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Abstract:

A linear algebraic method was introduce in [1, 2], in this paper, this method is used to
design a linear compensators controller (LCC) which used together with another suggested
disturbance reduction controller (DRC) to produce hybrid controller scheme. This hybrid
controller is applied on single input-single output (SISO) second order linear unstable
plants with linear disturbance, some of these plants may contains zero in right half plane.
The first part of the hybrid controller scheme (the LCC) is used to stabilize the linear
unstable systems by solving sets of linear algebraic equations, while the second part of the
hybrid scheme (the DRC) is used to reduce the effect of the disturbance, in addition to
improve the performance of LCC by reduce the oscillation, the error steady state, and the
settling time of the system output response to reach the steady state. Many examples are
tested to show the efficiency of this controller.

Keyword: linear algebraic method, Diephantine equation, model matching, sliding mode
controller, unstable linear second order plants, disturbance reduction.
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Introduction

The linear quadratic optimal control method and design through pole-zero pattern required to
choose an overall close loop system to meet design specification, then choose un appropriate
feedback configuration and compute the required compensation [1].

There are many possible f/b configuration, the simplest is the unity feedback configuration as
shown in Fig.(1-a). This configuration has one degree of freedom because the reference input
r and the plant output y drive the same compensator to generate an actuating. A two degree of
freedom configuration can be shown in Fig.(1-b) and Fig.(1-c), we can see that input r and the
plant output y drive two independent compensator to generate u.
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Fig. (1): control configuration.

We call Fig.(1-b) two parameter configuration (because the controller has two input r, y and
one output u, it is also called two input, one output configuration). The other configuration
shown in Fig.(1-c) is called plant input-output configuration (it is a combination of state
feedback and state estimator in the state variable approach, it is also called controllable-
observable configuration) [1, 2].

One way to introduce coprime fraction design is to develop the Bezout identity (Diophantine
equation) and to parameterize all stabilizing compensators. The coprime fractions are used to
carry out designs to achieve model matching [2].

Model matching involves pole-zero cancellation. One degree of freedom cannot be used here
because we have no freedom in selecting canceled poles. Any two degree of freedom
configuration can be used because we have freedom in selecting cancelled poles.
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The linear algebraic method that achieve pole placement and model matching problem
introduced by chen in [1] in which the basic issue of this method is introduce. Hang in [3]
discussed pole zero assignment and phase lag compensator. Hang was able to improve the
disturbance rejection. However, the phase lag introduced a slow pole into the system make it
sluggish. Chen in [4] applied the same examples of Hang and compare between phase lag, PI
controller and linear algebraic method with increasing the degree of two compensator. Chen
obtained best result than Hang for disturbance rejection. Chen [4] and Hang [3] used stable
system. Chen in [5] introduced the linear algebraic method in which the overall system can be
designed using quadratic optimal method, H , method and computer simulation.

In this paper, a hybrid controller scheme which is consists from linear compensator controller
(LCC) and disturbance reduction controller (DRC) is applied for linear, unstable second order
systems with disturbance. The LCC used two parameter configuration as shown in Fig(1-b).
This method consists of two steps: selecting an implementable overall transfer function then
the compensator can be obtained by solving sets of linear algebraic equations.

Model Matching (Linear Algebraic Method) and Stabilizing Controllers

Consider the two —parameter configuration(Fig.(1-b)) with two compensator
L(s)

C .1
O M
cz(s):M(s) ... (2)
A(s)
The closed loop transfer function of this configuration is [1, 2];
Go(s)—M ....(3)

T 14C,(s)G(s)

N (s)
D (s)

Let the plant represent as a ratio of two coprime polynomials , Where the degree of N(s)

is less than the degree of D(s) that is equal to n. The implementable transfer function

PRLNC

(there are three constrains that must be satisfied to make the overall system is

oS
implementable for details see [1,2]). In this paper the implementable overall transfer function
is chosen to minimize the performance index ITAE (integral time with absolute error) [5].

N (s) L(s)
D(s) A(s) N (s)L(s)
L M) NEs) ~ A(s)D(s) + M (s)N (s)
A(s) D(s)

Gy(s) =

. (4

We can write the close loop transfer function as [2];
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Step 1:- compute G,() _ N N,(5)

N(s) D,(s) D,(s).N(s)

.. (5)

Where N, (s), D, (s) are coprime polynomials.

Step 2:- if degree of D, = p < 2n — 1, introduced an arbitrary o, (s) of degree 2n-1-p, which is

Hurwitz polynomial (i.e. all its pole lies in the left half-s plane). Because this polynomial can
be canceled in the design, its root should be chosen inside an acceptable pole-zero

cancellation region. If degreep, = p = 2n -1, then set ETP (s)=1. The case in which degree
D, > 2n - 1will not be discussed [6].

rewrite Eq. (5) as

N(s)N,(s) D, N(s)N,(s)D,

G,(s)= P ....(6)
D, D, D,D,
By comparing Eqg. (6) with Eq. (4) we get
L(s)=N,(s)D,(s) ... (7
A(s)D(s)+ M (s)N(s) = D, (s)D, (s) ....(8)

The Eq.(8) is called Diaphantine or Bezout equation [1, 2, 4, and 7], the details solution of
this equation explained in [1, 2].

The Suggested Hybrid Controller Scheme (HCS)

The block-diagram for the suggested controller scheme is shown in Fig.(2).

d
+
= (O co —
N
Ca(s)

Uz

DRC

Fig. (2):the suggested hybrid controller for linear unstable system.
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As shown from this figure, the suggested HCS consists from two controllers. The first
controller (with control action ui) is two —parameter configuration LCC with two
compensator Cy(s) and Cz(s) which is used to stabilize the linear unstable system by solving
sets of linear algebraic method. The second controller with control action uz is DRC which is
used to reduce the effect of the linear disturbance d, in addition to improve the operation of
the LCC. The total control signal u(t) for the controlled system is given by the following
equation;
u(t) =u, (t) +u,(t) ....(9

The details for the both controller in the suggested hybrid controller scheme are explain by
the following subsections.

1 Linear Compensator Design

In order to explain the procedure (which is given in section Il) to design the two compensator
C1(s) and Cx(s) for the unstable second order plants, the following example is considered.

The open loop unstable transfer function [8]:

Y(s): 2 :N(s) (10)
U(s) s’ -4 D(s)

G(s) =

The implementable close loop transfer function (C.L.T.F) that minimizes the ITAE criteria is

[9]:
N, (s) a):

= 2 2
D,(s) s" +l4do s+o,

... (1)

G,(s) =

G .
- (s)) magnitude less

The natural frequency »_ is chosen, so that the unit step response of

than 0.5, for example let the »  =1.8841 rad/sec, then Eq.(11) will becomes;

G,(s)=— 3.9 ....(12)
s" +2.6s+ 3.55

The overall transfer function is called implementable if its satisfy following constrains [2]:

(1) - All compensator used have proper rational T.F.

(i) - The configuration selected has no plant leakage in the sense that all forward path
from r to y pass through the plant.

(ili) - The closed loop transfer function of every possible input-output pair is proper and

BIBO stable [1];
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Compute 1) = N, (5) = N, ()

N (s) D.(s) D,(s)-N(s)

N, (s) 1.775
= 2
D, (s) S" +2.6s5+ 3.55

... (13)

Because the degree of D, (s) is 2, then we introduced a Hurwitz polynomial D (s) of degree
1, arbitrary choose it as (s+10), then

L(s) =1.755(s+10) ... (14)

The solution of Diaphantine equation can obtained as;
[D, N
I D, N

1 1

.. (15)

0
D
b, N, D, N, Il A
L0 0 D

Where
F(s)=DD, =F,s*+F,s" + Fs+F,
D(s)=D,s’+D,s+ D, (16)

N(s)=N,s"+N;s+N,
According to our example, the Eq.(15) becomes;

-4 2 0 OJA

. (17)

o +» O

o o o
o
o
>

[
i
|
|
L

And the polynomial A(s), M(s) can be obtained as;:

A(s)= A, + As=s+12.6
.. (18)
M(s)=M_ +M s=16.75s + 42 .95

L) andc, (s) = M (s)
A(s) A(s)

Since compensator ¢, (s) = , therefore

1.755 (s +10) 16 755 + 42 .95
C(s)y=—, C,(s)=

s+12.6 s+12 .6

.. (19)
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2 Disturbance Reduction Controllers

The block-diagram for this controller is shown in Fig.(3).

SMC1 SMC:2

—»e(t) tanh( «.e) (Y % n(H

\ 4

t
K, tanh( m) at )>

\ 4
A
|=

Fig. (3): The designed disturbance reduction controller.

As can be shown from this figure, the suggested disturbance reduction controller (DRC)
employ two nonlinear continues sliding mode controller(SMC), the first nonlinear SMCy is
given by:

es(t)=tanh( «.e) ....(20)

where « is user design positive parameter. The purpose for using the SMC; is to limit any
input error to this SMC only between (-1 to 1). The second nonlinear continues SMC: is
describe by:

u,(t) = K_ tanh( m) ....(21)

where Ksis sliding gain, selected <1 for system contain zero in the right half plane, and it is
selected > 1 for system contain no zero or zero lie in the left half plane.

The nonlinear function m(t) is given by [10];
m(t) = (ﬂ.nA) ... (22)
where g > 0; ¢, and p are positive integers (p > q); p is odd, and n(t) is designed as;

n(t) = (K e, + K ¢,) ... (23)
where the proportional gain K, and the derivative gain Kq are design parameters, with
nonlinear function m(t), the sliding mode controller SMC; (u2(t)) becomes;

u,(t) = K _ tanh( ﬁ.n%) ....(24)

The value of Kpand Kq can be selected in this paper according to the following cases:
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(1)- if the tested plant have no zeros or have small gain (less than or equal 1), then the values
of Kpand Kg can selected as suitable number large than one which will make with other
nonlinear SMC, parameters values the performance of the overall controlled system have
more accurate specifications like small overshoot, small settling time,....etc.

(2)- if the tested plant have small gain (less than or equal 1) with zero in the left half plane,
then the value of Kpcan be selected large than one and Kg can selected (due to exist of
zero) as a positive number less than one.

(3)- if the tested plant have zero in the right half plane, then the value of K, and Kq can
selected as suitable positive number less than one.

In summary, in this paper the designer can be selected the values of the DRC (« , g, Kp, Kq,

g, p, and Ks ) for testing the unstable plants according to the following Table(1).

Table(1): the range for the selected parameters of the DRC

Plant q p

Plant with > Integer | Integer

no zero > 10
and/or with
small gain

odd> 11

Plant with > Integer | Integer
zero on lift > 10

half plane 0dd: 11

Plant with > i Integer | Integer
zero on > 6
right half

plane

odd > 7

a isselect 1 < o« < 2 because if it is more than 2 this may be led to increase the oscillation in
the output response.

The DRC is not reduce the effect of the disturbance only, but it also improve the performance
of the first controller uy(t) by reduce the oscillation and the steady state error Ess from the
output response. Therefore, the control action of the disturbance reduction controller ux(t) will
have zero or a very small value (when there is no disturbance, oscillation or Ess) and hence
the total control signal u(t) will still nearly equivalent to the first controller us(t). If there is a
disturbance or other problem like oscillation or Ess in the system output then the control
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action u(t) will add a another value to the first controller ui(t), hence the total control signal
u(t) will have different value from (not equivalent to) the first controller us(t).

Simulation Results

In this section, the Matlab Simulink (version 7.0) can be used to simulated the suggested
hybrid controller with different unstable examples. Five linear unstable second order plants
with unit step input and linear disturbance are tested by the two parameter LCC configuration
(Fig. (1.b)) and by the suggested HCS to illustrate the improve properties of the suggested
approach on the controlled examples as it compare with the LCC.

The five linear unstable second order examples are given as following:

e Ex1: Linear unstable plant with poles only (no zeros)

The open loop transfer function for this unstable example is given by;

1
(s> —1) (s—1)(s+1)

G(s) = ....(25)

The natural frequency is chosen as 5.6 rad/sec., andD = (s’ +7.912 s+31.9). The

implementable closed loop transfer function
32

G,(s) = ——— ....(26)
s" +7.9s5+ 32

With the procedure discuss in section Il, the compensator C1(s) and Cx(s) for this example
becomes:

31.95 + 319 1112 s + 336 .9
C,(s)=——m—, C,(s)=—m—— ....(27)
1 2
s +17.91 s +17.91

The Suitable control parameters for the DRC are given in Table (2),

Table(2): the DRC parameters for Ex.1

Parameters | « Kp Kd B q p Ks
values 2 15 3 8 14 15 2

A unit step input and a disturbance( d=-1 begin at t=5 sec.) are used to test the closed loop
control system with LCC and with HCS, then the output responses and the control signals are
shown in Fig.(4).
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Ex2: Linear unstable plant with zero on left side

A zero=-2 is add to the previous example (Ex1), therefore the unstable open loop transfer
function for this example is;

G(s) = 3:2 = sr2 ....(28)
(s” -1) (s=1)(s+1)
The implementable closed loop transfer function
PR S . 29)
S" 4+ 7.95 + 32

Following the procedure discuss in section Il, the compensator Ci(s) and Cx(s) for this
example becomes:

32 7.9s + 33

C,(s) = , C,(s) = ... (30)
S+ 2 S+ 2
The suitable control parameters for the DRC are given in Table (3),
Table(3): the DRC parameters for Ex.2
Parameters | « Kp Kd B q p Ks

values 2 15 0.1 3.8 14 15 1

This example is tested by unit step input and a disturbance (d=-0.8 begin at t=6 sec.), the
output responses and the control signals for this simulation are shown in Fig.(5).

Ex3: Ex1 with zero on right side
Consider the following unstable plant, which is described by [2]:

(s-2)

G(s)=—; ....(31)
s” -1
The implementable C.L.T.F that minimizes ITAE is:
Go(s):z_(s—_z) ....(32)
S+ 25+ 2
Br applying the procedure of section Il., we get
cl(s)z_(SM) , Cz(s):M ....(33)
s +18 s +18
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The parameters for the suggested DRC are given by Table(4).

Table(4): the DRC parameters for Ex.3

Parameters | « Kp Kd )i} q p Ks
values 1 10.0008 | 0.001 6 8 9 -3

This example is tested by unit step input and a disturbance (d=-0.5 begin at t=5 sec.), the
output response and the control signal for this simulation are shown in Fig.(6).

e Ex4: Linear unstable plant with poles only (no zeros)

Consider the example that is described in subsection I11.1 with the following transfer function

[8];

G(s) = Y6 | 22 ....(34)
U(s) s -4
with
Cl(5)20.755 (s +10) o ):17.0255+42.95 .. (35)
s+12.6 s+12.6
The parameters for the suggested DRC are given by Table(5).
Table(5): the DRC parameters for Ex.4
Parameters | « Kp Kd B q p Ks
values 2 15 3 5 16 17 4

if unit step input and a disturbance (d=-1 begin at t=7 sec.) are used to test the closed loop control
system with LCC and with HCS, then the output responses and the control signals are shown in

Fig.(7).

Ex5: Linear unstable plant with zero on right side

Consider a second-order unstable open-loop plant, described by the transfer function [11],

-2
G(s) = — ° ....(36)
s’ - 0.5s + 0.9286

The implementable closed loop transfer function

Go(s):z_lej(;z) ....(37)
s" +7.95+ 32

.. . .. G
(The closed loop T.F is implementable if and only if 8, are proper and stable that’s mean
G (s)

all zero of N(s) with zero or positive real parts are retained in N (s) [2]).
Then using the procedure of linear algebraic method, we can obtained

251



Output Signal

Journal of Engineering and Development, Vol. 16, No.4, Dec. 2012 ISSN 1813- 7822

L(s) =-16(s+10), A(s) =s+97.45, M(s) =-(79.05 s+1.634)

Cl(s):—16(s+10) | Cz(s):—(79.05$+1.634) ..(39)
s + 97 .45 s+ 97.45
The parameters for the suggested DRC are given by Table(6).
Table(6): the DRC parameters for Ex.5
Parameters | « Kp Ky Vi q p Ks
values 2 |0.001]|0.0015| 6 6 7 -3

This example is tested by unit step input and a disturbance (d=-0.6 begin at t=6 sec.) The
output response and the control signal for this simulation are shown in Fig.(8).

We can see from the above five simulation examples the following points:

1. the LCC stabilize the five tested linear unstable plants and it still maintain the stability
even a disturbance is occurs, and the output response of these test examples flow the
desired input with zero or very small Es;s if there is no disturbance.

2. the output response of the control system flow the desired input with HCS more

smoothly than with LCC, also with HCS the effect of disturbance

is more reduced than

with the LCC specially when the plants contain no zeros on right half plane.

3. The total control signal with the HCS is nearly equivalent to the control signal with the
LCC, but it is some times increase or decrease from the control signal with LCC
according to existence of the disturbance, or to improve the operation of the LCC and

hence improve the performance of the output controlled system.

Fig(4):the response for Ex.1 with d=-1 sec. begin at t=5 sec. (a): the output signal. (b): the control signal.
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Output Signal

Output Signal
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Fig(5):the response for Ex.2. with d=-0.8 sec. begin at t=6 sec. (a): the output signal. (b): the control signal.
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Fig(6):the response for Ex.3 with d=-0.5 sec. begin at t=5 sec. (a): the output signal. (b): the control signal.
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Fig(7):the response for Ex.4 with d=-1 sec. begin at t=7 sec. (a): the output signal.
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Fig(8):the response for Ex.5 with d=-0.6 sec begin at t=6 sec. (a): the output signal. (b): the control signal.

Conclusion

In this paper, hybrid controller scheme (HCS) for controlling the linear unstable second order
plants with disturbance reduction is suggested. This controller consist from two controller, the
first one is linear compensator controller (LCC) used to stabilize the unstable system, this
linear compensator designs by forming set of linear equations. The procedure for the design
appears to be simpler than the state variable and also appear to be simpler than conventional
root locus method or frequency- domain method.

While the second controller of the HCS is disturbance reduction controller (DRC) designed
by using two sliding mode controller (SMC), used to improve the operation of the LCC and
to reduce the effect of the disturbance with small effected on the control signal of the LCC.
The many examples that are tested by the LCC and the suggested HCS show the efficiency of
our suggested scheme.

At last, we suggest testing the HCS with the nonlinear unstable systems.
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