 F [ yf   0    0]
T
 

Here, ( yf ) is the unique external force that is acting on the cart. 

 

4. Trajectory control of the system 

In practice, it is normally required not only to bring the I.P. to a stable up-right position, 

but rather to control the position of the system, so that, it restore it's original position or, it 

follows a desired trajectory of some specified function of time. [2,10,11] 

 

 


















gcm

lfglmgbmlf

f

K ij

j

2

11211

00

0

00

  (6) 
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 For this purpose a scheme based on model reference error driven control is adopted. 

Assuming that a complete description of the desired trajectory and it's first two derivatives are 

available, namely the cart desired position, velocity and acceleration (
dy , 

dy  and 
dy ) 

respectively. The dynamics of the reference model is concerned with the translational motion 

of the system as we have a tracking problem.  

The inherent dynamical effects of the rotational elements on a trajectory tracking were 

ignored. This approximation simplifies the system for the purpose of tracking to be of an 

equivalent total mass,  21 mmmMm  , which is subjected to a viscous damping, 

including drag force, affecting the cart. Thus, the dynamics of the reference model reduces to 

the following single degree of freedom system; 

fyByM mmm  
1                                                                                                  (8) 

It is to be mentioned that the best dynamical data for the model are those available from 

the original system, namely, the cart motion variables ( yy ,  and y ), so that, equation (8) can 

be rewritten as: 

fyByMm  
1

                                                                                                     (9) 

A control law is adopted that when it’s combined with motion equations it yields a 

closed loop system. This trajectory control law can be stated as: [15,16] 

   yyKyyKyu dpdvd                                                                          (10) 

To establish a control law for this system, we will consider the tracking control of the 

model stated earlier. A control law partitioning technique is used to reduce the system to a 

unit mass problem. Further, it is required to decompose the controller into two segments. The 

first is model based in which the system model parameters are used to set up a control law, 

such that it reduces the system model to appear as if it is a unit mass. 

The second segment of the control law is error driven. Error signal are obtained by 

differencing desired and actual variables. These error signal are multiplied by a suitable 

values of gains. These gains are specified according to the required error signal suppression in 

the sense of it's magnitude and duration as will be shown.  The model-based portion of the 

control law takes the form: 

  ff                                                                                                           (11) 

Where   and   are functions or constants and are to be chosen so that ( f  ) is taken as 

a new forcing input. Combination of equations (9) and (11), using this structure of control 

law, gives the following system equation: 

  fyByMm


1                                                                                           (12) 



Journal of Engineering and Development, Vol. 15, No. 3, September (2011)    ISSN 1813-7822 

 
81 

Choosing  and   as (
mM ) and ( yB 

1 ), results the following unit mass 

equation: 

fy                                                                                                                    (13) 

In the trajectory control system, the error driven portion determines ( f  ) as function of 

position and velocity errors in away similar to that stated in equation (10). Thus; 

eKeKyf pvd                                                                                              (14) 

Substituting for equation (13) in (14), an equation of motion written in error space is 

obtained as: 

0 eKKe pve                                                                                                 (15) 

The above error dynamic equation characterizes the amount of error suppression which 

can be determined by the choice of ( pK ) and (
vK ) values. A proper choice of gains ( pK ) and 

(
vK ) should be that by which errors are suppressed in fastest possible manner with little over 

shoot. Equation (15) gives the following characteristic equation: 

02  pv KsKs                                                                                                 (16) 

where  (
vK =

n2 ) , and (
2

npK  ). 

The relationship between (
vK ) and ( pK ) may be obtained to be: 

pv KK 22
4                                                                                                        (17) 

Upon specifying  the values of ( ) and ( pK ),(
vK ) may be determined. The general 

form describing this control scheme is shown in figure (2). 

 

 

     

 

    

 

 

Figure (2): Block diagram of the trajectory control scheme. 

 

dy  

dy  

dy  
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

 BuAxx   
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5. Simulation of the system dynamics and control 

Starting by equation (7), a state space representation of the system can be obtained. Pre-

multiplying by ( 1M ) and rearranging, the following vector-matrix equation is obtained: 

FMKwMwCMw 111                                                                              (18) 

Equation (18) may be rewritten in the state space form: BuAxx  . Hence, a set of 

partitioned vector-matrix equations are obtained as;  
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                  (19) 

 

With reference to equations (6) and (7), it may be noticed that the above open-loop 

dynamic system is made asymptotically stable by introducing the jet force parameter ( jf ) in 

the system dynamics, in the manner explained earlier. The only single condition is that the 

term; 
1211 glmgbmlf j  ,  has to be positive, giving; 

1

121

l

glmgbm
f j


 , or ( 57.1jf  N)  for a 

system with parameters given in table (1). Here, the jet force (
jf ) has been taken as (2) N. 

 

Table (1): Basic system parameters 

kg

m
 

kg

m1
 

kg

m2
 

m
Ns

B1

 

rad
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B2

 

rad
Nms
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2sec

m
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1 0.2 0.06 0.18 0.16 0.06 9.81 

m

l1  
m

l2  
m

b
 

m

c
 

N

f j  
2

1

kgm

I
 

2

2

kgm

I
 

0.5 0.12 0.25 0.06 2 1.66x10
-2 

2.88x10
-4 

 

Using the parameters in table (1), the open loop system and input matrices are obtained 

as: 
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The roots of the open-loop system characteristic reflects the stability condition of the 

system, obtained as eigen values (
i ) of the open-loop system matrix, (equation 19). Using 

the following equation; 0 AI , the eigen values of (A) at ( 0jf ), and at ( 2jf N) are 

evaluated to be: (0, -327.16, -9.137, 3.2, -0.59, -0.143) with one positive real root causing 

instability, and (0, -328, -2.58 36.1i , -0.42, -0.19) respectively. Clearly, the latter has non-

positive sign in all real parts indicating a stable condition. The zero eign value refers to the 

cart mass being a damped motion rigid body. 

 

5-1. Up-right localization of the inverted pendulum 

The system non-linear dynamical, equations (6), developed earlier with parameters 

specified in table (1) have been used in establishing  Matlab-Simulink simulation block 

diagram, so that a large initial angle of the inverted pendulum may be used, reflecting a more 

realistic case. The unforced system, ( 0yf ), with an initial angle of the inverted pendulum 

(
2

 o ), describing the case of a horizontally positioned I.P., was used to show the 

effectiveness of using jet force to reach a stable up-right position of the I.P. Upon performing 

the simulation, the system response represented by positions ( y , , ) and velocities (   ,,y ) 

are shown in figures (3-5). 

The I.P., almost, attains the vertical position in about (4 sec.). The following values were 

noticed; ( =0.05 rad.,  y=0.12 m, γ=-0.008 rad, 002.0  rad/sec, 043.0y  m/sec, 

006.0  rad/sec). It may be noticed that the whole system is settled within 20 seconds. 
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a- Cart translational response                               b- Cart translational velocity. 

Figure (3) 

 

 

                      

 

 

 

 

 

a- Inverted Pendulum angular posion.     b- Inverted pendulum angular velocity. 

Figure (4) 
 

 

 

 

 

 

 

 

 a- Pendant Pendulum angular posion.    b- Pendant pendulum angular velocity.                                

Figure (5) 
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5-2. Results of the trajectory control 

This section illustrates the behavior of the proposed trajectory control scheme, shown in 

figure (2). A Matlab program was written to simulate the control system performance. The 

present controller is activated when the inverted pendulum, almost, attains it's up-right 

position. A piece wise time function trajectory of three segments each with (10 sec) duration 

were taken as the desired trajectory, 
dy . This comprises a parabolic, flat and down ramp 

shaped functions respectively to reflect an accelerated movement up to (2 m) of cart position, 

stand still, and a constant speed return to the initial position. Having specified the desired 

trajectory (
dy ), the control scheme described earlier is simulated in which the cart external 

force ( yf ) of equation (19) is to be replaced by the tracking force ( f ), which is determined in 

equations (11-14) as; 

    yykyykyMyBf dpdvdm  1                                                    (20) 

In matrix state-space notation which is required in the simulation, the feed back system 

and the input matrices become, respectively, as follow: 

 GBA  ,       and           B  

where the feed back gain matrix is : 

   















 



000000

000000

0000 1BKMKM

G

vmpm

,    

Here 52.2PmKM      and     046.31 BKM vm
 

The corresponding control input is the following vector: 

U=[ u    0    0 ]
T                         

Where        ddvdpm yyKyKMu                                                                                (21) 

In the error driven segment and using equation (17), the gain ( vK )was evaluated to be 

(2.56) after selecting ( 2pK ), and ( 9.0 ). These are chosen for reasonably fast response 

with very small over shoot in error signal (e), in addition to a reasonable magnitude of 

actuating force, as this force is directly proportional to the values of gains, pK  and  vK , 

equation (21). The overall behavior of the system are illustrated in figures (6-8), with initial 

values of states as obtained earlier, from the results of the non-linear model of the system after 

4 sec. Of particular interest are figures (6) of the I.P. angular position ( ) and figures (7-8) of 

the cart trajectory control results which illustrates a comparison between the obtained and the 

desired trajectories.  
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Although, initial values of states were used in the simulation, the inverted pendulum was 

brought it's up right position in (1.5 sec). However, transient angular deflection of about (0.1 

rad.)(5.8
o
) in maximum is noticed due to disturbances caused by the sudden change in the 

desired trajectory function. Variations of the pendant pendulum position were found to be 

very small, figure (9). The cart tracks the desired trajectory very well with a maximum 

transient error of about (5.5%).  

The error signal, figure (10) shows a transient variation of about (0.11 m) in maximum 

around zero. Finally, the total tracking force is shown in figure (11). This is, in fact, 

dependent on the selective gains ( pK ) and (
vK ) as well as the cart drag force. The system 

closed loop eigen values or poles are obtained to be the following;  (-328, -4.13, -1.29 

i 1.21, -1.43, -0.51). Having obtained the numerical simulation results, the following 

remarks may be highlighted: 

 The jet force ( jf ) has a stiffening effect on the I.P. 

 The values of ( pK ) and (
vK ), indirectly, affect the system states other than those of 

the cart. 

 It seems that the error induced using simplified reference model is embedded within 

the major tracking error signal forming a collective error which drives the tracking 

controller. 

 The present scheme shows some kind of robustness as errors in estimating model mass 

(
mM ) will, effectively, be reflected on the assigned values of gains ( pK ) and (

vK ) 

which are not critical. This may be noticed by an insite look to the structure of the 

trajectory control block diagram, figure (2). 

 A compromise between the fastness and accuracy of the tracking response with the 

magnitude of the tracking forces has to be made in determining the gains values ( pK ) 

and (
vK ). The higher the gain values, the larger will be the required tracking force. 

 

 

 

 

 

 

 

 

 

 

Figure (6): I.P. angular position during 
tracking.   
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Figure (7): Desired and the obtained cart position during tracking. 
[ 

 

 

 

 

 

 

Figure (8): Desired and the obtained cart velocity during tracking 

 

 

 

 

 

 

Figure (9): Pendant pendulum angular position during tracking 

 

 

 

 

 

 

Figure (10): Variation of cart tracking error. 



Journal of Engineering and Development, Vol. 15, No. 3, September (2011)    ISSN 1813-7822 

 
88 

 

 

 

 

 

 

Figure (11): Total tracking force affecting the cart. 

 

6. Conclusion 

It is visible to utilize a jet force in stabilizing and vertically erecting an inverted 

pendulum cart system. An auxiliary pendulum attached to the inverted pendulum in a pendant 

position is needed in directing the stabilizing jet force in an open loop. The jet force plays as a 

positive stiffening parameter. 

The system performs in a very good manner in tracking a specified trajectory. Despite 

the disturbances induced during tracking and the non-zero initial value, the inverted pendulum 

was kept stable with small transient oscillation about the vertical. The trajectory controller 

which is based on model reference/error driven scheme shows a very acceptable performance.      
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