
Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 73

Design and Implementation of Neural Network in FPGA

Mrs. Rana D. Abdu-Aljabar

Assistance Lecturer

Information Engineering college / Nahrain University

Baghdad / Iraq

Abstract :-

This paper constructs fully parallel NN hardware architecture, FPGA has been used to

reduce neuron hardware by design the activation function inside the neuron without using

lookup table as in most researches, to perform an efficient NN. It consist of two main parts;

the first part covers network training using MATLAB program, the second part represents the

hardware implementation of the trained network through Xilinx high performance Virtex2

FPGA schematic entry design tools.

 FPGAتصميم و تنفيذ الشبكة العصبية بواسطة

 -: الخلاصة

لتقليل المحتوى FPGAازية المتكاملة , و ذلك باستخدام هذا البحث يبني المحتوى الصلب للشبكة العصبية المتو

 المادي المستعمل لتصميم الخلية العصبية و ذلك بتصميم الدالة الفعالة الموجودة داخل الخلية العصبية بدون استعمال

Lookup table .كما في غالبية الابحاث لكي نثبت فعالية الشبكة العصبية المقترحة

, اما الجزء الثاني فيشمل تنفيذ Matlabئين: الجزء الاول يغطي تدريب الشبكة باستعمال برنامج البحث يحتوي جز

 (بواسطة التصميم التخطيطي. Virtex2عالي الاداء) Xilinxالمحتوى المادي للشبكة المدربة باستعمال

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 74

1- Introduction:-

Bio-inspired concepts such as neural networks, evolution and learning have attracted much

attention recently because of a growing interest in the automatic design of complex and

intelligent systems, capable of adaptation and fault tolerance. Engineers and computer scientists

have studied these biological concepts in an effort to replicate their desired qualities [1, 2] in

computing systems. Artificial neural networks (ANN) have found widespread deployment in a

broad spectrum of classification, perception, association and control applications [1]. The

aspiration to build intelligent systems complemented with the advances in high speed computing

has proved through simulation the capability of Artificial Neural Networks (ANN) to map, model

and classify nonlinear systems. Real time applications are possible only if low cost high-peed

neural computation is made realizable. Towards this goal numerous works on implementation of

Neural Networks (NN) have been proposed [2]. Artificial neural networks (ANNs) have been

mostly implemented in software. This has benefits, since the designer does not need to know the

inner workings of neural network elements, but can concentrate on the application of the neural

network. However, a disadvantage in real-time applications of software-based ANNs is slower

execution compared with hardware-based ANNs. [3]

Digital hardware-based implementations of ANNs have been relatively scarce, representive

examples of recent research can be found in. Recent advances in reprogrammable logic enable

implementing large ANNs on a single field-programmable gate array (FPGA) device. The main

reason for this is the miniaturization of component manufacturing technology, where the data

density of electronic components doubles every 18 months. ANNs are biologically inspired and

require parallel computations in their nature. Microprocessors and DSPs are not suitable for

parallel designs [4].

FPGA-based architectures offer high flexibility system design. Haitham K. and Esraa Z. [5]

describe hardware design of an artificial neural network on FPGA. A digital system architecture

is designed to realize a feedforward multilayer neural network. The designed architecture is

described using Very High Speed Integrated Circuits Hardware Description Language (VHDL)

and they use an equation which is a second order nonlinear function which has a tansig transition

between the upper and lower saturation regions, A fully parallel network is fast but inflexible.

Hanan A. and Firas R. [1] constructs fully parallel NN hardware architecture, training the

network using Particle Swarm Optimization (PSO) learning algorithm . Only Hardlimit activation

function for all network layers. The proposed learning algorithm was used for reducing the

neuron circuitry by lessining the multiplication process to only AND gates. Pearson [6] describe

an FPGA-based array processor architecture, which can simulate large networks. The processor

architecture is a single instruction path, multiple data path (SIMD) array processor and uses a

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 75

bus-based communication protocol which limits its scalability. Suhap S., Yasar B., and Suleyman

Y. [7] The system architecture of NN is presented using VHDL and the sigmoid lookup table is

used in this paper . The network is implemented in Xilinx Spartan IIE. Ros [8] present an FPGA-

based hybrid computing platform. The neuron model is implemented in hardware and the

network model and learning are implemented in software.

 Designing fully parallel modules can be available by ASICs and VLSIs but it is expensive and

time consuming to develop such chips. In addition the design results in an ANN suited only for

one target application. FPGAs not only offer parallelism but also flexible designs .The aim of this

work is to reduces neuron hardware to perform an efficient NN through the activation function

that designed inside the neuron without using lookup table module (LTM) as in many research

that use LTM . The network is implemented in Xilinx high performance Virtex2. The resultant

neural networks are modular, compact, and efficient and the number of neurons, number of

hidden layers and number of inputs are easily changed.

2- Artificial Neural Network (ANN) :-

An Artificial Neuron (AN) is a model of biological neuron. Where each AN receives signals from

the environment or other ANs, gathers these signals applying some activation function to the

signals sum and when fired transmits signal to all connected ANs. Input signals are inhibited or

excited through positive or negative numerical weights associated with each connection to AN

the firing of the AN and the strength of the exciting signal are controlled via a function referred

to as activation function. The AN collects all incoming signals and computes a net input signal as

a function of the respective weights. The net input serves to the activation function which

calculated the output signal of the AN. An ANN is a layered network of ANs. ANN may consist

of input, hidden and output layers. ANs in one layer are connected fully or partially to the ANs in

the next layer [1], as shown in Figure (1).

Fig 1. Neural network architecture.

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 76

Following neuron model shown in figure (2) is widely used in artificial neural networks with

some variations.

Fig 2 . A single neuron example neural network.

X = Pj Wj + b …………(1)

Pj : is the input .

Wj : is the weight associated to each input .

X: is the summation of multiplying the input and the weight.

b : is the bais

y : is the neuron output.

3- Field Programmable Gate Array (FPGA) :-

The FPGA is especially designed IC that is often used for prototyping. Each FPGA has three

main parts; the Configurable Logic Block (CLB) is the most significant part. CLB provides

physical support for the program downloaded on FPGA. Another part is the Input Output Block

(IOB) which provides input and output for FPGA and makes it possible to communicate outside

the FPGA. The last part is the Programmable Interconnect (PI) which connects the different part

of FPGA and allows them to communicate with each other [9, 1] .

The choice to build a neural network in digital hardware comes from several advantages that are

typical for digital systems. Digital designs have the advantage of low noise sensitivity, and

weight storage is not a problem. With the advance in programmable logic device technologies,

FPGAs has gained much interest in digital system design [10]. Hardware realization of a Neural

Network (NN), to a large extent depends on the efficient implementation of a single neuron.

FPGA-based reconfigurable computing architectures are suitable for hardware implementation of

neural networks. FPGA realization of ANNs with a large number of neurons is still a challenging

task. [5]. FPGA are an excellent technology for implementing NNs hardware. Executing a NN on

FPGA is a relatively easy process. For lessening the design circuitry the training will be done

independently off line the FPGA, once the training is completed and the correct network weights

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 77

is obtained these weights will be hard implied on FPGA. The accuracy in which these weights

can be coded will depends upon the number of bits existing to implement the weights. Parallelism

and dynamic adaption are two computational characteristics typically related with ANN FPGA -

based reconfigurable computing architecture are well suited to implement ANNs as one can

develop concurrency and rapidly reconfigure to adapt the weights and topologies of an ANN

[11]. FPGA realization of ANN with large number of neurons is still a not easy task because

ANN algorithm is wealthy with multiplication process and it’s relatively expensive to realize.

Various work reported in this area includes new multiplication algorithm for ANN, NNs with

some constraints to achieve higher speed of process at lower price and multichip realization

[1,12, and13].

4- Neural networks on FPGAs: specific assets:-

As stated above, FPGAs offer a cheap, easy and flexible choice for hardware implementations.

They also have several specific advantages for neural implementations:

1- Reprogrammable FPGAs permit prototyping: in most applications, several neural architectures

must be tested so as to find the most efficient one. This may be directly performed with the

hardware efficiency of an FPGA-based implementation, without any additional cost. Moreover a

good architecture that has been designed and implemented may be replaced later by a better one

without having to design a new chip.

2- On-chip learning is often considered as difficult and useless. Indeed it is used very seldom. But

on-chip learning usually results in a loss of efficiency in a hardware implementation, since it

requires some specific operators, a higher precision, . . . etc. Therefore off-chip learning is

naturally chosen when no dynamic learning is necessary. In a reconfigurable FPGA, on-chip

learning may be performed prior to a specific optimized implementation of the learned neural

network on the same chip.

3- FPGAs may be used for embedded applications, when the robustness and the simplicity of

neural computations is most needed, even for low scale productions.

4- FPGA-based implementations may be mapped onto new improved FPGAs, which is a major

advantage, considering that FPGA speeds and areas approximately double each year. Even large

neural networks may soon be implemented on single FPGAs, provided that the implementation

method is scalable enough. The FPGA concept is a major advance to ensure the scalability of

direct hardware mappings of neural networks .[14]

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 78

5- The Proposed Design of neural network:-

The proposed design consists of neuron architecture design, activation function problem solving

and artificial neural network design which consist of three layers.

The initial parameters of the Neural Network used in the experiment are given below:

 Type: Feed forward back propagation network

 Number of layers: 3 (input, one hidden, and output layer)

 Number of neurons in input layer : 4

 Number of neurons in hidden layer : 4

 Number of neurons in output layer : 1

 Transfer function of the ith layer: Tansig

 Training Function: Trainlm

 Number of epochs used in training: 10000

 Back propagation weight/bias learning function: learngdm

 Error tolerance : 0.00000001

 Performance function: Mean Square Error (MSE).

The processing element of an ANN is the Neuron. A Neuron can be viewed as processing

data in three steps; the weighting of its input values, the summation of them all and their filtering

by sigmoid function.[5]

A direct digital hardware implementation of a neuron shown in Figure(3). For a neuron with N

inputs, then it is required N multipliers, N-1 adders and the hardware to implement the limiting

function, f(x) are required also.[10]

For calculation of activate value, then sigmoid function is used. For instance, in many cases the

sigmoid function forms the most computationally expensive pare of the neural calculation. The

most important problem of realization of sigmoid function is processing the load. In many

application look up table are used to overcome this problem, but in this paper the design of this

input
output

Fig. 3 : A digital representation of a neuron.

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 79

activation function will be illustrated without using look up table for minimizing the hardware

design of single neuron.

The design of activation function is the second operation part of the neuron. The activation

function f(x) is used to limit the value of the neuron output. This activation function is given by

the following equation:

x-
e1

1
)(1


xF

 ….…..(2)

This equation was selected because it provides the necessary limiting of the outputs while having

some properties, which are useful in the learning phase of the algorithm.

Unfortunately, this equation contains the transcendental function (exponential term, exp), which

is somewhat difficult to calculate. Nordstrom and Svensson [15], list several functions, which

may be used as an approximation to the function used by McClelland and Rumelhart. These

functions all have the same general characteristics. They are continuously increasing, approach 0

at - and 1 at + , and have a continuous first derivative. The approximation that used in

this neural network is given by the following equation :

F2(x) =
















1

12

1

x

x
 …. ….. (3)

 The curves in figure(4) provide a similar limiting function. It is the general characteristics of the

sigmoid, not the precise equation which is important in this case.

In order to validate this activation function, the results are compared with sigmoid function as in

figure(4A) and those reported by Antony W. Savich, Medhat Moussa [16] as in figure(4B), In

this paper, a different approach for implementing the sigmoid function is adopted. It consists of a

linear approximation of (2). The formal mathematical representation of this approximation is

expressed by (4).

 …….. (4)

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 80

 Fig.(4A):sigmoid function. Fig.(4B): Implementation of linear sigmoid

 approximation function.

Fig. 4 : Sigmoid activation function.

 The agreement is found to be acceptable which validates the present activation function .The

above figure (4A) shows the output curve of the two function (F1(x) , F2(x)). This shows that the

two function is the same function [17].

Since the final result of this equation f(x) is a digital circuit. This circuit takes as its input a value

x which represent the result of sum of product, and returns the output f(x). The functional units

used by the circuit are : two adders, a divider, an absolute value and a divide-by-two circuit.

Some simple optimizations have been performed on this circuit. Once the circuit for this function

has been extracted, it may be used as a macrocell, much like the other macrocells in the circuit.

6- Implementation of Suggested Design:-

The implementation of this neural network algorithm is well suited to an FPGA . The first step is

to design the equation [
x

x

1
] from equation (3) and getting its result then complete the design

of all sigmoid function. The design of equation [
x

x

1
] requires the divider circuit and the

absolute circuit to output the result of the summation in the first operation part of the neuron. The

block diagram of single neuron is shown in figure (5).

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 81

The activation Block in Figure(5), which performs the multiplications Pj wj and the summation of

these multiplied terms as in Equation (1), is always on the neuro-chip (or the processing element

of the neurocomputer). The data flow between these blocks is controlled by the Control Unit that

is always on the chip. The control parameters are used for controlling the hardware by a host. The

data flow is such that the weights from the Weights Block and the inputs from outside or from the

outputs are multiplied and the products are summed in the Activation Block, then the outputs are

obtained in the Neuron State Block from the transferred sum of the products [17]. Neuron states

and weights can be stored in digital form. Weights can be stored in registers if it is little numbers

of weights or stored in ROM . Then the complete design of the neuron has been done to create

the top of the hierarchy level as shown in figure (6).

Weighs

Block

Control

unit

Activation

Block Transfer

Function

Block

Neuron

State

Block

Control Parameters

Weights

Inputs

Output

clock

clear

enable

Fig. 5: The Block diagram of the neuron.

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 82

Fig. 6 : The micro Block of the neuron.

Figure(7) shows the total design flow using MATLAB and Xilinx . The MATLAB program

consists of the built and learning programs of NN . After the leaning procedure, weights data are

fixed and saved to a file. Then transmit the weights to the Xilinx.

The complete hardware design of the circuit of the neural network which contains the neuron

and the inputs and output of each neuron and the input signal, weights and bias registers for each

neuron is as. shown in figure(8). This neural network was built as a separate neural network each

neuron as a micro neuron.

MATLAB (Learning)

NN

Learning

Save

Weight

s

Input data

Xilinx (complete design)

Registors

(weights)

Hardware

NN

Output

data

Fig. 7: Design environment

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 83

fig. 8 : The complete hardware design of the neural network

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 84

7- Result:-

In MATLAB program the network undergoes process of training, continuously in an iterative

manner it calculates output from each layer, extracting the mean square error and propagating it

backwards if it is not approaching targets. Due to this backward error propagation, error-signal

for each neuron is calculated. Which in fact is used for neuron weight updating. If its approaching

targets then training is considered done. In this way network approaches the set known correct

outputs (targets) in order to be trained. The process of training is shown in Figure(9), in which

training curve is approaching its goal through readjustment of weights and biases.

Fig. 9 : Training the neural network.

When this training is completed as in figure(9), the program gives the final weights that are

connected between neurons and also the final bias values that are connected to these neurons ,

these weights and bais converted to hexadecimal number. The final weights and bais are in

table(1) and there are represented in hexadecimal form, these values of weights and biases are

needed in complete hardware design of the neural network in the implementation using the

FPGA.

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 85

The result of FPGA , for the neuron that built above, and after specified input values of the

weights, and the input values of (I) as an input to the neuron, and then test of operation of the

neuron was shown in figure (10). Then figure (11) shows the complete operation result of the

total neural network

Fig. 10 : The result of single neuron operation-timing diagram.

Table 1: The weights and bias of each neuron.

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 86

The following table (2) will compare the output of the complete neural network that are

calculated using MATLAB program with that obtained using FPGA technique.

Table 2: The result

 X4 X3 X2 X1 Output of NN that calculated

in MATLAB

Output of NN designed

in FPGA

0 0 0 0 0.0000 0

0 0 0 1 0.0000 0

0 0 1 0 0.0000 0

0 0 1 1 0.0000 0

0 1 0 0 1.0000 1

0 1 0 1 1.0000 1

0 1 1 0 0.9999 1

0 1 1 1 1.0000 1

1 0 0 0 1.0000 1

1 0 0 1 0.9999 1

1 0 1 0 0.9999 1

1 0 1 1 1.0000 1

1 1 0 0 1.0000 1

1 1 0 1 1.0000 1

1 1 1 0 0.9999 1

1 1 1 1 1.0000 1

Fig. 11: The result of complete design of NN operation-timing diagram.

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 87

Table1 shows the compression of the output of neuron in MATLAB program and the FPGA. This

output is the same as MATLAB result in the above example and is equal to the desired output.

Therefore, this result shows the right operation of NN-FPGA.

9- Calculation Unit Hardware Architecture:-

The explained functions are performed by the following logical circuits of the calculation unit:

Table (3) lists the chip area occupation for this design. This report is created during synthesize

stages.

Table 3 : Device Utilization Summary for design NN.

Device type

Percentage area occupied

Number of Slices 1,726 out of 5,120 33%

Number of Slices Flip Flops 3,113 out of 10,240 30%

Number of bonded IOBs 233 out of 328 71%

Number of 4 input LUTs 1,372 out of 10,240 13%

Total equivalent gate count for design 40,731

Number of RPM macros 36

The complete right implementation of the neural network is shown in figure (12), which shows

the complete stages of implementation of neural network using FPGA and how each stage

completes with out error.

Fig. 12 : The flow engine of the circuit.

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 88

10- Conclusion and Suggestion:-

This paper constructs fully parallel NN hardware architecture reduces neuron hardware to

perform an efficient NN through the activation function that designed inside the neuron without

using LTM. This design was performed using Schematic editor tools in reconfigurable device

(FPGA) program. The neural network description is modular, being possible to easily increase or

decrease the number of neurons. The description in the synchronous mode allowed us to exploit

this modularity and to maintain the accuracy of the results of the neural network. The resultant

neural networks are modular, compact, and efficient and the number of neurons, number of

hidden layers and number of inputs are easily changed the choice of dynamic range, precision

and arithmetic hardware architecture used in neural networks application has a direct impact on

the processing density achieved. Using suitable precision arithmetic design, one can be achieve

adequately high speed and small size for real time ANNs implementations.

References:-

[1] Assist. Prof. Dr. Hanan A. R. Akkar, 2M. Sc. Student Firas R. Mahdi , “

Implementation of Digital Circuits Using Neuro - Swarm Based on FPGA “,

International Journal of Advancements in Computing Technology Volume 2, Number

2, June, 2010 .

[2] John Wiley & Sons Ltd, “Computational Intelligence: An Introduction” , A. P.

Engelbrecht, 2007.

[3] F Morgan 1, S Cawley 1, B Mc Ginley 1, S Pande 1, LJ Mc Daid2, B Glackin2, J

Maher1, J Harkin2 , “Exploring the Evolution of NoC-Based Spiking Neural Networks

on FPGAs”, Bio-Inspired Electronics and Reconfigurable Computing Research Group

(BIRC), National University of Ireland, Galway, 2010.

[4] M.T. Tommiska, “Efficient Digital Implementation of the Sigmoid Function for

Reprogrammable Logic”, IEEE Proceedings, Computers and Digital Techniques, vol.

150, no. 6, pp. 403- 411, 2003.

[5] Haitham Kareem Ali and Esraa Zeki Mohammed “Design Artificial Neural Network

Using FPGA”IJCSNS International Journal of Computer Science and Network

Security, VOL.10 No.8, August, 2010

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 89

[6] M. Pearson, “Implementing SNNs for Real-Time Signal- Processing and Control

Applications: A Model-Validated FPGA Approach”, IEEE Trans. on Neural Nets, vol.

18, no. 5, 2007

[7] Suhap Sahin, Yasar Becerikli*, and Suleyman Yazici , ”Neural Network

Implementation in Hardware Using FPGAs” , Springer-Verlag Berlin Heidelberg 2006

.

[8] E. Ros., “Real-Time Computing Platform for Spiking Neurons (RT-Spike)”, IEEE

Transactions on Neural Networks, vol. 17(4), 2006.

[9] R. Raeisi and A. Kabir, “Implementation of Artificial Neural Network on FPGA”,

American Society for Engineering Education, Indiana and North Central Joint Section

Conference, 2006.

[10] Steven A. Guccione and Mario J. Gonzalez ″ A Neural Network Implementation

Using Reconfigurable Architectures″ Department of Electrical and Computer

Engineering, The University of Texas at Austin , USA, 1994.

[11] A. Muthuramalingam, S. Himavathi and E. Srinivasan, “Neural Network

Implementation Using FPGA: Issues and Application”, International Journal of

Information Technology, Vol. 4, No. 2, PP 86-92.

[12] R. H. Turner, R. F. Woods, “Highly efficient limited range multipliers for LUT- based

FPGA architecture”, IEEE transactions on vary large scale integration system Vol. 15,

No.10, 2004, PP 1113-1117.

 [13] B. Noory and V. Grozo, “A Reconfigurable Approach to Hardware Implementation

of Neural Network”, Canadian conference on Electrical and Computer Engineering

IEEE, CCGE1, 2003, PP1861-1863

[14] Amos R. Omondi , Jagath C. Rajapakse, “FPGA Implementations of Neural

Networks” , Flinders University, Adelaide, SA, Australia, Nanyang Tecnological

University, Singapore , Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The

Netherlands , © 2006 Springer

[15] Nordstrom, T. and Svensson, B. " Using and Designing Massively Parallel Computers

for Artificial Neural Networks" Journal of Parallel and Distributed Processing, no.3,

pp. 260-285, March 1998.

[16] Antony W. Savich, Medhat Moussa, and Shawki Areibi ,”The Impact of Arithmetic

Representation on Implementing MLP-BP on FPGAs: A Study” , IEEE

TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 1, JANUARY 2007 .

Journal of Engineering and Development, Vol. 16, No.3, Sep. 2012 ISSN 1813- 7822

 90

[17] Steven A. Guccione and Mario J. Gonzalez ″ A Neural Network Implementation

Using Reconfigurable Architectures″, Department of Electrical and Computer

Engineering, The University of Texas at Austin , USA, 1994.

[18] Yihua Liao , “Neural Networks in Hardware: A Survey”, Department of Computer

Science, University of California, Davis One Shields Avenue, Davis , 1999

[19]Hossein Sahoolizadeh, Ahmad Keshavarz, “A FPGA Implementation of

Neural/Wavelet Face Detection System”, Australian Journal of Basic and Applied

Sciences, 4(3): 379-388, 2010 , ISSN 1991-8178 , © 2010, INSInet Publication.

[20] Basma M. K. Younis, Basil Sh. Mahmood, Fakhraldeen H. Ali, “Reconfigurable Self-

Organizing Neural Network Design and it's FPGA Implementation”, Technical

Engineering College College of Electronics Computer Engineering Department ,In

Mosul University of Mosul University of Mosul , June 2009.

[21] Nasri Sulaiman, Zeyad Assi Obaid, M. H. Marhaban and M. N. Hamidon, “Design

and Implementation of FPGA-Based Systems - A Review”, Australian Journal of Basic

and Applied Sciences, 3(4): 3575-3596, 2009 , ISSN 1991-8178,Malaysia , © 2009,

INSInet Publication.

[22] Aydoğan Savran, Serkan Ünsal, “Hardware Implementation of a Feedforward Neural

Network Using FPGAs’, Ege University, Department of Electrical and Electronics

Engineering, 2003.

[23] Indranarain Ramlall , “Artificial Intelligence: Neural Networks Simplified”

University of Technology, Mauritius , International Research Journal of Finance and

Economics - Issue 39 (2010)

