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Abstract:  

 

 A linear algebraic method was introduce in [1, 2], in this paper, this method is used to 

design a linear compensators controller (LCC) which used together with another suggested 

disturbance reduction controller (DRC) to produce hybrid controller scheme. This hybrid 

controller is applied on single input-single output (SISO) second order linear unstable 

plants with linear disturbance, some of these plants may contains zero in right half plane.  

The first part of the hybrid controller scheme (the LCC) is used to stabilize the linear 

unstable systems by solving sets of linear algebraic equations, while the second part of the 

hybrid scheme (the DRC) is used to reduce the effect of the disturbance, in addition to 

improve the performance of LCC by reduce the oscillation, the error steady state, and the 

settling time of the system output response to reach the steady state. Many examples are 

tested to show the efficiency of this controller. 

Keyword: linear algebraic method, Diephantine equation, model matching, sliding mode 

controller, unstable linear second order plants, disturbance reduction. 

 

ة بواسطة تقليل تاثير الضوضاء من الانظمة الخطية الغير مستقرة ذات الدرجة الثاني

 طريقة المسيطر المزدوج

 

خلاصةال  

 

ففي هذاا البثذت تذم ادذمخداه هذار الطريقذة لمصذطيم ميذيطر  طذي  ,] [1, 2الطريقة الخطية الجبرية تم تناولها في مصدر 

((LCC     هذاا الطيذيطر تذم تطبيقذ  زدوجميذيطر مذ انليكونذ                                       يقلذليعطل مع مييطر أ ذر .

           علذ  منوومذذاط  طيذذة سيذذر ميذذمقرج مذذث الدروذذة ال انيذة و ووذذود                     ولذذد تاذذم  عذذ  هذذار الطنوومذذاط علذذ            

zero   نذو   الطنوومذاط مذث  عذ  هذار في الجانب الأيطث. علطذا أن هذارSISO   أي تمعامذل مذع خد ذاا واوذد وخ ذراج(

                                                                                                                                               واود(.

 الطنوومذذة ميذذمقرج  وادذذطة وذذل مجطوعذذة مذذث  ييذذمخده لجعذذل        وهذذو           زدوجالجذذزا الأوا مذذث الطيذذيطر مذذ

يذذيطر       الطعذذاد ط الجبريذذة,  ينطذذا الجذذزا الأ ذذر            ييذذمخده لمقليذذل تذذ  ير                    خدذذافة خلذذ  تثيذذيث أداا الط

دلذذة  مبارهذذا لبيذذانالعديذذد مذذث الأم لذذة تذذم ا  وذلذذب  مقليذذل الما ذذاط والخطذذ  عنذذد ا دذذمقرار و.مذذث ا دذذمقرار.                

                                                                                                                                           الطييطر.
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                                                                                                                Introduction 

 

The linear quadratic optimal control method and design through pole-zero pattern required to 

choose an overall close loop system to meet design specification, then choose un appropriate 

feedback configuration and compute the required compensation [1]. 

There are many possible f/b configuration, the simplest is the unity feedback  configuration as 

shown in Fig.(1-a). This configuration has one degree of freedom because the reference input 

r and the plant output y drive the same compensator to generate an actuating. A two degree of 

freedom configuration can be shown in Fig.(1-b) and Fig.(1-c), we can see that input r and the 

plant output y drive two independent compensator to generate u.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We call Fig.(1-b) two parameter configuration (because the controller has two input r, y and 

one output u, it is also called two input, one output configuration). The other configuration 

shown in Fig.(1-c) is called plant input-output configuration (it is a combination of state 

feedback and state estimator in the state variable approach, it is also called controllable-

observable configuration) [1, 2].  

One way to introduce coprime fraction design is to develop the Bezout identity (Diophantine 

equation) and to parameterize all stabilizing compensators. The coprime fractions are used to 

carry out designs to achieve model matching [2]. 

Model matching involves pole-zero cancellation. One degree of freedom cannot be used here 

because we have no freedom in selecting canceled poles. Any two degree of freedom 

configuration can be used because we have freedom in selecting cancelled poles.  
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Fig. (1): control configuration. 
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The linear algebraic method that achieve pole placement and model matching problem 

introduced by chen in [1] in which  the basic issue of this method is introduce. Hang in [3] 

discussed pole zero assignment and phase lag compensator. Hang was able to improve the 

disturbance rejection. However, the phase lag introduced a slow pole into the system make it 

sluggish. Chen in [4] applied the same examples of Hang and compare between phase lag, PI 

controller and linear algebraic method with increasing the degree of two compensator. Chen 

obtained best result than Hang for disturbance rejection. Chen [4] and Hang [3] used stable 

system. Chen in [5] introduced the linear algebraic method in which the overall system can be 

designed using quadratic optimal method, 


H method and computer simulation.  

In this paper, a hybrid controller scheme which is consists from linear compensator controller 

(LCC) and disturbance reduction controller (DRC) is applied for linear, unstable second order 

systems with disturbance. The LCC used two parameter configuration as shown in Fig(1-b). 

This method consists of two steps: selecting an implementable overall transfer function then 

the compensator can be obtained by solving sets of linear algebraic equations. 

 
Model Matching (Linear Algebraic Method) and Stabilizing Controllers 

 
Consider the two –parameter configuration(Fig.(1-b)) with two compensator  
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The closed loop transfer function of this configuration is [1, 2];  
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Let the plant represent as a ratio of two coprime polynomials 
)(

)(

sD

sN
, where the degree of N(s) 

is less than the degree of D(s) that is equal to n. The implementable transfer function 

)(

)(
)(

0

0

0
sD

sN
sG  (there are three constrains that must be satisfied to make the overall system is  

implementable for details see [1,2]). In this paper the implementable overall transfer function 

is chosen to minimize the performance index ITAE ( integral time with absolute error) [5]. 
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We can write the close loop transfer function as [2]; 
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Step 1:- compute 
)().(
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P

P
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Where )( sN
P

, )( sD
P

 are coprime polynomials.   

 

 

Step 2:- if degree of 12  npD
P

, introduced an arbitrary )( sD
P

 of degree 2n-1-p, which is 

Hurwitz polynomial (i.e. all its pole lies in the left half-s plane). Because this polynomial can 

be canceled in the design, its root should be chosen inside an acceptable pole-zero 

cancellation region. If degree 12  npD
P

, then set 1)( sD
P

. The case in which degree 

12  nD
P

will not be discussed [6]. 

 

 rewrite Eq. (5) as  
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By comparing Eq. (6) with Eq. (4) we get  

                 )()()( sDsNsL
PP

                                                             …. (7) 

 

                 )()()()()()( sDsDsNsMsDsA
PP

                                   …. (8) 

 

 

The Eq.(8) is called Diaphantine or Bezout equation [1, 2, 4, and 7], the details solution of 

this equation explained in [1, 2]. 

 

The Suggested Hybrid Controller Scheme (HCS)  

 

The block-diagram for the suggested controller scheme is shown in Fig.(2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (2):the suggested hybrid controller for linear unstable system. 
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As shown from this figure, the suggested HCS consists from two controllers. The first 

controller (with control action u1) is two –parameter configuration LCC with two 

compensator C1(s) and C2(s)  which is used to stabilize the linear unstable system by solving 

sets of linear algebraic method. The second controller with control action u2 is DRC which is 

used to reduce the effect of the linear disturbance d, in addition to improve the operation of 

the LCC. The total control signal u(t) for the controlled system is given by the following 

equation; 

                  )()()(
21

tututu                                                             …. (9) 
 

The details for the both controller in the suggested hybrid controller scheme are explain by 

the following subsections. 

 

1 Linear Compensator Design  

 
In order to explain the procedure (which is given in section II) to design the two compensator 

C1(s) and C2(s) for the unstable second order plants, the following example is considered.  

 

The open loop unstable transfer function [8]:  
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                                          …. (10) 

 

 

The implementable close loop transfer function (C.L.T.F) that minimizes the ITAE criteria is 

[9]: 
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The natural frequency 
n

  is chosen, so that the unit step response of 
)(

)(
0

sG

sG
magnitude less 

than 0.5, for example let the 
n

 =1.8841 rad/sec, then Eq.(11) will becomes; 

 

              
55.36.2

55.3
)(

20




ss
sG                                                  ….(12) 

 

The overall transfer function is called implementable if its satisfy following constrains [2]: 

 

(i) - All compensator used have proper rational T.F. 

(ii) - The configuration selected has no plant leakage in the sense that all forward path 

from r to y pass through the plant. 

(iii) -  The closed loop transfer function of every possible input-output pair is proper and 

BIBO stable [1]; 
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Compute 
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Because the degree of  )( sD
P

  is 2, then we introduced a Hurwitz polynomial )( sD of degree 

1, arbitrary choose it as (s+10), then  

 

       L(s) =1.755(s+10)                                                          …. (14) 

 

The solution of Diaphantine equation can obtained as; 
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According to our example, the Eq.(15) becomes; 
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And the polynomial A(s), M(s) can be obtained as;: 
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2 Disturbance Reduction Controllers 

 

The block-diagram for this controller is shown in Fig.(3).  

 

 

 

 

 

 

 

 

 

 

As can be shown from this figure, the suggested disturbance reduction controller (DRC) 

employ two nonlinear continues sliding mode controller(SMC), the first nonlinear SMC1 is 

given by: 

 

                  es(t)= ).tanh( e                                                              …. (20) 

 

where   is user design positive parameter. The purpose for using the SMC1 is to limit any 

input error to this SMC only between (-1 to 1). The second nonlinear continues SMC2 is 

describe by: 

              )tanh()(
2

mKtu
s

                                                        …. (21) 

where Ks is sliding gain, selected 1   for system contain zero in the right half plane, and it is 

selected 1  for system contain no zero or zero lie in the left half plane. 

The nonlinear function  m(t) is given by [10];  

              ).()(
p

q

ntm                                                    .... (22)                                                                                                 

 

where   > 0; q, and p are positive integers (p > q); p is odd, and  n(t) is designed as;  

              )()(
sdsp

eKeKtn                                               .... (23) 

where the proportional gain Kp and the derivative gain Kd are design parameters, with 

nonlinear function m(t), the sliding mode controller SMC2 (u2(t)) becomes; 
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The value of  Kp and Kd  can be selected in this paper according to the following cases: 

 

Fig. (3): The designed disturbance  reduction controller. 
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  (1)- if the tested plant have no zeros or have small gain (less than or equal 1), then the values 

of  Kp and Kd can selected as suitable number large than one which will make with other 

nonlinear SMC2 parameters values the performance of the overall controlled system have  

more accurate specifications like small overshoot, small settling time,….etc.   

  

  (2)- if the tested plant have small gain (less than or equal 1) with zero in the left half plane, 

then the value of  Kp can be selected large than one and Kd can selected (due to exist of 

zero) as a positive number less than one. 

 

  (3)- if the tested plant have zero in the right half plane, then the value of  Kp and Kd can 

selected as suitable positive number less than one. 

 

In summary, in this paper the designer can be selected the values of the DRC ( ,  , Kp, Kd, 

q, p, and Ks ) for testing the unstable plants according to the following Table(1).  

 

 

Table(1): the range for the selected parameters of the DRC 

 

Plant     Kp Kd q p Ks 

Plant with 

no zero  

and/or with 

small gain 

21    1  Kp > 1 Kd > 1 Integer 

10  

Integer 

odd 11  

1
s

K  

Plant with  

zero on lift 

half plane 

21    1  1
p

K  10 
d

K  Integer 

10  

Integer  

odd 11  

1
s

K  

Plant with  

zero on 

right half 

plane 

21    1  10 
p

K  10 
d

K  Integer 

6  

Integer 

odd 7  

1
s

K  

 
  is select 21    because if it is more than 2 this may be led to increase the oscillation in 

the output response. 

 

The DRC is not reduce the effect of the disturbance only, but  it also improve the performance 

of the first controller u1(t) by reduce the oscillation and the steady state error Es.s from the 

output response. Therefore, the control action of the disturbance reduction controller u2(t) will 

have zero or a very small value (when there is no disturbance, oscillation or Es.s) and hence 

the total control signal u(t) will still nearly equivalent to the first controller u1(t). If there is a 

disturbance or other problem like oscillation or Es.s in the system output then the control 
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action u2(t) will add a another value to the first controller u1(t), hence  the total control signal 

u(t) will have different value from (not equivalent to) the first controller u1(t). 

 

Simulation Results 

 
In this section, the Matlab Simulink (version 7.0) can be used to simulated the suggested 

hybrid controller with different unstable examples. Five linear unstable second order plants 

with unit step input and linear disturbance are tested by the two parameter LCC configuration 

(Fig. (1.b)) and by the suggested HCS to illustrate the improve properties of the suggested 

approach on the controlled examples as it compare with the LCC. 

 

The five linear unstable second order examples are given as following:  

 

 Ex1: Linear unstable plant with poles only (no zeros) 

  

The open loop transfer function for this unstable example is given by;    
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The natural frequency is chosen as 5.6 rad/sec., and )9.31912.7(
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. The 

implementable closed loop transfer function 
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With the  procedure discuss in section II, the compensator C1(s) and C2(s) for this example 

becomes: 
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The Suitable control parameters for the DRC are given in Table (2), 

 

 

                                         
                                                    Table(2): the DRC parameters  for Ex.1 

 

Parameters   Kp Kd   q  p Ks 

values 2 15 3 8 14 15 2 
 

 

A  unit step input  and a disturbance( d=-1 begin at t=5 sec.) are used to test the closed loop 

control system with LCC and with HCS,  then the output responses and the control signals are  

shown in Fig.(4).  
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 Ex2: Linear unstable plant  with zero on left  side 

 

A zero=-2 is add to the previous example (Ex1), therefore the unstable open loop transfer 

function for this example is;    
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The implementable closed loop transfer function 
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Following the procedure discuss in section II, the compensator C1(s) and C2(s) for this 

example becomes: 
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The suitable control parameters for the DRC are given in Table (3),  
 

 

                                          

Table(3): the DRC parameters  for Ex.2 

 

Parameters   Kp Kd   q  p Ks 

values 2 15 0.1 3.8 14 15 1 

 

 

This example is  tested  by unit step input and  a disturbance (d=-0.8 begin at t=6 sec.), the 

output responses and the control  signals for this simulation are shown in Fig.(5). 

  

 Ex3: Ex1 with zero on right side  

Consider the following unstable plant, which is described by [2]:  
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The implementable C.L.T.F that minimizes ITAE is: 
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Br applying the procedure of  section II., we get  
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The parameters for the suggested DRC are given by Table(4). 

    
Table(4): the DRC parameters  for Ex.3 

 

Parameters   Kp Kd   q  p Ks 

values  1 0.0008 0.001 6 8 9 -3 

 

 

This example is  tested  by unit step input and  a disturbance (d=-0.5 begin at t=5 sec.), the 

output response and the control  signal for this simulation are shown in Fig.(6). 

 
 Ex4:  Linear unstable plant with poles only (no zeros) 

     

 Consider the example that is described in subsection III.1 with the following transfer function 

[8]; 
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with 
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The parameters for the suggested DRC are given by Table(5).   

                                      
Table(5): the DRC parameters  for Ex.4 

 

Parameters   Kp Kd   q  p Ks 

values  2 15 3 5 16 17 4 
 

if unit step input  and a disturbance (d=-1 begin at t=7 sec.) are used to test the closed loop control 

system with LCC and with HCS,  then the output responses and the control signals are  shown in 

Fig.(7).  

 

 Ex5: Linear unstable plant with zero on right  side 

  

Consider a second-order unstable open-loop plant, described by the transfer function [11], 

              
0.92865.0

2
)(

2





ss

s
sG                                             ….(36) 

  

The implementable closed loop transfer function 

              
329.7

)2(16
)(

20






ss

s
sG                                                     ….(37) 

(The closed loop T.F is implementable if and only if  
)(

)(
0

sG

sG
 are proper and stable that’s mean 

all zero of N(s) with zero or positive real parts are retained in )(
0

sN [2]). 

Then using the procedure of linear algebraic method, we can obtained  
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L(s) =-16(s+10),   A(s) =s+97.45, M(s) =-(79.05 s+1.634)                                                                                                                                                                                                    

 

45.97

)10(16
)(

1






s

s
sC  ,        

45.97

)634.105.79(
)(

2


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

s

s
sC                      ….(38) 

 

The parameters for the suggested DRC are given by Table(6).   

                                    
Table(6): the DRC parameters  for Ex.5 

 

Parameters   Kp Kd   q  p Ks 

values  2 0.001 0.0015 6 6 7 -3 

 

This example is  tested  by unit step input and  a disturbance (d=-0.6 begin at t=6 sec.) The 

output response and the control  signal for this simulation are shown in Fig.(8). 

 

We can see from the above five simulation examples the following points: 

 

1. the LCC stabilize the five tested linear unstable plants and it still maintain the  stability 

even a disturbance is occurs, and the output response of these test examples flow the 

desired input with zero or very small Es.s if there is no  disturbance. 

 

2. the output response of the control system flow the desired input with HCS more 

smoothly than with LCC, also with HCS the effect of disturbance is more reduced than 

with the LCC specially when the plants contain no zeros on right half plane. 

 

3. The total control signal with the HCS is nearly equivalent to the control signal with the 

LCC, but it is some times increase or decrease from the control signal with LCC 

according to existence of the disturbance, or to improve the operation of the LCC and 

hence improve the performance of the output controlled system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig(4):the response for Ex.1 with d=-1 sec. begin at t=5 sec.   (a): the output signal.    (b): the control signal.  
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Fig(5):the response for Ex.2. with d=-0.8 sec. begin at t=6 sec.  (a): the output signal.    (b): the control signal.  
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Fig(6):the response for Ex.3  with d=-0.5 sec. begin at t=5 sec.  (a): the output signal.    (b): the control signal.  
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Fig(7):the response for Ex.4 with d=-1 sec. begin at t=7 sec.  (a): the output signal.    (b): the control signal.  
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Conclusion 

 

In this paper, hybrid controller scheme (HCS) for controlling the linear unstable second order 

plants with disturbance reduction is suggested. This controller consist from two controller, the 

first one is linear compensator controller (LCC) used to stabilize the unstable system, this 

linear compensator designs by forming set of linear equations. The procedure for the design 

appears to be simpler than the state variable and also appear to be simpler than conventional 

root locus method or frequency- domain method. 

While the second controller of the HCS is disturbance reduction controller (DRC) designed 

by using  two sliding mode controller (SMC), used to improve the operation of the LCC and 

to reduce the effect of the disturbance with small effected on the control signal of the LCC. 

The many examples that are tested by the LCC and the suggested HCS show the efficiency of 

our suggested scheme.  

At last, we suggest testing the HCS with the nonlinear unstable systems. 
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Fig(8):the response for Ex.5 with d=-0.6 sec begin at t=6 sec.   (a): the output signal.    (b): the control signal.  
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