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Abstract

This paper presents an investigation on the stabilization and the tracking problem of
an inverted pendulum-cart system. An open loop subsystem is augmented to the original
components which comprises an auxiliary stable pendant pendulum, (P.P.), and a jet force
component. The latter is attached firmly to the auxiliary pendulum in such a way to keep
the jet force acting in an alignment to this pendulum. The dynamic equations of the system
are derived using Lagrange formulation. The jet force locates the inverted pendulum in the
up-right position and holds it stable.

A scheme based on model reference and error driven control is proposed to track the
system along a pre-specified trajectory, while the inverted pendulum, (I.P.), maintains it's
up-right position with fairly negligible oscillation. Real-time dynamic simulation is
performed and the results of which are presented to illustrate the validity of the proposed
approach.

Key words: cart-inverted pendulum system, self erection, tracking, model reference/error
driven control.
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Nomenclature

Y, ¥, ¥

Yar Yar Va

0,0,0

VY

Translational position, velocity and
acceleration of the cart.

Desired  position,  velocity and
acceleration of the cart.

Angular  position, velocity and
acceleration of the I.P.

Angular  position,  velocity and

acceleration of the auxiliary P.P.

Horizontal position and velocity of the
I.P. at mass center.

Vertical position and velocity of the
I.P. at mass center.

Horizontal position and velocity of the
auxiliary P.P. at mass center.

Vertical position and velocity of the
auxiliary P.P. at mass center.

Total kinetic energy of the system.

Kinetic energy of the cart.
kinetic energy of the I.P.
kinetic energy of the P.P.

Total potential energy of the sys.
The Lagrangian.

Jet force.

Generalized displacement vector.

The generalized total forcing vector.
External force affecting the cart.

Total force affecting the cart.

Total moment affecting the I.P.

Total moment affecting the P.P.
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System control

force.

tracking

Control force per unit mass.

Cart error signals.

Position error gain.

Velocity error signals.

Natural frequency of error
dynamics.

Damping ratio of

dynamics

error

System mass matrix.

System damping matrix.

System stiffness matrix.
State space system matrix.
State space input matrix.

Laplace operator.
Unit matrix.

Model total mass.

Cart mass.

Inverted pendulum mass.

Pendant pendulum mass.

Cart viscous frictional
coefficient.

I.P. viscous frictional
moment coefficient.

P.P. viscous frictional

moment coefficient.
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V..V,  Model translational velocity and I, I.P. moment of inertia about
acceleration. the lower pivoted end.

P.P. moment of inertia about
the pivoted end.

I,=2b  Length of the I.P.

I,

I, =2c  Length of the P.P. A Eigen values.

1. Introduction

The stabilization and control of a cart-inverted pendulum system has been considered as
a challenging objective in many experimental and theoretical investigations. Many research
works are focused on the problem, reach to idea that it is a suitable system on which various
control techniques can be examined including non-linear and linear control approaches
[1,2,3]. However, other research works treated the problem in conjunction to the application,
both theoretically and experimentally. The inverted pendulum have found various application
motivating a new field concerning the applied dynamics and control. The application ranges
from mobile robots, [4,5], guidance of space rockets [6], structural dynamics during earth
quick [7], balancing of a segway which is, simply, a two-wheeled mobile inverted pendulum
vehicle, [8], etc. As a new and important application of the stabilization of the inverted
pendulum system, in motion, is the convertible four-two wheel chair for disabled person [9].
Different control techniques have been employed to the problem of stabilization and motion
tracking of an inverted pendulum system. These are ranging from applying techniques such as
PD and optimal control methods to the use of a modern control strategies [2,10,11]. A PD
based control was applied for self erecting the pendulum in vertical-upright position, while a
linear quadratic regulator was adopted to balance the pendulum [2]. Modern control method
using fuzzy controller was used to guarantee the stability of the inverted pendulum after
swinging it by a control voltage applied to the motor driving the cart [10].

Reference compensation technique scheme was used as a neural net work control
method for a mobile inverted pendulum where experiments are conducted to examine the
control performance of both balancing and tracking a desired trajectory [11]. In all of these
works, they used a horizontal control forcing to swing-up and balance the inverted pendulum
and, or to track the system on some desired trajectory. As an exception, an attempt has been
made to use vertical control forcing in order to balance an inverted pendulum system, which
is described as a novel approach where a PD controller is designed to satisfy the stability
condition, and the proposed hybrid fuzzy control scheme provides a more flexible way to
stabilize the inverted pendulum via vertical force. [12]. In the present work, a new and
different method for up-right positioning and stabilizing an inverted pendulum with cart
trajectory control has been developed and examined by numerical experiments using
Matlab/Simulink. Tracking effects of the cart on the inverted pendulum verticality and
stability have been examined by performing dynamic simulation in the presence of the
stabilizing jet force. A schematic description of the proposed system is shown in figure (1)
and the details of the system mathematical modeling and control are as follow;
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2. The proposed cart-inverted pendulum system

The cart-inverted pendulum system proposed in this investigation is new and different
from the conventional system treated in many previous works. An auxiliary, relatively, light
pendant pendulum is hinged freely at the tip of the inverted pendulum. A jet force component
aligned, firmly, to the auxiliary pendulum such that, the direction of the induced jet force is,
always, acting downward along the pendant pendulum. This force can bring the I.P. from an
initial position to the up-right position. The cart on which the inverted pendulum sub-system
Is supported can move horizontally on some desired trajectory by the application of horizontal
force independent on that induced by the jet. A schematic description of the system is given in
figure (1). In the proposed system, one concern is the up-right positioning of the inverted
pendulum based, firstly, on the non-linear system dynamics. In addition, the performance of
the whole system, including the angular position and velocities of the two pendulum, are to be
monitored in the presence of a trajectory control of the cart.

Z l1=2p =2¢
‘ y2 | ||
__________ —I— _ _-.l_ —
| Inverted pendulmn |
| ILmL b b | Auxiliary pendulum
: |r.g. I, m2, 12
o R
Vi |
____;_____l__ _ |
- K |
}" | Jet fm‘ce\\ | 72
_________ —I-I I 21 £ |
|
Tracking force I _| ______ —
f —d Cart

P ‘1"
Figure (1): Description of the cart-inverted pendulum system.

[

3. Mathematical Modeling of the system

The modeling of the system is presented. This gives the dynamical equations on which
the simulation of the system performance is based. The performance includes that just prior to
the application of the trajectory control and in the presence of the trajectory control.

Lagrange formulation is utilized in developing and characterizing the dynamic model of
the system, [13,14]. By considering a plane motion, figure (1), the total kinetic energy of the
system is due to the translational and rotational motions of the masses, giving :
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T=T+T,+T, 1)
where: T1=%my2 , T, :%ml(yf +212)+%I192 and T, =%m2(y22 +z‘22)+%|272

upon substituting (y,, VY,, z,, Z,, Z,,and z, ) using the geometry shown in figure (1),
where; y, —y=bsin@, z,=bcosd, y,—-y=Isind+csiny, z,=1I1cosé+ccosy, the
total kinetic and potential energies of the systems in terms of variables (y, &, and ») and

their derivatives are obtained as, [14]. The Kkinetic energy of the system, from equation (1),
becomes;

T= ;(m +my+my )y + [%m + }92 ( |22 jyz + (myb + m,ly)(cosO) y o 2
+lycmy cos(@ + )y + myc(cosy )y s
And the potential energy of the system is:
V =m0z, + m,0z,
= (m,gb+m,gl, )cosé —m,gccosy (3)

In order to have a closed form dynamic model of this inverted pendulum-cart system,
the energy expression in (2) and (3) are used to establish the Lagrangian; [13,14]

L=T-V (4)
Upon selecting the generalized displacement vector as:

w=[y ¢ yI'
The corresponding generalized total forcing is the following vector;

Fot =[7, 7, 7, 1

Thus the following set of equations based on the Lagrangian formulation are obtained:

d(oL) oL . 3
—| = |- =7y =fy—fjsiny
dt\oy ) oy
oL) oL _
— —f:lsin(@+ 5
dt aej a9 =0 ="fiksin@+7) 4 )
d(oL) oL
— =7,=0
dt\ay ) oy 7 )

Here, f, is the external actuating force applied to the cart .
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By return to figure (1) and using equations 2, 3, 4 and 5, and allowing for the effects of
damping, drag forces and torque on the system components, the following non-linear
dynamical equations are obtained after some manipulation;

(m +mq +my )y +[(mgb + myly )cosé]f + (myccosy )y — [(mlb +myly )sin Hé]é A
+Byy —[maesinyyly = £, - fsiny

[(m, b+m2I1)cose]y+[I m, + | ]9 l,cm, cos(8 + 7 ) —[(I,em, )sin(6 + » )7 [y > (6)
+B,6 =[m,gb+m,gl, |sin 6 - fjllsln(9+7)

[m,ccosyy+[l,cm, cos(@ + y)|6 + 1,7 + B,y = —m,gcsin y J

The above non-linear dynamical equations are linearized and rearranged. The
linearization is obtained by assuming small values of angular position changes about the
nominal up-right position of the inverted pendulum and the auxiliary pendant pendulum,
hence the following approximations may be used:

0~sing, coso~1, (6f ~0,
y=siny, cosy =1, (7})2 ~0
Equations (6) may be rewritten after linearization in a compact form to obtain;

Mw + CwW+ Kw = F (7)

Where, w and F are the position and forcing vectors respectively, and,;

(m+m +m,) (mb+m,l) myc B, 0 0
M =| (mb+m,l) (l m, +|l) lem, |, C=|/0 B, 0
m,C l,cm, l, 0 0 B,
0 f,
=0 —m,gb—m,gl f.l
g 29 ) il ’ w=[y @ },]T
0 m,gc
F=[f, 0 0]

Here, ( f,) is the unique external force that is acting on the cart.

4. Trajectory control of the system

In practice, it is normally required not only to bring the I.P. to a stable up-right position,
but rather to control the position of the system, so that, it restore it's original position or, it
follows a desired trajectory of some specified function of time. [2,10,11]
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For this purpose a scheme based on model reference error driven control is adopted.
Assuming that a complete description of the desired trajectory and it's first two derivatives are
available, namely the cart desired position, velocity and acceleration (y,, y, and V¥,)
respectively. The dynamics of the reference model is concerned with the translational motion
of the system as we have a tracking problem.

The inherent dynamical effects of the rotational elements on a trajectory tracking were
ignored. This approximation simplifies the system for the purpose of tracking to be of an
equivalent total mass, (Mm :m+ml+m2), which is subjected to a viscous damping,

including drag force, affecting the cart. Thus, the dynamics of the reference model reduces to
the following single degree of freedom system;

Mmym + B:I.Ym = f (8)

It is to be mentioned that the best dynamical data for the model are those available from
the original system, namely, the cart motion variables (y,y and ¥ ), so that, equation (8) can

be rewritten as:
M, y+By=f 9)

A control law is adopted that when it’s combined with motion equations it yields a
closed loop system. This trajectory control law can be stated as: [15,16]

U=y, +K, (s - 9)+K,(ys - y) (10)

To establish a control law for this system, we will consider the tracking control of the
model stated earlier. A control law partitioning technique is used to reduce the system to a
unit mass problem. Further, it is required to decompose the controller into two segments. The
first is model based in which the system model parameters are used to set up a control law,
such that it reduces the system model to appear as if it is a unit mass.

The second segment of the control law is error driven. Error signal are obtained by
differencing desired and actual variables. These error signal are multiplied by a suitable
values of gains. These gains are specified according to the required error signal suppression in
the sense of it's magnitude and duration as will be shown. The model-based portion of the
control law takes the form:

f=aof"+p (11)

Where « and g are functions or constants and are to be chosen so that ( f ") is taken as

a new forcing input. Combination of equations (9) and (11), using this structure of control
law, gives the following system equation:

M. V+By=adf'+p (12)
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Choosing aandp as («=M,) and (S =B,y), results the following unit mass

equation:
y=1 (13)

In the trajectory control system, the error driven portion determines ( f') as function of
position and velocity errors in away similar to that stated in equation (10). Thus;

fr=y, +K,e+K_e (14)

Substituting for equation (13) in (14), an equation of motion written in error space is
obtained as:

€+K,e+Ke=0 (15)

The above error dynamic equation characterizes the amount of error suppression which
can be determined by the choice of (K ;) and (K, ) values. A proper choice of gains (K ;) and

(K, ) should be that by which errors are suppressed in fastest possible manner with little over

shoot. Equation (15) gives the following characteristic equation:
s +K,;s+K, =0 (16)
where (K,=2{@,),and (K, :wnz)_
The relationship between (K ) and (K ;) may be obtained to be:
K,” =4¢°K, 17

Upon specifying the values of (') and (K ),(K,) may be determined. The general
form describing this control scheme is shown in figure (2).

Error Driven Segment Model Based Segment
SR e 1rTT T T T T T T T 1y
Yq - r o = Mm ‘@;X — Ax+ BU I= obtained
+ + B trajectory
+ : y
Ep Ev Bi1

F

Yq

cart position

|
|
|
|
|
|
|
;
ydl + -
i -
|
|
|

|
|
|
|
|
cart velocity I
|
|
|

desired frajectory

Figure (2): Block diagram of the trajectory control scheme.
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5. Simulation of the system dynamics and control

Starting by equation (7), a state space representation of the system can be obtained. Pre-
multiplying by (M ™) and rearranging, the following vector-matrix equation is obtained:

W=-M"CWw-MKw+M F (18)

Equation (18) may be rewritten in the state space form: x = Ax+ Bu. Hence, a set of
partitioned vector-matrix equations are obtained as;

vl T i 1Myl fo 0o 0]

Z 0 ; | 0| |0 0 0]

: i o o ofl”

A EE——— A — R 0 (19)
y : y 0

0 ~MK -M7C 0 M

With reference to equations (6) and (7), it may be noticed that the above open-loop
dynamic system is made asymptotically stable by introducing the jet force parameter ( f;) in

the system dynamics, in the manner explained earlier. The only single condition is that the

term; f) —mgb-m,gl,, has to be positive, giving; fj>w, or (f;)1.57 N) for a
J Il

system with parameters given in table (1). Here, the jet force ( f,) has been taken as (2) N.

Table (1): Basic system parameters

0.5 0.12 0.25 0.06 2 1.66x10™ || 2.88x10™

Using the parameters in table (1), the open loop system and input matrices are obtained
as:
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0 0 0 1 0 0
0 0 0 0 1 0
A |00 0 0 0 1
0 0575 0604 -01709 04279 —0.2907
0 -12.161 -39.87 04814 -9.042 19.186
0 68814 119.011 -0.8721 51.163 —324.6124
] . 0 1
0 0
. 0 0
09 -27 48
~27 565 -319.8
| 48 -319.8 5410.2 |

ISSN 1813-7822

The roots of the open-loop system characteristic reflects the stability condition of the
system, obtained as eigen values (4,) of the open-loop system matrix, (equation 19). Using

the following equation; |i| — A| =0, the eigen values of (A) at (f; =0),and at (f; =2 N) are

evaluated to be: (0, -327.16, -9.137, 3.2, -0.59, -0.143) with one positive real root causing
instability, and (0, -328, -2.58+i1.36, -0.42, -0.19) respectively. Clearly, the latter has non-
positive sign in all real parts indicating a stable condition. The zero eign value refers to the
cart mass being a damped motion rigid body.

5-1. Up-right localization of the inverted pendulum

The system non-linear dynamical, equations (6), developed earlier with parameters
specified in table (1) have been used in establishing Matlab-Simulink simulation block
diagram, so that a large initial angle of the inverted pendulum may be used, reflecting a more
realistic case. The unforced system, ( f, =0), with an initial angle of the inverted pendulum

(6, :%), describing the case of a horizontally positioned I.P., was used to show the

effectiveness of using jet force to reach a stable up-right position of the I.P. Upon performing
the simulation, the system response represented by positions (y, 8, ») and velocities (y, 9,7 )
are shown in figures (3-5).

The I.P., almost, attains the vertical position in about (4 sec.). The following values were
noticed; (#=0.05 rad., y=0.12 m, y=-0.008 rad, €=0.002 rad/sec, y=0.043 m/sec,
y =0.006 rad/sec). It may be noticed that the whole system is settled within 20 seconds.
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Cart positin (m), y

6.3

6.2

6.1

5 10 Ig 20 25 30
Time (sec)

a- Cart translational response

LP. position (rad)

®

P.P. position rad)

-0.2
[

Time (sec)

30

0.045
0.0
0.035
aoasl 1 Lo

0.02 -f--fop - -

Cart velociry mec)

0.015 |

Time (sec)

b- Cart translational velocity.

LP. angular velocity (rad/vec)

a 5 10 15 20 25 30
Time (sec)

Inverted Pendulum angular posion. b- Inverted pendulum angular velocity.

-20
]

Figure (4)

5 10 15 20 25
Time (sec)

30

P.P. angular velocity (rad/sec)

13 20 235 30
Time (sec)

a- Pendant Pendulum angular posion. b- Pendant pendulum angular velocity.

Figure (5)
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5-2. Results of the trajectory control

This section illustrates the behavior of the proposed trajectory control scheme, shown in
figure (2). A Matlab program was written to simulate the control system performance. The
present controller is activated when the inverted pendulum, almost, attains it's up-right
position. A piece wise time function trajectory of three segments each with (10 sec) duration
were taken as the desired trajectory, Y,. This comprises a parabolic, flat and down ramp

shaped functions respectively to reflect an accelerated movement up to (2 m) of cart position,
stand still, and a constant speed return to the initial position. Having specified the desired
trajectory (y,), the control scheme described earlier is simulated in which the cart external

force ( f,) of equation (19) is to be replaced by the tracking force ( f ), which is determined in

equations (11-14) as;

f =By +Mplig +k(Va —¥)+kp(va - y)) (20)

In matrix state-space notation which is required in the simulation, the feed back system
and the input matrices become, respectively, as follow:

[A-BxG], and [B]

where the feed back gain matrix is :

MpKp) 0 0 (MyKy~By) 0 0O
G=| 0 00 0 0 0|,
0 00 0 0 0

Here M K, =252 and M, K, 6 —B, =3.046

The corresponding control input is the following vector:
U=[u 0 0]

Where  u=Mp(Kpyg +KyVg +Vq) (21)

In the error driven segment and using equation (17), the gain (K, )was evaluated to be
(2.56) after selecting (K, =2), and (¢ =0.9). These are chosen for reasonably fast response
with very small over shoot in error signal (e), in addition to a reasonable magnitude of
actuating force, as this force is directly proportional to the values of gains, K, and K,

equation (21). The overall behavior of the system are illustrated in figures (6-8), with initial
values of states as obtained earlier, from the results of the non-linear model of the system after
4 sec. Of particular interest are figures (6) of the I.P. angular position (&) and figures (7-8) of
the cart trajectory control results which illustrates a comparison between the obtained and the
desired trajectories.
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Although, initial values of states were used in the simulation, the inverted pendulum was
brought it's up right position in (1.5 sec). However, transient angular deflection of about (0.1
rad.)(5.8°) in maximum is noticed due to disturbances caused by the sudden change in the
desired trajectory function. Variations of the pendant pendulum position were found to be
very small, figure (9). The cart tracks the desired trajectory very well with a maximum
transient error of about (5.5%).

The error signal, figure (10) shows a transient variation of about (0.11 m) in maximum
around zero. Finally, the total tracking force is shown in figure (11). This is, in fact,
dependent on the selective gains (K ) and (K, ) as well as the cart drag force. The system

closed loop eigen values or poles are obtained to be the following; (-328, -4.13, -1.29
+11.21, -1.43, -0.51). Having obtained the numerical simulation results, the following
remarks may be highlighted:

e The jet force ( f;) has a stiffening effect on the I.P.

e The values of (K ) and (K, ), indirectly, affect the system states other than those of

the cart.

e It seems that the error induced using simplified reference model is embedded within
the major tracking error signal forming a collective error which drives the tracking
controller.

e The present scheme shows some kind of robustness as errors in estimating model mass
(M) will, effectively, be reflected on the assigned values of gains (K ) and (K, )
which are not critical. This may be noticed by an insite look to the structure of the
trajectory control block diagram, figure (2).

e A compromise between the fastness and accuracy of the tracking response with the
magnitude of the tracking forces has to be made in determining the gains values (K )

and (K, ). The higher the gain values, the larger will be the required tracking force.

Figure (6):

I.P. angular

tracking.

86

position during




Journal of Engineering and Development, Vol. 15, No. 3, September (2011)

2.5
E =
=
2
= Tr.5
=
=
=
= T
=
£
=z *5

o
o

ISSN 1813-7822

b T

obrafrned cart prosition

desired cart prositiorn

To

TS

Firre {sec)

2o

25

Fo

Figure (7): Desired and the obtained cart position during tracking.

desired and obiained cart velocity (m'sec)

oG

?
tn

?
A

o3

-0 2

-0 3

I I ————— obtained cart velocity
,,,,,,,,,,,, v __ix___ desired cart velfocin:

H 5 : ;

: 5 A g S —
T [ T T

H ) H H

H H : u :

: F 3 R e e —
H H H 1 H

H H H * H

H H H (] H

H H : b H

T T H S T

i i i i i

&5 TO T5 20 25 30

Tirmre (sec)

Figure (8): Desired and the obtained cart velocity during tracking

Gama {rad)

o 0x

0025

o.03

o025

o.02

o.0FSs

o.0F

o.0s

-0.005

-0.07F
(]

T irrre

(sec)

Figure (9): Pendant pendulum angular position during tracking

Cart Tracking Error (m)

o.05

-5

Tirme (sec)

a0

Figure (10): Variation of cart tracking error.

87



Journal of Engineering and Development, Vol. 15, No. 3, September (2011) 1SSN 1813-7822
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Figure (11): Total tracking force affecting the cart.

6. Conclusion

It is visible to utilize a jet force in stabilizing and vertically erecting an inverted
pendulum cart system. An auxiliary pendulum attached to the inverted pendulum in a pendant
position is needed in directing the stabilizing jet force in an open loop. The jet force plays as a
positive stiffening parameter.

The system performs in a very good manner in tracking a specified trajectory. Despite
the disturbances induced during tracking and the non-zero initial value, the inverted pendulum
was kept stable with small transient oscillation about the vertical. The trajectory controller
which is based on model reference/error driven scheme shows a very acceptable performance.
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