
Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 241

FPGA-Based Implementation of Genetically Tuned Fuzzy

Logic Controller (GA-FLC)

Asst. Lect. Emad A. Hussein Asst. Lect. Ammar G. Samir

Electrical Engineering Department Electrical Engineering Department

Al-Mustansiriya University Al-Mustansiriya University

Iraq-Baghdad Iraq-Baghdad

Abstract

Fuzzy Logic controller (FLC) contains three operations; the fuzzification of the inputs, the

knowledge base (data base and rule base), and the defuzzification of the output. In this

paper our fuzzy controller contains two inputs and one output each have five membership

functions. This fuzzy controller will pass through two operations; the first is to tune the

input/output scaling factor (SF) and the second operation is to tune the membership

function parameters. This tuning is done by the use of Genetic Algorithm (GA). The tuned

fuzzy controller then will be reduced to a look-up table by taking the whole fuzzy

probabilities. The output for the tuned fuzzy controller will be obtained using center of

gravity method. To apply this tuned circuit we must translate the resulted table to digital

binary values using a special encoder then to a set of boolean functions. Finally FPGA

technology will be used to describe the resulted boolean functions by the use of the FPGA

programming language (VHDL) hardware description language. The output will then pass

through the decoder to get the suitable control action.

The most important advantage of our method is to describe the FLC using digital

numbering system applied to FPGA technology to achieve high processing speed for the

fuzzified output per second and also the speed of this controller is independent of the

number of fuzzy rules.

Key words: Fuzzy Logic Controller (FLC), Genetic Algorithm (GA), FPGA and VHDL.

 الخلاصة

للمىخلالاتِ ااعىخا المفرَىة)ااعىخا بيا ىات fuzzification(على لاىلاع عمليىات FLCحتوي مسيطرات المنطقِ الضبابيِ)ت

للنتائج. َي هذا البحث جهازِ سىيطرتنا الضىبابيِ ح حتىوي على مىخلالين ومخىر وا ىخ defuzzificationوااعخا القوا ين(و

ىىمُ لامىى ضواة عضىىوحة. مفامىى القيىىام للمىىخالا هىىي توليىى سىىيطرا الضىىبابيِ لاىىلاة عمليتىىا ا ولىى سىىيمر جهىىازِ الكُىى ل ل

. سىيت هىذا الوليى بِسىتفماةِ الخوارزميىةِ الورالايىةِ) . (GAوالمخار والفملية الثا ية هي توليى مفىاملات الىخواة الفضىوحة

المخىر لههىازِ السىيطرا الضىبابيِ تِ الضىبابيةِ.جهاز السيطرا الضبابي المُن غَّ سيقلص ال جخوة منطقيِ بأ لْاذ كاَة الإ تمىاا

ِ س ي ستحص باستخخام ظرحىة مركىا الثقى . ْ ُ تىرج الهىخوة الن ىاتجِ ملى اىِي ِ لانائيىةِ المُن غَّ مىةِ ح هِىنُ ن لت طبيىق هىذا الىخائراِ المُن غَّ

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 242

س ت سىتفم ُ (FPGA) نلايىرا َىأ تقنيىة .راميةِ)باستفماة محوة تناظري/رامي لااص(لا ل مل مهموعة من الىخواة المنطقيىةِ

النىاتج بفىخ التوصىي المىاضي. (لغىةVHDL اسوبيِة لااصىة بهىذا التقنيىة مثى)لغة بِستفماةِ بناء الخواة المنطقية الناتهة ل

 ذلك س ي مر لالاة محوة رامي/تناظري للحُصُوة عل الخر المناسن.

عمليىىة وصىى المسىىيطر الضىىبابي باسىىتخخام النظىىام الرامىىي مطبفىىا عىى تفنيىىة ن ل الفائىىخا المهمىىة جىىخا َىىي رحقتنِىىا هىىذا هىىي

(FPGA) ا ية والفائىخا الثا يىة هىي ن سىرعةِ هىذا المسىيطر سىت و يىر للخر الحصوة عل سرعة مفالهة عاليةِ هي بالثل

 مفتمخا عل عخضِ القوا ين المستخخمة َي المسيطر الضبابي.

1. Introduction

 In general fuzzy condition may be classified into two types according to fuzzy controller

input. For the first type, the fuzzy controller is based on the traditional control theory; e. g.

fuzzy controller. Regarding the second type, the controller is constructed with assistance of

some useful approaches, such as fuzzy neural network and genetic algorithm, etc.

In this paper, the fuzzy-genetic controller is used as the working method. This method

requires a mathematical model for tuning the scaling factor (SF) for the fuzzy inputs and

output with fixing the fuzzy membership functions parameters. The second step is to tune the

membership functions parameters with fixing the scaling factors of this controller. The used

method for tuning is the genetic algorithm method (GA). This controller has two inputs (error

(e) and rate of change of this error (ce)) and single output (control action (ca)). The fuzzy

controller will be applied to the plat by a closed loop control system (shown in Fig.(1)) to get

a tested parameters for the two inputs scaling factor (SF1, SF2) and the single output scaling

factor (SF3). The inputs are then fuzzified, rule is applied and the fuzzy input is defuzzified to

get a suitable response with fixing the membership functions parameters. IS1, IS2, and IS3

will be the chromosomes for the genetic algorithm (GA) and the fitness function is the error

between the desired and the obtained response (see Fig.(2)). After getting the suitable scaling

factors we must now tune the membership functions parameters with fixing the scaling

factors. Genetic algorithm now will be used another time to get the suitable base parameters

for these functions. These parameters will be the chromosomes for the genetic algorithm.

Note that the x-axis parameters that limits the base for each membership function we called it

the base parameters.

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 243

When the tuning was finished, now we can write a table that contains the base parameters for

the error (e) and rate of change of this error (ce). The FLC will be implemented now

according to these specifications to get the suitable control action according to Center of

Gravity method. We will repeat the same operation for the whole possibilities to cover the

whole area and to get a general fuzzy logic controller.

Now we will implement the resulted table by using one of hardware methods. Hardware

implementation of the controller can be achieved in a number of ways. The most popular

method of implementing fuzzy controller is using a general-purpose microprocessor or

microcontroller. General, 8-bit microcontrollers are more economical and flexible, but often

face difficulties is dealing with control systems that require high processing and input/output

handling speeds. As an option, the controller can be implemented on an FPGA, which is

suitable for fast implementation and quick hardware verification. FPGA based systems are

Rule Base

I/P

O/P

Plant

dt

d

e

ce
SF2

SF1

Fuzzifier
Inference

Engine

Deuzzifier SF3

 Fuzzy Logic Controller (FLC)

+

-

Fig.(1): Structure of fuzzy logic controller with unity feedback control system.

I/P
O/P

Plant

dt

d

e

ce +

-

FLC SF3

SF2

SF1

GA

Desired
Response

+

-

error

Fig. (2) GA applied to FLC to get optimum scaling factors (SFs)

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 244

flexible and can be reprogrammed unlimited number of times. Fig.(3) shows the block

diagram for our FPGA genetically tuned fuzzy controller system. A special Encoder is used to

convert the analog input to digital one depending on the (e) and (ce) base parameters that can

the FPGA process it. The Decoder then will give the crisp output depending on the obtained

control action by the use of center of gravity method.

For designing the fuzzy rules and simulating the rules, Matlab ® Ver. 7.4.0.287 (R2007a) was

used. Rules were written using its fuzzy tools are shown in Table (1). The two inputs (e, ce)

and single output (ca) membership functions used in the controller are shown in Fig. (4).

er
ro

r
(e

)

change of error (ce)

 NB NS Z PS PB

NB PB PB PB PS Z

NS PB PB PS Z NS

Z PB PS Z NS NB

PS PS Z NS NB NB

PB Z NS NB NB NB

Table-1: Rule base for fuzzy inference system

Fig.(3): block diagram for FPGA of genetically tuned fuzzy controller system

Parameter

ranges

Crisp

 Output

ce

FPGA

of the

tuned

FLC

Encoder

e

Decoder

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 245

2. Fuzzy_Genetic controllers

 The last decade has seen a large interest in technologies that have as their motivation

some aspect of human function. Some of these, like artificial intelligence, can be seen to be

rooted in the psychological domain. Others, like neural networks, genetic algorithms, and

evolutionary programming, are inspired by reconsiderations of biological processes. Common

to all these so-called “intelligent technologies” is a need to represent knowledge in a manner

that is both faithful to the human style of processing information as well as a form amenable

to computer manipulation.

Genetic Algorithms (GAs) are stochastic search techniques that can perform optimization

without relying on gradient information or becoming trapped in local minima [1]. The trade-off

in using GAs for optimization is that their robust global search, which can also be applied to

discrete landscapes, cannot guarantee an optimal solution, but only regions of good solutions.

Soft Computing (SC) is an approach to computing which parallels the ability of the human

mind to reason and learn in an environment of uncertainty and imprecision. SC combines

Fig. (4): Initial membership functions of controller inputs (e, ce) and output (ca)

NB NS Z PS PB

NB NS Z PS PB

NB NS Z PS PB

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 246

knowledge, techniques, and methodologies from Fuzzy Logic, Neural Networks, Probabilistic

Reasoning, and Evolutionary Algorithms to create intelligent systems [2].

The use of GAs in Fuzzy Logic systems goes back to the early 90’s, when researchers began to

use attributes with fuzzy values and a fuzzy pattern matcher for case retrieval [3][4]. In fact, FL

techniques have proven to be very useful in addressing many other problems. For example, FL

can be used in case representation to provide a characterization of imprecise and uncertain

information. It can also be used for case adaptation through the concept of gradual rules [4]. The

task of global minimization of numerical functions has paramount importance in several areas of

Knowledge. It appears in fields like Engineering, Finance, Management, Medicine, etc.

Our goal was to combine Fuzzy system and GA techniques into a generic, Self-Optimizing

Fuzzy capable of handling a wide variety of problems in which an existing case base would be

used to build solutions to new cases.

Problems start to rise when the given function presents several local minima, each one having its

own attraction basin, making, typically, the final result to depend on the starting point.

Unfortunately, most real problems originate very complex objective functions that are nonlinear,

discontinuous, multi-modal, high dimensional, etc. To solve such a class of problems, stochastic

methods seem to be a good (sometimes, the only) way to go. Genetic algorithms and simulated

annealing are among the most popular approaches to stochastic global optimization. The problem

in that case is related to speed of convergence and, in the genetic approach, warranty of the

ability to reach a global optimum, under general conditions. Pure annealing methods, by the

other side, have results assuring its convergence to a global minimum with probability 1, but the

performance presented by most implementations is not very encouraging [5].

4. Field Programmable Gate Array (FPGA) technique and its computer

programming languages

 When they first arrived on the scene in the mid-1980s, FPGAs were largely used to

implement glue logic, medium-complexity state machines, and relatively limited data processing

tasks. During the early 1990s, as the size and sophistication of FPGAs started to increase, their

big markets at that time were in the telecommunications and networking arenas, both of which

involved processing large blocks of data and pushing that data around. Later, toward the end of

the 1990s, the use of FPGAs in consumer, automotive, and industrial applications underwent a

humongous growth spurt.

FPGAs are often used to prototype Application-Specific Integrated Circuits (ASICs) designs or

to provide a hardware platform on which to verify the physical implementation of new

algorithms. However, their low development cost and short time-to-market mean that they are

increasingly finding their way into final products (some of the major FPGA vendors actually

have devices they specifically market as competing directly against ASICs).

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 247

High-performance FPGAs containing millions of gates are currently available. Some of these

devices feature embedded microprocessor cores, highspeed input/output (I/O) devices, and the

like. The result is that today’s FPGAs can be used to implement just about anything, including

communications devices and software-defined radio; radar, image, and other digital signal

processing (DSP) applications; and all the way up to System-on-Chip (SoC) components that

contain both hardware and software elements [6][7].

With the maturity and availability of hardware description language (HDL) and synthesis

software, using them to design custom digital hardware has become a mainstream practice.

Because of the resemblance of an HDL code to a traditional program (such as a C program),

some users believe incorrectly that designing hardware in HDL involves simply writing

syntactically correct software code, and assume that the synthesis software can automatically

derive the physical hardware. Unfortunately, synthesis software can only perform

transformation and local optimization, and cannot convert a poor description into an efficient

implementation. Without an understanding of the hardware architecture, the HDL code

frequently leads to unnecessarily complex hardware, or may not even be synthesizable.

This work uses the VHDL hardware description language. VHDL code is simply one of the

methods to describe a hardware design. The same design can also be described by a schematic

or code in other HDLs. VHDL and synthesis software will not lead automatically to a better

or worse design. However, they can shield designers from low-level details and allow them to

explore and research better architectures.

The emphasis of the work is on hardware rather than language. Instead of treating synthesis

software as a mysterious black box and listing “recipe-like” codes, we explain the relationship

between the VHDL constructs and the underlying hardware structure and illustrate how to

explore the design space and develop codes that can be synthesized into efficient cell-level

implementation. The discussion is independent of technology and can be applied to both

ASIC and FPGA devices. The VHDL codes listed in this work largely follow the IEEE

1076.6 RTL synthesis standard and can be accepted by most synthesis software. Most codes

can be synthesized without modification by the free “demo-version’’ synthesis software

provided by FPGA vendors. For more information about this language see [8].

5. Fuzzy controller design using FPGA technique

 There are several types of control systems that use FLC as an essential system

component. The majority of applications during the past two decades belong to the class of

fuzzy controllers. These fuzzy controllers can be further classified into three types: the direct

action (DA) type, the gain scheduling (GS) type and a combination of DA and GS types. The

majority of fuzzy applications belong to the DA type; here the fuzzy controller is placed

within the feedback control loop, and computes the actions through fuzzy inference. In GS

type controllers, fuzzy inference is used to compute the individual gains [9][10][11]. The simplest

and most usual way to implement a fuzzy controller is to realize it as a computer program on

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 248

a general purpose computer. However, a large number of fuzzy control applications require a

real-time operation to interface high-speed Constraints.

Software implementation of fuzzy logic on general purpose computers can not be considered as a

suitable design solution for this type of application, in such cases, design specifications can be

matched by specialized fuzzy processors. Higher density programmable logic devices such as

FPGA can be used to integrate large amounts of logic in a single IC [12][13]. Semi-custom and full-

custom application specific integrated circuit (ASIC) devices are also used for this purpose but

FPGA provide additional flexibility: they can be used with tighter time-to-market schedules. The

Field-Programmable Gate Array (FPGA) places fixed logic cell son the wafer, and the FPGA

designer constructs more complex functions from these cells. The term field programmable

highlights the customizing of the IC by the user, rather than by the foundry manufacturing the

FPGA [14][15][16].

A large numbers of fuzzy control applications with the physical systems require a real-time

operation to interface high speed constraints; higher density programmable logic devices such as

field programmable gate array (FPGA) can be used to integrate large amounts of logic in a single

IC. This paper reviews the state of the art of FPGA with the focus on FPGA-based fuzzy logic

controller. The paper starts with an overview of FPGA in order to get an idea about FPGA

architecture, and followed by an explanation on the hardware implementation with both type

analogue and digital implementation, a comparison between fuzzy and conventional controller

also provided in this paper. A survey on fuzzy logic controller structure is highlighted in this

article with the focus on FPGA-based design of fuzzy logic controller with different applications.

Finally, we provided the simulation and experimental results form the literature and concluded

the main differences between software-based systems with respect to FPGA-based systems, and

the main features for FPGA technology and its real-time applications [17].

6. Our new genetically tuned Fuzzy-FPGA controller

We start our approach using the genetic search by finding the scaling factors (SF1, SF2 and SF3)

then we use it another time to find the fuzzy membership base parameters for inputs and output

that gives minimum performance index. A suitable performance index is the Integral of the

Square of the Error, ISE, which is defined as :

 

T

dtteISE

0

2
)(……(1)

Where the upper limit T is a finite time chosen somewhat arbitrarily so that the integral

approaches a steady– state value. It is usually convenient to choose T as the setting time, Ts.

The fitness value for the j-th chromosome is inversely proportional to the ISE,:

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 249

ISE

fitness
1

 …… (2)

After applying the genetic algorithms operations (encoding, mutation, selection, and

crossover) the survived chromosome will have the optimized fitness that gives a minimum

ISE (or optimal solution). The obtained regions from the survived chromosomes then will be

encoded to five bits (A, B, C, D, E) according to all possibilities.

The FPGA then will receive a digital signal of five bits and outputs another four bits (fo, f1, f2,

f3) represents the equivalent output membership function after processing using center of

gravity method. Before we use the output bits (fo to f3) we can reduce them using karnof-map

to get a suitable Boolean functions (F, G, H, L) as shown:

fo = F(A,B,C,D,E)

f1 = G(A,B,C,D,E)

f2 = H(A,B,C,D,E)

f3 = L(A,B,C,D,E)

The Boolean functions (F, G, H, and L) will be implemented using the VHDL computer

language. The Integrated Software Environment (ISE™) is the Xilinx® design software suite

that allows us to take our design from design entry through Xilinx device programming. To

use this FPGA device we must have the following hardware: Spartan-3 Startup Kit,

containing the Spartan-3 Startup Kit Demo Board. This board will interfaced with our PC to

translate the VHDL program to the Xilinx FPGA device which then will represent the

genetically tuned fuzzy logic controller.

The special Encoder then will convert the four bit output bits to single analog signal represent

the control action that leads the controlled plant as shown in Fig.(5). Note that the black

triangle represents a suitable scale multiplied by the signal entering it.

Fig.(5): Signal representation in the FPGA genetically tuned fuzzy controller system

A

B

C

D

E

of

1f

2f

3f

FPGA

of the

tuned

FLC

Parameter

ranges

Crisp

 Output

ce

Encoder

e

Decoder

http://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
http://en.wikipedia.org/wiki/Selection_(genetic_algorithm)
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 250

7. Simulated Example

In this section we will implement an FPGA fuzzy controller tuned by the genetic algorithm that

controls a plant having the transfer function:

)1(

1
)(




ss
sG

 …… (3)

We desire to obtain an optimum controller that have a step response shown in Fig,(6) with

settling time (Ts) of (0.6) and a percentage overshoot (PO.) of (32%).

The Integral of the Square Error (ISE) between the original step response and the obtained

one, dedicated previously in equ.(1), is selected to be minimized by the use of GA in order to

obtain optimum scaling factors (SF1, SF2, SF3) with fixing the membership base parameters.

The specifications that were used in GA tuning are:

Number of generation =500.

Population size =50.

Chromosome length =3 (for SF1, SF2, SF3)

Crossover probability =0.95 (Simple crossover).

Mutation probability =0.01 (Uniform mutation).

After completing the following scaling factors are obtained that gives minimum ISE =1.9362.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (sec)

ou
tpu

t y
(t)

The original response

Fig. (6): The original step response

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 251

SF1 = 1.0043

SF2 = 1.019

SF3 = -9.7989

Now we will use the GA again to obtain the membership base parameters with fixed scaling

factors. The specifications that were used in GA tuning are:

Number of generation =500.

Population size =200.

Chromosome length =35 (for e, ce, ca membership base parameters)

Crossover probability =0.95 (Simple crossover).

Mutation probability =0.01 (Uniform mutation).

The obtained membership functions according to GA optimization method for the two inputs

(error (e) and change of error (ce)) and the single output (control action (ca)) are shown in

Fig.(7) that gives a minimum ISE of 1.9362. Fig.(8) shows the training steps curve between

the fitness and generations during the GA operations and Fig. (9) shows the ISE curve against

the GA generations. Fig.(10) shows the step response that we obtained it according to GA

operations.

Fig. (7): Optimized membership functions using scales: e=1.0043, ce=1.019,
ca=-9.7989

NB NS Z PS PB

NB NS Z PS PB

NB NS Z PS PB 1-10*

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 252

Fig. (8): A curve between fitness and generations during the GA operation

Fig. (9): A curve between ISE and generations during the GA operation

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 253

Now we must divide the resultant membership functions to a region then take all the possible

choices between (e) and (ce). Table-2 shows the way that we use it to select each region in (e)

and applied it in each region in (ce) (divided by SF1 and SF2 respectively) to cover the whole

probabilities. Then we will apply these values to our fuzzy logic controller to get the suitable

crisp output shown in the third column of the same table after multiply it with SF3.

The encode operation now is begin; as shown in Table-2 there are five regions divided to 25

probability (or rows). Each row will be encoded to binary representation contain five digits

(A, B, C, D, E) shown in Table-3. The output also will be encoded to four digits (fo, f1, f2, f3)

after approximation.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (sec)

ou
tp

ut
 y

(t)

Response due to GA optimization

Fig. (10): The GA response

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 254

Table-3 shows the lookup table for the encoded input/output memberships after converting it

to five and four bits respectively. By the use of karnaugh-map we can reduce the output to

form the following logic functions:

EDBADCBADECDABDEBf

EDCEDBCEDCBCDBAEDBEDBAECBf

DBCEBDADCABEEDCBAf

AEADABEBCEDBBCDf









3

2

1

0

 …… (4)

Table-2: A lookup table for the (e), (ce) and the crisp value of (ca)

error (e) / SF1
change of error (ce)

/ SF2
crisp value (ca) / -1 Approx.

Digital
Conversion

-1 to -0.6 -1 to -0.6 0.694 * 9.7989 = 6.8 7 0111

-1 to -0.6 -0.6 to -0.2 0.707 * 9.7989 = 6.9 7 0111

-1 to -0.6 -0.2 to 0.2 0.583 * 9.7989 = 5.7 6 0110

-1 to -0.6 0.2 to 0.6 0.374 * 9.7989 = 3.6 4 0100

-1 to -0.6 0.6 to 1 0.0427 * 9.7989 = 0.4 0 0000

 -0.6 to -0.2 -1 to -0.6 0.694 * 9.7989 = 6.8 7 0111

 -0.6 to -0.2 -0.6 to -0.2 0.672 * 9.7989 = 6.58 7 0111

 -0.6 to -0.2 -0.2 to 0.2 0.261 * 9.7989 = 2.5 3 0011

 -0.6 to -0.2 0.2 to 0.6 0.0467 * 9.7989 = 0.45 1 0001

 -0.6 to -0.2 0.6 to 1 -0.361 * 9.7989 = -3.53 -4 1100

 -0.2 to 0.2 -1 to -0.6 0.683 * 9.7989 = 6.7 7 0111

 -0.2 to 0.2 -0.6 to -0.2 0.536 * 9.7989 = 5.25 5 0101

 -0.2 to 0.2 -0.2 to 0.2 -0.0528 * 9.7989 = -0.5 -1 1111

 -0.2 to 0.2 0.2 to 0.6 -0.389 * 9.7989 = -3.8 -4 1100

 -0.2 to 0.2 0.6 to 1 -0.711 * 9.7989 = -6.9 -7 1001

 0.2 to 0.6 -1 to -0.6 0.48 * 9.7989 = 4.7 5 0101

 0.2 to 0.6 -0.6 to -0.2 0.285 * 9.7989 = 2.8 3 0011

 0.2 to 0.6 -0.2 to 0.2 -0.318 * 9.7989 = -3.11 -3 1101

 0.2 to 0.6 0.2 to 0.6 -0.625 * 9.7989 = -6.1 -6 1010

 0.2 to 0.6 0.6 to 1 -0.711 * 9.7989 = -6.9 -7 1001

 0.6 to 1 -1 to -0.6 0.0301 * 9.7989 = -0.3 0 0000

 0.6 to 1 -0.6 to -0.2 -0.177 * 9.7989 = -1.73 -2 1110

 0.6 to 1 -0.2 to 0.2 -0.655 * 9.7989 = -6.4 -6 1010

 0.6 to 1 0.2 to 0.6 -0.719 * 9.7989 = -7.04 -7 1001

 0.6 to 1 0.6 to 1 -0.711 * 9.7989 = -6.9 -7 1001

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 255

The final step is to program the Xilinx FPGA instrument depending on the combinational logic

functions obtained earlier in Equ.(4) using the VHDL programming language that concerning the

board (Spartan-3 Startup Kit Demo Board) interfaced with Pentium-4 PC of speed 3.02 GHz and

RAM 2.0 GB

8. Advantages of this approach

1. Fewer values, rules, and decisions are required.

2. More observed variables can be evaluated.

3. Linguistic, not numerical, variables are used, making it similar to the way humans think.

A B C D E fo f1 f2 f3

0 0 0 0 0 0 1 1 1

0 0 0 0 1 0 1 1 1

0 0 0 1 0 0 1 1 0

0 0 0 1 1 0 1 0 0

0 0 1 0 0 0 0 0 0

0 0 1 0 1 0 1 1 1

0 0 1 1 0 0 1 1 1

0 0 1 1 1 0 0 1 1

0 1 0 0 0 0 0 0 1

0 1 0 0 1 1 1 0 0

0 1 0 1 0 0 1 1 1

0 1 0 1 1 0 1 0 1

0 1 1 0 0 1 1 1 1

0 1 1 0 1 1 1 0 0

0 1 1 1 0 1 0 0 1

0 1 1 1 1 0 1 0 1

1 0 0 0 0 0 0 1 1

1 0 0 0 1 1 1 0 1

1 0 0 1 0 1 0 1 0

1 0 0 1 1 1 0 0 1

1 0 1 0 0 0 0 0 0

1 0 1 0 1 1 1 1 0

1 0 1 1 0 1 0 1 0

1 0 1 1 1 1 0 0 1

1 1 0 0 0 1 0 0 1

Table-3: A lookup table for the encoded input/output memberships

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 256

4. It relates output to input, without having to understand all the variables, permitting the

design of a system that may be more accurate and stable than one with a conventional

control system.

5. Rapid prototyping is possible because a system designer doesn’t have to know everything

about the system before starting work.

6. They’re cheaper to make than conventional systems because they’re easier to design.

7. They have increased robustness.

8. They simplify knowledge acquisition and representation.

9. A few rules encompass great complexity.

References

[1] Goldberg, D.E., "Genetic Algorithms in Search, Optimization, and Machine Learning".

Addison-Wesley, Massachusetts, 1989.

[2] Bonissone, P., Chen, Y.-T., Goebel, K. and Khedkar, "Hybrid Soft Computing

Systems: Industrial and Commercial Applications", Proceedings of the IEEE, vol. 87, no.

9, pp 1641-1667, 1999

[3] Plaza, E. and Lopez de Mantaras, "A Case-Based Apprentice that Learns from Fuzzy

Examples, Methodologies for Intelligent Systems", 5th edition, Ras, Zemankova and

Emrich, Elsevier, pp 420-427, 1990

[4] Dubois, D. and Prade, "Gradual Inference Rules in Approximate Reasoning",

Information Science, vol. 61, pp 103-122, 1992

[5] "Fuzzy Control of Stochastic Global Optimization Algorithms and Very Fast Simulated

Reannealing", Hime Aguiare Oliveira Junior Electronic and Control Engineer ,

Independent Researcher Rio de Janeiro , RJ , BRAZIL hime @ engineer.com

[6] Clive “ Max ” Maxfield, "FPGAs Word Class Design", www.newnespress.com

[7] Steve Kilts, "Advanced FPGA Design Architecture, Implementation, and

Optimization", Copyright # 2007 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously

in Canada.

[8] PONG P. CHU, "RTL HARDWARE DESIGN USING VHDL Coding for Efficiency,

Portability, and Scalability", Copyright 0 2006 by John Wiley & Sons, Inc. All rights

reserved. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published

simultaneously in Canada.

[9] I. del Campo, R. Callao, and J. Tarela, "Automatic Implementation of Different

Inference Architectures for Fuzzy Control on PLDs", Computer and Electrical

Engineering Vol. 24, No.1/2, January/March 1998.

http://www.newnespress.com/

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 257

[10] G. K. Mann, B. G. Hu, and R. G. Gosine, "Analysis of Direct Action Fuzzy PID

Controller Structures", IEEE Transactions on Systems, Man, and Cybernetics-Part B:

Cybernetics, Vol. 29, No. 3, pp. 371-388, June, 1999.

[11] J. Li, and B. S.Hu, "The Architecture of Fuzzy PID Gain Conditioner and its FPGA

Prototype Implementation", Second International Conference on ASIC, pp. 61-65, 21-24

October, 1996.

[12] Michael Mc Kenna and Bogdan M. Wilamowski, "Implementing a Fuzzy System on

a Field Programmable Gate Array", IEEE International Joint Conference on Neural

Networks, 2001. Proceedings. IJCNN '01, ISBN: 0-7803-7044-9, Volume: 1, p.189-194,

2001.

[13] Alessandro Gabrielli , Enzo Gandolfi and Massimo Masetti," Design of a Very High

Speed Fuzzy Processor by VHDL Language", Physics Department University of Bologna

Viale Berti Pichat 6/240127 Bologna Italy

www.bo.infn.it/dacel/papers/96_03_parigi_EDTC.pdf

[14] Jose l. Gonzalez-vazquez, oscar Castillo and luis t. Aguilar-bustos,” A Generic

Approach To Fuzzy Logic Controller Synthesis On FPGA”, IEEE international conference

on fuzzy systems, p- 2317 - 2322, 2006.

[15] Valentina Salapura and Volker Hamann," Implementing Fuzzy Control Systems

Using VHDL and Statecharts", Design Automation Conference, 1996, with EURO-

VHDL '96 and Exhibition, Proceedings EURO-DAC '96, European, ISBN: 0-8186-7573-

X, p. 53-58, Geneva, Switzerland, 1996.

[16] Masmoudi n., hachicha m. and kamoun l. "Hardware Design of Programmable Fuzzy

Controller on FPGA", IEEE International Fuzzy Systems Conference Proceedings, Seoul,

Korea, p. -1675- -1679, August 22-25, 1999.

[17] "Nasri Sulaiman, Zeyad Assi Obaid, Member, IACSIT, M. H. Marhaban and M. N.

Hamidon", FPGA-Based Fuzzy Logic: Design and Applications – a Review, IACSIT

International Journal of Engineering and Technology Vol.1, No.5, ISSN: 1793-8236.

December, 2009

http://www.bo.infn.it/dacel/papers/96_03_parigi_EDTC.pdf

