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1-Abstract:

This paper shows a system that has the ability to diagnose bearing fault in
three phase induction motor by using Motor Current Signature Analysis
(MCSA) technique associated with artificial neural network (ANN) algorithm.
Mathematical models for healthy and faulty conditions built to demonstrate theoretically
the behavior of 3-phase induction motor in both cases. The effects of such a fault on motor
currents waveforms at different loads studied experimentally using practical data
acquisition and Fast Fourier Transform (FFT) analysis. The harmonic content for this
fault current, through the loading range, is studied, and fed to neural network algorithm. A
numerical optimization technique using Levenberg-Marquardt algorithm has been done for
ANN training and testing.

This system prepared to be used in industrial applications to diagnose and isolate the faulty
motors immediately at their incipient stage, and to avoid any damage occur for the motors,
or for their supply system.

Key words: Induction motors, diagnosis, data acquisition, fault detection, modeling, and
bearings fault.

4Dl

i didl) o), Jalaall She lgia g diad) ClS jaall A Sbe ) ) pa g paiiidi | o 4ulilil) 4 alhii Cal) /38 add
el o jl e L) L) S| iy g JLil) Aanand el Jladl) o] Lad (3l daley Jioo ) LS
ol ALl St gal) 130 CilSlaa Coad Mg ool Wl Jod gl £Lis 2T S| Gaiaiall g pllall Hiad) & jaad] 210

Matlab /Simulink
LS aal) (o S Y] o g il o | eS| g Siitd (o) LG ILl) LT (o Jill] Lty a7 )
08 Al Ciun (il g Lulel)) Slaual| g Ll il L8] gif) S pal) ldias g 24 gaf Lonl) Ltailly lig Liiads
ALl | ) Al gil) S pal) 5 pina (o3l L paal] o Lalesal) Jaad] g Liglidd 519 Jlanl) £ g7 ) JoLiiis) 48 sl

175



Journal of Engineering and Development, VVol. 16, No.3, Sep. 2012 ISSN 1813- 7822

aded ol Sl diadaia g 3 g dadla ClS ol 4y il Cilia pad s Laliaial) Cila pleal] SUE (o e
4 g 9a 9 Lilds sy di<itl b jliels |_evenberg-Marquardt Algorithm s/dsicds af 4l
pliiu/gdata acquisition system M giwallly arealll o Ll tll 518 o Alarival| Luland) geilill )
O Sy i i da plils Jiai(FFT) Fast Fourier Transform analysis s 4 el Loaelf 4S040
ey e dyglal) S jaall o g CidSl s il e lial] Clipabsl) 6 lgraliiion] (Say Cun 48 gig o)

2- Introduction:

The detection of motor faults at their incipient stage is of prime importance to any industrial
plant. A classification of the major faults in electrical machines can be summarized as:

A- Stator faults resulting in the opening or shorting of one or more stator coils or phase
windings, abnormal connection of the stator winding.
B- Rotor faults as broken rotor bars or cracked end rings, static and/or dynamic air-gap

eccentricities, bent shaft, shorted rotor field winding, bearing and gearbox failures.

These faults produce one or more of the following symptoms:

Unbalanced voltages and line currents, increased torque pulsation, decreased average torque,
increase losses and reduction in efficiency, excessive heating and vibrations.

The methods in induction motor condition monitoring can be described as: Noise monitoring,
Torque monitoring, Flux monitoring, Vibration monitoring and Current monitoring.

Fault diagnosis systems are used as a tool for maintenance and protection of the costly
systems against faults. Rotating machinery faults usually associated with strong harmonics
and sidebands. Therefore, the fault frequencies can be distinguished from the other frequency
contents by identifying the harmonics or sideband components. The existence of these faults
in induction motors can be detected by monitoring any abnormality of the spectrum
amplitudes at certain frequencies in the motor current spectrum. These specific frequencies
are settled around the fundamental stator current frequency and are termed lower and upper
sideband components. Hence the MCSA method can detect these faults at an early stage and
thus avoid secondary damage and complete failure of the motor [1], [2].

Neural technique used for detecting bearing fault in a faulty three phase (2.2 kW, 220/380V,
3000rpm, 8.5 A) squirrel cage induction motor. Neural network algorithm was done using
MATLAB programming language. The neural network fed by the harmonics of the current
signal at different loading cases for the faulty machine. These currents and their harmonics are
measured experimentally for each 0.1 step of the rated load [3].

3-1 The Model of a Healthy Induction Motor:

The steady state equivalent circuit of an induction motor is not suitable in our modeling, thus
dynamic model of induction motor is used. The machine model can be described by
differential equations with time-varying mutual inductances, but such a model tends

176



to be very complex, hence, the axis transformation method is used to transfer the three-
phase stationary variables (as, bs, cs) to two phase stationary frame (d® - @°), and Park’s
transformation, by which the two —phase stationary variables (d* -q° ) are transferred to
synchronously rotating reference frame(d¢ — q® )fixed on the rotor, which means the stator
and rotor variables will rotate in the same speed and become constant .w.r.t. each other, the
time-varying problem will vanished.

The machine dynamic model in state-space form is very important for computer simulation
studies. The electrical variables in the model can be chosen as flux, current, or mixture of
both. The induction motor dynamic model convert the input voltage to output current and psi (
v ) as is shown in figure (1). The simulation results are presented from the model
implemented in the Simulink-Matlab. [4, 5 and 6]
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Figure (1) sub-system of the dynamic model of the induction motor

3-2 The Model of a Faulty Bearing

Induction Motor:

The bearing faults are mainly four types as shown in equations (1) below [7, 8]. The ball
defect is the only type of these four types is considered in this research.
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fo = (N/DfIL = bacos (8)/ D]
fo = W/2)f[1+ bgcos (B)/b,]

For an outer bearing race defect

For an inner bearing race defect

1)

fo = byf /ba [1 4 {bacos (ﬁ)/bp}z] For ball defect (used in our paper)

For a train defect

- b, cos ((;3)) J

H (b

fe=(frr2)

Where fr is the rotational frequency , N is the number of balls, by and Do are the ball

diameter and ball pitch diameter respectively, and B is the contact angle of the ball (with the

races).
In order to simulate this fault theoretically the harmonics calculated due to this equation fed to

the currents of the three phases of the healthy motor. The simulation results will be as shown
in figure (2)

Phase cument (A)

Time (sec)

Figure (2) Close zooms of current in phase “a” for bearing fault at no load

4- Experimental set up:

The experimental detection system setup is shown in Figure (3). Tests were conducted on two
(2.2 kW, 220/380V, 3000 rpm, 8.5 A) motors. One motor was considered as a healthy case
and its current waveforms were used as reference base lines to the faulty case. The other
tested motor representing the bearing faulty motor case.
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Figure (3) Experimental Diagram Set Up

The data acquisition system has been designed and implemented to measure motor data using
software program to control and save the motor data samples at the hard disk drive of the
personal computer for later processing which include (store the data, generate the other
loading cases data using interpolation algorithm, convert data to line current with time at
different loading conditions, and generate the FFT and the Power Spectral Density (PSD).
The main steps of the data acquisition system are seen in figure (4).

179



Journal of Engineering and Development, VVol. 16, No.3, Sep. 2012 ISSN 1813- 7822

Signal Conditioning

A
4 \

Analog Multiplexer
Controlled by LPT to
Choose the Suitable Channel

Sample &hold to hold
sample of the Analog
Signal

IC2 I

Analog to Digital
Converter

A

IC3 I
\ 8-bit Latch Circuit to save the
Output Digital Number
IC4 I

‘ 3-state octal buffer circuit \

Outto LPT

Figure (4) Block diagram of the main sections of the data acquisition system

4-1 Experimental Test Results of a Healthy Motor :

The measured current and speed for the three tests (no-load, half load and full load at (0, 3, 7)
Nm respectively) shown in table (1), and their corresponding waveforms and spectrums are
shown in Figures (5, 6, 7). Interpolation technique used to determine the waveforms for the
(0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9) of the rated load cases in order to furnish the total data
needed for the Neural Network (NN) to be trained for each case in order to increase its ability
of diagnostics as will be shown for all the studied cases.
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Table (1)

loading = Speed (rpm)

Current (A)

No load 2900

3.6

Half load 2870

5

Full load 2730

8.5

Healthy motar at no load(@licurrent fault signal(b)Fourier analysis
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Figure (5) healthy motor at no load (a) current signal (b) Current Spectrum

Healthy rmotor at half load(a)lcurrent fault signaliblFourier analysis
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Figure (6) healthy motor at half load (a) current signal (b) current spectrum

Figure (7) healthy motor at full load (a) current signal (b) current spectrum
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4-2 Experimental Test Results of a Faulty Bearings Motor:

Now for motor with faulty bearing type (SKF 6205) with the parameters:

Ny (Number of balls)=9, bg (ball diameter) =10mm, bP (pitch diameter) =46mm, [} (contact
angle of the balls with races) =0 and by using

Equation (1) for ball defect fault the test results of this faulty motor which are taken from data
acquisition system are shown in figure (8) below.
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Figure (8) bearing fault at no load (a) Current fault signal (b) Fourier analysis

(c) Side bands at no load (d) Side bands at half load (e) Side bands at full load
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The above

spectrums show the existence of a harmonic components located around the fundamental line
frequency. These components are used to be called as lower sidebands (negative) and upper
sidebands (positive) components [9]. It is clear that their distance apart from the fundamental
component in the spectrum increasing with load. Also the magnitude of these sidebands
increases as load increase. Figure (9) represents these sidebands clearly in general.

Spectrum p
Amplitude
A

¢ Lower sideband 3 ¢ Upper sideband 3
components components

A A

- -

(45, (125, f, (1425, (1+4s), Fredtency

(Hz)

Figure (9) sideband components around the fundamental frequency

By using the above procedure the sidebands frequencies and their corresponding amplitudes
can be measured practically and plotted as a function of load torque for the faulty bearing
motor case. Figures (10 to 15) show these results.
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Figure (10) Changing the Frequencies of the positive harmonic with load for
bearing fault with 3 5t 7th 9t harmonic
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3rd 5th 7th 9th negative harmonic side band frequencies with load for bearing fault
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Figure (11) Changing the Frequencies of the negative harmonic with load for
bearing fault with 3" 5th 7th gth harmonic

3rd 5th 7th 9th positive harmaonic side bands amplitude with load for bearing fault
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Figure (12) Changing the amplitudes with Frequency of the posative harmonic
with (no, half and full) load for bearing fault
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Figure (13) Changing the amplitudes with Frequency of the negative harmonic
with (no, half and full) load for bearing fault
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bearing fault at {no half and fullj)load with negative harmonic

Amplitute (Arnp.)

T
—-—- no load
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Figure (14) Changing the Amplitude of the posative harmonic with load for
bearing fault with 3rd 5t 7th 9th harmonic

Practical results for bearing failure from Spectrum Analyzer Show the existents of frequency

harmonic see figures (16-17).
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Figure (15) Changing the Amplitude of the negative harmonic with load for
bearing fault with 3 5th 7th gth harmonic

SPAN 80 Hz RANGE: -15 dBVY STATUS: PAUSED B-188kHz
AIMAG -
-15 = B «
- : %-‘ : R DEFI
e PP YR T | | e e e T NE
: g START
DEFINE
........................................................... CENTER
. S RS T || SR | srennt e | | DR R e BN R e DEFINE
dB
/DIV
........................ e
TIME LEN
_____ f | FR@ AXIS
.................................... LIN LOG

BU: 763.88

=935 <
CENTER: 58 Hz :
%: S0 Hz Y:-23.56 dBV

SPAN: 88 Hz

mHz

Figure (16) Bearing fault at no load, center=50, span=80
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Figure (17) Bearing fault at full load, center=50, span=80

5- Neural Network Design and Operation:

There are two primary methods of implementing a neural network system. One is in dedicated
hardware, and the other is to simulate the network on a digital computer. Because of the
obvious cost and flexibility concerns, the latter is the most common method.

MATLAB and the Neural Network Toolbox provide the capability to design many different
types of neural network systems for a variety of applications. [10]

The Levenberg-Marquardt algorithms are found to be the most efficient and reliable means to
be used for this study with some of the relevant commands for neural network basics called
(trainlm), the advantages of the trainlm are:

=Obtaining lower mean square errors than any of the other algorithms tested.

= The storage requirements of trainlm are larger than the other algorithms.

The faults frequency signature is extracted as inputs of neural network. Through
supervised training with inputs and outputs, the learned neural networks can detect
faults. The algorithm of monitoring and diagnostic system is shown in figure (18)
below.
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Figure (18) Algorithm of monitoring and diagnostic process
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Conclusions:

This research represents a practical qualitative determination of the most effective
harmonics (lower and upper sidebands) of four effective harmonics (3", 5%, 7™ and
o) for this type of faults. It determines their variations in amplitude and frequency
as a function of motor load torque. The achieved results agree with that of the
analytical equations found in the literature about this subject. Studying the behavior
of these harmonic components as a function of load in this research asses our
opinion about the ability of the (MCSA) technique in fault diagnosis, in that, it
increases the ability of distinguishing the type of the fault accurately.
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