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Abstract 
 

 
 

Fuzzy Logic controller (FLC) contains three operations; the fuzzification of the inputs, the 

knowledge base (data base and rule base), and the defuzzification of the output. In this 

paper our fuzzy controller contains two inputs and one output each have five membership 

functions. This fuzzy controller will pass through two operations; the first is to tune the 

input/output scaling factor (SF) and the second operation is to tune the membership 

function parameters. This tuning is done by the use of Genetic Algorithm (GA). The tuned 

fuzzy controller then will be reduced to a look-up table by taking the whole fuzzy 

probabilities. The output for the tuned fuzzy controller will be obtained using center of 

gravity method. To apply this tuned circuit we must translate the resulted table to digital 

binary values using a special encoder then to a set of boolean functions. Finally FPGA 

technology will be used to describe the resulted boolean functions by the use of the FPGA 

programming language (VHDL) hardware description language. The output will then pass 

through the decoder to get the suitable control action.  

The most important advantage of our method is to describe the FLC using digital 

numbering system applied to FPGA technology to achieve high processing speed for the 

fuzzified output per second and also the speed of this controller is independent of the 

number of fuzzy rules.   

Key words: Fuzzy Logic Controller (FLC), Genetic Algorithm (GA), FPGA and VHDL. 

 

 الخلاصة

 

للمىخلالاتِ  ااعىخا المفرَىة  )ااعىخا بيا ىات  fuzzification( على  لاىلاع عمليىات   FLCحتوي مسيطرات المنطقِ الضبابيِ )ت  

للنتائج. َي هذا البحث جهازِ سىيطرتنا الضىبابيِ ح حتىوي على  مىخلالين ومخىر  وا ىخ  defuzzificationوااعخا القوا ين(  و

ىىمُ لامىى  ضواة عضىىوحة.  مفامىى  القيىىام للمىىخالا   هىىي توليىى  سىىيطرا الضىىبابيِ لاىىلاة عمليتىىا   ا ولىى سىىيمر جهىىازِ الكُىى ل ل 

. سىيت  هىذا الوليى  بِسىتفماةِ الخوارزميىةِ الورالايىةِ ) . (GAوالمخار  والفملية  الثا ية  هي توليى  مفىاملات الىخواة الفضىوحة 

المخىر  لههىازِ السىيطرا الضىبابيِ  تِ الضىبابيةِ.جهاز السيطرا الضبابي المُن غَّ  سيقلص ال  جخوة منطقيِ بأ لْاذ كاَة الإ تمىاا

ِ  س ي ستحص  باستخخام  ظرحىة مركىا الثقى . ْ  ُ تىرج   الهىخوة الن ىاتجِ ملى  اىِي ِ  لانائيىةِ  المُن غَّ مىةِ ح هِىنُ ن  لت طبيىق هىذا الىخائراِ المُن غَّ
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س ت سىتفم ُ  ( FPGA) نلايىرا  َىأ  تقنيىة .راميةِ )باستفماة محوة تناظري/رامي لااص( لا ل مل  مهموعة من الىخواة المنطقيىةِ 

النىاتج بفىخ  التوصىي  المىاضي. ( لغىةVHDL اسوبيِة لااصىة بهىذا التقنيىة مثى  )لغة بِستفماةِ بناء الخواة المنطقية الناتهة ل

 ذلك س ي مر لالاة محوة رامي/تناظري للحُصُوة عل  الخر  المناسن.

عمليىىة وصىى  المسىىيطر الضىىبابي باسىىتخخام النظىىام الرامىىي مطبفىىا  عىى  تفنيىىة  ن ل الفائىىخا  المهمىىة جىىخا  َىىي  رحقتنِىىا هىىذا هىىي

(FPGA)  ا ية والفائىخا الثا يىة هىي ن  سىرعةِ هىذا المسىيطر سىت و   يىر  للخر  الحصوة عل  سرعة مفالهة عاليةِ هي بالثل

 مفتمخا عل  عخضِ القوا ين المستخخمة َي المسيطر الضبابي. 

 

1. Introduction   

  

      In general fuzzy condition may be classified into two types according to fuzzy controller 

input. For the first type, the fuzzy controller is based on the traditional control theory; e. g. 

fuzzy controller. Regarding the second type, the controller is constructed with assistance of 

some useful approaches, such as fuzzy neural network and genetic algorithm, etc. 

In this paper, the fuzzy-genetic controller is used as the working method. This method 

requires a mathematical model for tuning the scaling factor (SF) for the fuzzy inputs and 

output with fixing the fuzzy membership functions parameters. The second step is to tune the 

membership functions parameters with fixing the scaling factors of this controller. The used 

method for tuning is the genetic algorithm method (GA). This controller has two inputs (error 

(e) and rate of change of this error (ce)) and single output (control action (ca)). The fuzzy 

controller will be applied to the plat by a closed loop control system (shown in Fig.(1)) to get 

a tested parameters for the two inputs scaling factor (SF1, SF2) and the single output scaling 

factor (SF3). The inputs are then fuzzified, rule is applied and the fuzzy input is defuzzified to 

get a suitable response with fixing the membership functions parameters. IS1, IS2, and IS3 

will be the chromosomes for the genetic algorithm (GA) and the fitness function is the error 

between the desired and the obtained response (see Fig.(2)). After getting the suitable scaling 

factors we must now tune the membership functions parameters with fixing the scaling 

factors. Genetic algorithm now will be used another time to get the suitable base parameters 

for these functions. These parameters will be the chromosomes for the genetic algorithm. 

Note that the x-axis parameters that limits the base for each membership function we called it 

the base parameters. 
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When the tuning was finished, now we can write a table that contains the base parameters for 

the error (e) and rate of change of this error (ce). The FLC will be implemented now 

according to these specifications to get the suitable control action according to Center of 

Gravity method. We will repeat the same operation for the whole possibilities to cover the 

whole area and to get a general fuzzy logic controller.    

Now we will implement the resulted table by using one of hardware methods. Hardware 

implementation of the controller can be achieved in a number of ways. The most popular 

method of implementing fuzzy controller is using a general-purpose microprocessor or 

microcontroller. General, 8-bit microcontrollers are more economical and flexible, but often 

face difficulties is dealing with control systems that require high processing and input/output 

handling speeds. As an option, the controller can be implemented on an FPGA, which is 

suitable for fast implementation and quick hardware verification. FPGA based systems are 
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Fig.(1): Structure of fuzzy logic controller with unity feedback control system. 
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Fig. (2) GA applied to FLC to get optimum scaling factors (SFs) 
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flexible and can be reprogrammed unlimited number of times. Fig.(3) shows the block 

diagram for our FPGA genetically tuned fuzzy controller system. A special Encoder is used to 

convert the analog input to digital one depending on the (e) and (ce) base parameters that can 

the FPGA process it. The Decoder then will give the crisp output depending on the obtained 

control action by the use of center of gravity method.  

    

 

 

 

 

 

 

 

 

 

For designing the fuzzy rules and simulating the rules, Matlab ® Ver. 7.4.0.287 (R2007a) was 

used. Rules were written using its fuzzy tools are shown in Table (1). The two inputs (e, ce) 

and single output (ca) membership functions used in the controller are shown in Fig. (4).  
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Table-1: Rule base for fuzzy inference system 

Fig.(3): block diagram for FPGA of genetically tuned fuzzy controller system 
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2. Fuzzy_Genetic controllers  

 

      The last decade has seen a large interest in technologies that have as their motivation 

some aspect of human function. Some of these, like artificial intelligence, can be seen to be 

rooted in the psychological domain. Others, like neural networks, genetic algorithms, and 

evolutionary programming, are inspired by reconsiderations of biological processes. Common 

to all these so-called “intelligent technologies” is a need to represent knowledge in a manner 

that is both faithful to the human style of processing information as well as a form amenable 

to computer manipulation. 

Genetic Algorithms (GAs) are stochastic search techniques that can perform optimization 

without relying on gradient information or becoming trapped in local minima [1]. The trade-off 

in using GAs for optimization is that their robust global search, which can also be applied to 

discrete landscapes, cannot guarantee an optimal solution, but only regions of good solutions. 

Soft Computing (SC) is an approach to computing which parallels the ability of the human 

mind to reason and learn in an environment of uncertainty and imprecision. SC combines 

 

Fig. (4): Initial membership functions of controller inputs (e, ce) and output   (ca) 
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knowledge, techniques, and methodologies from Fuzzy Logic, Neural Networks, Probabilistic 

Reasoning, and Evolutionary Algorithms to create intelligent systems [2].  

 

The use of GAs in Fuzzy Logic systems goes back to the early 90’s, when researchers began to 

use attributes with fuzzy values and a fuzzy pattern matcher for case retrieval [3][4]. In fact, FL 

techniques have proven to be very useful in addressing many other problems. For example, FL 

can be used in case representation to provide a characterization of imprecise and uncertain 

information. It can also be used for case adaptation through the concept of gradual rules [4]. The 

task of global minimization of numerical functions has paramount importance in several areas of 

Knowledge. It appears in fields like Engineering, Finance, Management, Medicine, etc. 

Our goal was to combine Fuzzy system and GA techniques into a generic, Self-Optimizing 

Fuzzy capable of handling a wide variety of problems in which an existing case base would be 

used to build solutions to new cases. 
 

Problems start to rise when the given function presents several local minima, each one having its 

own attraction basin, making, typically, the final result to depend on the starting point. 

Unfortunately, most real problems originate very complex objective functions that are nonlinear, 

discontinuous, multi-modal, high dimensional, etc. To solve such a class of problems, stochastic 

methods seem to be a good (sometimes, the only) way to go. Genetic algorithms and simulated 

annealing are among the most popular approaches to stochastic global optimization. The problem 

in that case is related to speed of convergence and, in the genetic approach, warranty of the 

ability to reach a global optimum, under general conditions. Pure annealing methods, by the 

other side, have results assuring its convergence to a global minimum with probability 1, but the 

performance presented by most implementations is not very encouraging [5]. 

 

4. Field Programmable Gate Array (FPGA) technique and its computer 

programming languages 

 

      When they first arrived on the scene in the mid-1980s, FPGAs were largely used to 

implement glue logic, medium-complexity state machines, and relatively limited data processing 

tasks. During the early 1990s, as the size and sophistication of FPGAs started to increase, their 

big markets at that time were in the telecommunications and networking arenas, both of which 

involved processing large blocks of data and pushing that data around. Later, toward the end of 

the 1990s, the use of FPGAs in consumer, automotive, and industrial applications underwent a 

humongous growth spurt. 

FPGAs are often used to prototype Application-Specific Integrated Circuits (ASICs) designs or 

to provide a hardware platform on which to verify the physical implementation of new 

algorithms. However, their low development cost and short time-to-market mean that they are 

increasingly finding their way into final products (some of the major FPGA vendors actually 

have devices they specifically market as competing directly against ASICs). 
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High-performance FPGAs containing millions of gates are currently available. Some of these 

devices feature embedded microprocessor cores, highspeed input/output (I/O) devices, and the 

like. The result is that today’s FPGAs can be used to implement just about anything, including 

communications devices and software-defined radio; radar, image, and other digital signal 

processing (DSP) applications; and all the way up to System-on-Chip (SoC) components that 

contain both hardware and software elements [6][7]. 

With the maturity and availability of hardware description language (HDL) and synthesis 

software, using them to design custom digital hardware has become a mainstream practice. 

Because of the resemblance of an HDL code to a traditional program (such as a C program), 

some users believe incorrectly that designing hardware in HDL involves simply writing 

syntactically correct software code, and assume that the synthesis software can automatically 

derive the physical hardware. Unfortunately, synthesis software can only perform 

transformation and local optimization, and cannot convert a poor description into an efficient 

implementation. Without an understanding of the hardware architecture, the HDL code 

frequently leads to unnecessarily complex hardware, or may not even be synthesizable. 

This work uses the VHDL hardware description language. VHDL code is simply one of the 

methods to describe a hardware design. The same design can also be described by a schematic 

or code in other HDLs. VHDL and synthesis software will not lead automatically to a better 

or worse design. However, they can shield designers from low-level details and allow them to 

explore and research better architectures. 

The emphasis of the work is on hardware rather than language. Instead of treating synthesis 

software as a mysterious black box and listing “recipe-like” codes, we explain the relationship 

between the VHDL constructs and the underlying hardware structure and illustrate how to 

explore the design space and develop codes that can be synthesized into efficient cell-level 

implementation. The discussion is independent of technology and can be applied to both 

ASIC and FPGA devices. The VHDL codes listed in this work largely follow the IEEE 

1076.6 RTL synthesis standard and can be accepted by most synthesis software. Most codes 

can be synthesized without modification by the free “demo-version’’ synthesis software 

provided by FPGA vendors. For more information about this language see [8]. 

 

5. Fuzzy controller design using FPGA technique 

 

        There are several types of control systems that use FLC as an essential system 

component. The majority of applications during the past two decades belong to the class of 

fuzzy controllers. These fuzzy controllers can be further classified into three types: the direct 

action (DA) type, the gain scheduling (GS) type and a combination of DA and GS types. The 

majority of fuzzy applications belong to the DA type; here the fuzzy controller is placed 

within the feedback control loop, and computes the actions through fuzzy inference. In GS 

type controllers, fuzzy inference is used to compute the individual gains [9][10][11]. The simplest 

and most usual way to implement a fuzzy controller is to realize it as a computer program on 
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a general purpose computer. However, a large number of fuzzy control applications require a 

real-time operation to interface high-speed Constraints.  
 

Software implementation of fuzzy logic on general purpose computers can not be considered as a 

suitable design solution for this type of application, in such cases, design specifications can be 

matched by specialized fuzzy processors. Higher density programmable logic devices such as 

FPGA can be used to integrate large amounts of logic in a single IC [12][13]. Semi-custom and full-

custom application specific integrated circuit (ASIC) devices are also used for this purpose but 

FPGA provide additional flexibility: they can be used with tighter time-to-market schedules. The 

Field-Programmable Gate Array (FPGA) places fixed logic cell son the wafer, and the FPGA 

designer constructs more complex functions from these cells. The term field programmable 

highlights the customizing of the IC by the user, rather than by the foundry manufacturing the 

FPGA [14][15][16]. 

 

A large numbers of fuzzy control applications with the physical systems require a real-time 

operation to interface high speed constraints; higher density programmable logic devices such as 

field programmable gate array (FPGA) can be used to integrate large amounts of logic in a single 

IC. This paper reviews the state of the art of FPGA with the focus on FPGA-based fuzzy logic 

controller. The paper starts with an overview of FPGA in order to get an idea about FPGA 

architecture, and followed by an explanation on the hardware implementation with both type 

analogue and digital implementation, a comparison between fuzzy and conventional controller 

also provided in this paper. A survey on fuzzy logic controller structure is highlighted in this 

article with the focus on FPGA-based design of fuzzy logic controller with different applications. 

Finally, we provided the simulation and experimental results form the literature and concluded 

the main differences between software-based systems with respect to FPGA-based systems, and 

the main features for FPGA technology and its real-time applications [17]. 

 

6. Our new genetically tuned Fuzzy-FPGA controller 
 

      

We start our approach using the genetic search by finding the scaling factors (SF1, SF2 and SF3) 

then we use it another time to find the fuzzy membership base parameters for inputs and output 

that gives minimum performance index. A suitable performance index is the Integral of the 

Square of the Error, ISE, which is defined as : 

 

                                                      

T

dtteISE

0

2
)(                                                       ……(1) 

Where the upper limit T is a finite time chosen somewhat arbitrarily so that the integral 

approaches a steady– state value. It is usually convenient to choose T as the setting time, Ts.  

The fitness value for the j-th chromosome is inversely proportional to the ISE,: 
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ISE

fitness
1

                                                      …… (2) 

 

After applying the genetic algorithms operations (encoding, mutation, selection, and 

crossover) the survived chromosome will have the optimized fitness that gives a minimum 

ISE (or optimal solution). The obtained regions from the survived chromosomes then will be 

encoded to five bits (A, B, C, D, E) according to all possibilities. 
 

The FPGA then will receive a digital signal of five bits and outputs another four bits (fo, f1, f2, 

f3) represents the equivalent output membership function after processing using center of 

gravity method. Before we use the output bits (fo to f3) we can reduce them using karnof-map 

to get a suitable Boolean functions (F, G, H, L) as shown: 
 

fo = F(A,B,C,D,E) 

f1 = G(A,B,C,D,E)  

f2 = H(A,B,C,D,E)  

f3 = L(A,B,C,D,E)  
 

The Boolean functions (F, G, H, and L) will be implemented using the VHDL computer 

language. The Integrated Software Environment (ISE™) is the Xilinx® design software suite 

that allows us to take our design from design entry through Xilinx device programming. To 

use this FPGA device we must have the following hardware: Spartan-3 Startup Kit, 

containing the Spartan-3 Startup Kit Demo Board. This board will interfaced with our PC to 

translate the VHDL program to the Xilinx FPGA device which then will represent the 

genetically tuned fuzzy logic controller. 

The special Encoder then will convert the four bit output bits to single analog signal represent 

the control action that leads the controlled plant as shown in Fig.(5). Note that the black 

triangle represents a suitable scale multiplied by the signal entering it. 

 

Fig.(5): Signal representation in the FPGA genetically tuned fuzzy controller system 
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7. Simulated Example 

 
 

In this section we will implement an FPGA fuzzy controller tuned by the genetic algorithm that 

controls a plant having the transfer function: 

  

                                                
)1(

1
)(




ss
sG

                                                                   …… (3) 

 

We desire to obtain an optimum controller that have a step response shown in Fig,(6) with 

settling time (Ts) of (0.6) and a percentage overshoot (PO.) of (32%). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Integral of the Square Error (ISE) between the original step response and the obtained 

one, dedicated previously in equ.(1), is selected to be minimized by the use of GA in order to 

obtain optimum scaling factors (SF1, SF2, SF3) with fixing the membership base parameters. 

The specifications that were used in GA tuning are: 

Number of generation =500. 

Population size =50. 

Chromosome length =3 (for SF1, SF2, SF3) 

Crossover probability =0.95 (Simple crossover). 

Mutation probability =0.01 (Uniform mutation). 

After completing the following scaling factors are obtained that gives minimum ISE =1.9362. 
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Fig. (6): The original step response 
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SF1 = 1.0043 

SF2 = 1.019 

SF3 = -9.7989 

Now we will use the GA again to obtain the membership base parameters with fixed scaling 

factors. The specifications that were used in GA tuning are: 

Number of generation =500. 

Population size =200. 

Chromosome length =35 (for e, ce, ca membership base parameters) 

Crossover probability =0.95 (Simple crossover). 

Mutation probability =0.01 (Uniform mutation). 

The obtained membership functions according to GA optimization method for the two inputs 

(error (e) and change of error (ce)) and the single output (control action (ca)) are shown in 

Fig.(7) that gives a minimum ISE of 1.9362. Fig.(8) shows the training steps curve between 

the fitness and generations during the GA operations and Fig. (9) shows the ISE curve against 

the GA generations. Fig.(10) shows the step response that we obtained it according to GA 

operations. 

Fig. (7): Optimized membership functions using scales: e=1.0043, ce=1.019, 
ca=-9.7989 
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Fig. (8): A curve between fitness and generations during the GA operation 

 

Fig. (9): A curve between ISE and generations during the GA operation 
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Now we must divide the resultant membership functions to a region then take all the possible 

choices between (e) and (ce). Table-2 shows the way that we use it to select each region in (e) 

and applied it in each region in (ce) (divided by SF1 and SF2 respectively) to cover the whole 

probabilities. Then we will apply these values to our fuzzy logic controller to get the suitable 

crisp output shown in the third column of the same table after multiply it with SF3.  

The encode operation now is begin; as shown in Table-2 there are five regions divided to 25 

probability (or rows). Each row will be encoded to binary representation contain five digits 

(A, B, C, D, E) shown in Table-3. The output also will be encoded to four digits (fo, f1, f2, f3) 

after approximation. 
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Fig. (10): The GA response 
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Table-3 shows the lookup table for the encoded input/output memberships after converting it 

to five and four bits respectively. By the use of karnaugh-map we can reduce the output to 

form the following logic functions: 

 

EDBADCBADECDABDEBf

EDCEDBCEDCBCDBAEDBEDBAECBf

DBCEBDADCABEEDCBAf

AEADABEBCEDBBCDf









3

2

1

0

              …… (4) 

 

 

 

Table-2: A lookup table for the (e), (ce) and the crisp value of (ca) 
 

error (e) / SF1 
change of error (ce) 

/ SF2 
crisp value (ca) / -1 Approx. 

Digital 
Conversion 

-1 to -0.6           -1 to -0.6 0.694    * 9.7989 =   6.8 7 0111 

-1 to -0.6        -0.6 to -0.2 0.707    * 9.7989 =   6.9 7 0111 

-1 to -0.6        -0.2 to 0.2 0.583    * 9.7989 =   5.7 6 0110 

-1 to -0.6         0.2 to 0.6 0.374    * 9.7989 =   3.6 4 0100 

-1 to -0.6         0.6 to 1 0.0427  * 9.7989 =  0.4 0 0000 

  -0.6 to -0.2            -1 to -0.6 0.694    * 9.7989 =   6.8 7 0111 

  -0.6 to -0.2         -0.6 to -0.2 0.672    * 9.7989 =  6.58 7 0111 

  -0.6 to -0.2         -0.2 to 0.2 0.261    * 9.7989 =   2.5 3 0011 

  -0.6 to -0.2          0.2 to 0.6 0.0467  * 9.7989 =  0.45 1 0001 

  -0.6 to -0.2          0.6 to 1 -0.361   * 9.7989 = -3.53 -4 1100 

  -0.2 to 0.2            -1 to -0.6 0.683    * 9.7989 =   6.7 7 0111 

  -0.2 to 0.2         -0.6 to -0.2 0.536    * 9.7989 =  5.25 5 0101 

  -0.2 to 0.2         -0.2 to 0.2 -0.0528 * 9.7989 =  -0.5 -1 1111 

  -0.2 to 0.2          0.2 to 0.6 -0.389   * 9.7989 =  -3.8 -4 1100 

  -0.2 to 0.2          0.6 to 1 -0.711   * 9.7989 =   -6.9 -7 1001 

   0.2 to 0.6            -1 to -0.6  0.48     * 9.7989 =   4.7 5 0101 

   0.2 to 0.6         -0.6 to -0.2 0.285    * 9.7989 =   2.8 3 0011 

   0.2 to 0.6         -0.2 to 0.2 -0.318   * 9.7989 = -3.11 -3 1101 

   0.2 to 0.6          0.2 to 0.6 -0.625   * 9.7989 =  -6.1 -6 1010 

   0.2 to 0.6          0.6 to 1 -0.711   * 9.7989 =  -6.9 -7 1001 

   0.6 to 1            -1 to -0.6 0.0301  * 9.7989 =  -0.3 0 0000 

   0.6 to 1         -0.6 to -0.2 -0.177   * 9.7989 = -1.73 -2 1110 

   0.6 to 1         -0.2 to 0.2 -0.655   * 9.7989 =  -6.4 -6 1010 

   0.6 to 1          0.2 to 0.6 -0.719   * 9.7989 = -7.04 -7 1001 

   0.6 to 1          0.6 to 1 -0.711   * 9.7989 =  -6.9 -7 1001 
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The final step is to program the Xilinx FPGA instrument depending on the combinational logic 

functions obtained earlier in Equ.(4) using the VHDL programming language that concerning the 

board (Spartan-3 Startup Kit Demo Board) interfaced with Pentium-4 PC of speed 3.02 GHz and 

RAM 2.0 GB 

 

8. Advantages of this approach 

 
 

1. Fewer values, rules, and decisions are required. 

2. More observed variables can be evaluated. 

3. Linguistic, not numerical, variables are used, making it similar to the way humans think.  

A B C D E   fo f1 f2 f3 

0 0 0 0 0   0 1 1 1 

0 0 0 0 1   0 1 1 1 

0 0 0 1 0   0 1 1 0 

0 0 0 1 1   0 1 0 0 

0 0 1 0 0   0 0 0 0 

0 0 1 0 1   0 1 1 1 

0 0 1 1 0   0 1 1 1 

0 0 1 1 1   0 0 1 1 

0 1 0 0 0   0 0 0 1 

0 1 0 0 1   1 1 0 0 

0 1 0 1 0   0 1 1 1 

0 1 0 1 1   0 1 0 1 

0 1 1 0 0   1 1 1 1 

0 1 1 0 1   1 1 0 0 

0 1 1 1 0   1 0 0 1 

0 1 1 1 1   0 1 0 1 

1 0 0 0 0   0 0 1 1 

1 0 0 0 1   1 1 0 1 

1 0 0 1 0   1 0 1 0 

1 0 0 1 1   1 0 0 1 

1 0 1 0 0   0 0 0 0 

1 0 1 0 1   1 1 1 0 

1 0 1 1 0   1 0 1 0 

1 0 1 1 1   1 0 0 1 

1 1 0 0 0   1 0 0 1 
 

Table-3: A lookup table for the encoded input/output memberships 
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4. It relates output to input, without having to understand all the variables, permitting the 

design of a system that may be more accurate and stable than one with a conventional 

control system. 

5. Rapid prototyping is possible because a system designer doesn’t have to know everything 

about the system before starting work. 

6. They’re cheaper to make than conventional systems because they’re easier to design. 

7. They have increased robustness. 

8. They simplify knowledge acquisition and representation. 

9. A few rules encompass great complexity. 
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