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Abstract 
 
This paper discusses Different constitutive relations of generalized circular polarization 

in chiral media by using Maxwell’s equations. In a chiral medium for fields with 

generalized circular polarizations, the Maxwell equations and constitutive relations have 

the same form in the achiral medium, but the equivalent material parameters differ for 

field with different circular polarization. Thus a wave of circular polarization (left or 

right) propagates with the same wave number regardless of its direction of propagation. 

In this paper, electromagnetic scattering characteristics by general bi-isotropic objects 

are investigated based on the surface integral equations. By applying the surface 

equivalent principle, electromagnetic fields inside a homogeneous bi-isotropic region 

can be represented in terms of equivalent electric and magnetic currents distributed over 

its boundary surface. 

Keywords: Chiral media; Maxwell equations; circular polarization; left-hand circularly 

polarized; right-hand circularly polarized. 
 

 الخلاصة
  

باستخدام  chiralت الأساسية المختلفة المولدة للاستقطاب الدائري في وسط في هذا البحث تم مناقشة العلاقا

للمجالات المتولدة من الاستقطاب الدائري تكون معادلات ماكسويل لها نفس   chiralمعادلات ماكسويل. في الوسط 

طريقة فان موجات لكن معامل معدلات المواد يختلف مع اختلاف الاستقطاب الدائري. وبهذه ال  achiralوسط صيغة 

الاستقطاب الدائري )اليمين واليسار( تنتشر بنفس الطول ألموجي بغض النظر عن اتجاه انتشار الموجة. في هذا البحث 

بناءا على معادلات تكامل  bi-isotropicتم التوصل ايضا إلى مميزات الاستطارة الكهرومغناطيسية في وسط 

يكون تمثيل المجال الكهرومغناطيسي داخل  منطقة  الوسط المتجانس  السطوح. بواسطة تطبيق مبدأ تساوي السطوح

bi-isotropic .في حدود مكافئة للتيارات الكهربائية والمغناطيسية الموزعة فوق حدود السطح 

 

Introduction 
 

Since the beginning of the nineteen century, the geometric concept of Chirality had 

numerous implications in a variety of fields such as chemistry, optics, particle physics and 

most recently, electromagnetics. Chirality or handedness was found to be the origin of the 

physical phenomenon of optical activity [1-6]. Various forms of constitutive relation have 

been formulated to describe the electromagnetic characteristics of chiral media and 

bi-isotropic media. Details descriptions of these constitutive relations and discussions on 

the constitutive parameters are been given in [7-10]. 
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A chiral material is one that has a distinct left or right handedness about its structure, 

arising from hand molecules or from handed scattering particles such helices. The 

electromagnetic consequence is that left hand circularly polarized wave’s travel with 

difference velocity and absorption from right hand waves. Thus chirality is a generalization 

of the more familiar phenomenon of optical activity [4,6,11]. The modern history of chiral 

media in electromagnetic started in 1979 ref. [1] they presented a solid theoretical 

explanation. Considerable researchers have been devoted to numerical analysis of three 

dimensional arbitrary shaped bi-isotropic objects. Most of them focused on chiral scatterer, 

a special case of bi-isotropy. Dmitrenko, et [12] analyzed chiral bodies by using a T-matrix 

method, whereas this method suffers the deficiency of stable convergence, especially when 

the object to be modeled has a surface of complex shape.  

This paper concerns with the some constitutive relations of circular polarization in chiral 

media. Also several widely used constitutive relations are discussed. This paper 

particularly is dedicated to the analysis of the scattering by general bi-isotropic objects 

based on the surface integral equation (SIE) method.  

This paper is organized as following. In the following section, constitutive relations and 

analysis of chiral media are discussed. Sections III presents the generalized circular 

polarization in chiral media. Section IV, the scattering characteristics of general 

bi-isotropic objects is discussed in details. Numerical results of bi-isotropic sphere are 

given in section VI and the final section gives the concluding remarks.   

 

Theory and Constitutive Relations 
 

In this section, a homogeneous isotropic chiral medium is characterized by three (complex) 

parameters. These are the electric permittivity  , the magnetic permeability   and the 

chirality measure  .thus the constitutive relations we use in this study are given by  

 

D E i H    

                                          (1) 

B H i E    

                               

Where E , H  are the electric and magnetic fields, and ,D B  the electric and magnetic flux 

densities, respectively. The correspondence between the electric induction ( , )D r t and 

electric field strength ( , )E r t  given by [13] 

 , ) , )D r t E r t                                            (2) 

 

Where the electric permittivity   depends on the properties of the medium requires. In 

the general case equation (2) that the electric displacement ( , )D r t  depends only on ( , )E r t  

determined at the same point and moment. One refinement consists in the fact that the 
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electric displacement ( , )D r t depends not only on ( , )E r t  but also on its time derivative. For 

an arbitrary dependence of ( , )E r t on t, Equation (2) is not valid. However, when the field 

follows the harmonic dependence, i.e. there are time-independent vectors ( )D r  and ( )E r   

(which are complex amplitudes): 

 ( , ) R e ( ) e x p ( )E r t E r i t  

                                      (3)                    

 ( , ) R e ( ) e x p ( )D r t D r i t  

 

Then Equation (2) is correct, but the coefficient   depends on the frequency, ( )    

this frequency dependence may not be taken into account only when the Fourier spectrum 

of these quantities is rather narrow, i.e. the process is close to the harmonic one. Further we 

will consider only the harmonic processes and refer to ( )E r  and ( )D r  as the electric 

field strength and displacement, respectively. The complex amplitudes ( )H r  and ( )B r , i.e. 

the magnetic field strength and induction, are introduced in a similar manner, the other 

deals with spatial dispersion, i.e. with the fact that the electric displacement ( )D r  depends 

not only on ( )E r  but also on its spatial derivatives. In the media where this effect is 

substantial, Equation (2) is not correct for arbitrary spatial dependences of the fields. Only 

when the fields vary in space as in a plane wave, this formula still holds, but   depends 

on the direction of the normal N to the wave front: 

 

( ) ( ) ( )D r N E r                                               (4) 

 

The permittivity ( )N  is a tensor and not a scalar even in an isotropic medium. For 

arbitrary dependences of the fields on r, the first spatial derivatives of ( )E r  enter the 

electric displacement ( , )D r t  only through the combination ( )ro tE r  [14]. Since the fields 

( , )D r t  and ( )E r , as well as ( )B r  and ( )H r  for harmonic oscillations in points with no 

extraneous currents satisfy the homogeneous Maxwell equations 

   

      ,   ,  r o r H i D r o t E i B

c


                                          (5)  

                           

The constitutive relations linking these vectors can be written in the symmetric form 

excluding their explicit derivatives: 

 

    , D E i H B H i E                                            (6)    

                                    

Here  ,   and   are the material constants, which do not depend on the field structure 

[1-3]. There are some other forms of these relations in the literature, which are equivalent 
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in essence. 

The cross-terms arising in Equation (6) can be explained without considering the non-local 

dependence of D  on E  (and correspondingly B  on H ). The term proportional to H , 

which is included in D , means that a current induced by an alternating magnetic field in the 

elements of a chiral medium causes not only a magnetic dipole moment but also an electric 

dipole moment. Due to the reciprocity requirement, the alternating electric field induces in 

such elements the current which in turn gives rise to both the electric and magnetic dipole 

moments, i.e. the magnetic flux density is also proportional to E . In media with no 

absorption affects the material constants  ,   and   are real. Notice that the coefficients 

of the cross- terms in Equation (6) are complex conjugated, since the medium properties 

should be otherwise nonreciprocal. We assume the constants  ,  , and   to be scalar, i.e. 

we consider isotropic chiral media, which are most interesting for radio physics. In the 

next section we consider some formal properties of solutions to the homogeneous Maxwell 

equations satisfying constitutive relations in Equation (6). 

 

Generalized Circular Polarization 

 

The electrodynamics behaviors of any homogeneous medium can be naturally 

characterized by the field structure pertinent to eigenwaves, which can propagate in the 

medium along an axis z so that all the components of the waves depend on z via the 

factor ex p ( )ih z . In an isotropic unbound medium the axis z can be any straight line. 

In an achiral medium ( 0 )   the eigenwaves are, for example, two linearly polarized 

plane waves: 

                        

    
1

e x p  , e x pE ih z H ih zyx 

                                      (7a) 

 

    
1

e x p  , e x pE h z H ih zy x


                                       (7b) 

 

Where 

    ,   ,  h k n n


  



                                          (8) 

 

These waves have the same propagation constants h and any linear combination of the 

waves is the eigenwave too. If the coefficients of this linear combination are complex, then 

the wave need not be linearly polarized. 

In a chiral medium  0  , the waves corresponding to Equation (6) cannot exist 

independently, only two of their linear combinations are eigenwaves 
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   

   

   

   

e x p  ,  e x p

1
e x p  , e x p

e x p  ,  e x p

1 1
e x p  , e x p

E ih E i ihx z y z

i
H ih H ihx z y z

E ih E i ihx z y z

H ih H ihx z y z

 

 

     



     




     



     


                                (9a) 

 

The propagation constants of these waves are different and 

 

       h k n  


                                        (9b) 

 

The wave corresponding to Equation (9a) is left-hand circularly polarized, while the other 

wave Equation (9b) has right-hand circular polarization. In these waves the electric and 

magnetic fields are coupled by the relations 

 

         
i

H E



  


                                        (10) 

 

In a chiral medium any fields ,E H
 

, and ,E H
 

 satisfying Equation (10) can exist 

independently. These fields are naturally referred to as the fields with generalized circular 

polarization [15]. The upper sign in Equation (10) corresponds to the left-hand circular 

polarization, the lower sign to the right-hand one. 

Any field E, H can be written as the sum of two fields with generalized circular 

polarization: 

 

      ,   E E E H H H
   

                                  (11) 

  

where 

 
1 1

 , 

2 2

i
E E i H H H E


 
   

 

 
 

                          (12) 

 

Substituting Equation (10) into Equation (5), we arrive at 

 

 

   ,  D E B H 
     
                                     (13) 

 

where 

 

1  , 1
 

   

 
 
   

   

   
   

                               (14) 

 

Thus, in a chiral medium for fields with generalized circular polarization the Maxwell 

equations and constitutive relations have the same form as in an achiral medium, but the 

equivalent material parameters differ for the fields with different circular polarizations 

[5-16]. Notice that according to Equation (10) the Maxwell equations are reduced to the 

single first-order equation 
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  r o t E k n E
  

                                       (15) 

where 

 

    n n 

                                         (16) 

 

The first equation in (13) has the same meaning as Equation (3), but it applies not to 

locally plane waves but to the fields following Equation (10), and the quantities 


 for 

these fields depend only on the point considered, in contrast to  N . Thus, the E

 

circular component propagates forward with wave number k


 and backward with k


, and 

the reverse is true of the E


 component. The forward-moving component of E


, that is, 

R
E   and

R
E  , are both right-polarized and both propagate with the same wave number k


. 

Similarly, the left-polarized wave 
L

E   and 
L

E   both propagate with k


. Thus, a wave of 

circular polarization (left or right) propagates with the same wave number regardless of its 

direction of propagation. This is a characteristic of chiral media difference from another 

media.  

 

 

Scattering of General Bi-Isotropic Objects 
 

According to the surface equivalence principle, the scattered electric E

and H


 in free 

space can be expressed in terms of equivalent electric currents and magnetic currents 

placed over the surface of the bi-isotropic object, written by 

 

     ,
d d d d

E J M L J K M                                     (17) 

     
2

1
,

d d d d
H J M K J L M



                                   (18) 

where 
d

J and 
d

M are the equivalent electric and magnetic currents on the exterior surface 

of the bi-isotropic object under analysis.  is the wave impedance of free space. L and 

K are integro-differential operators, defined as below [17], 

 

   

     

   

,

1
             ,

2

X r G r r d r

s

X r G r r d r

k s

L X j  




   






         


 




                               (19) 

       
1

ˆ,

2

K X X r G r r d r n X r
s

s

                                 (20) 

and  
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       ,

4

j k r r
e

G r r

r r

 

 



                                  (21) 

 

where the propagation constant of free space k     

and  are the permittivity of 

free space, respectively. The angular frequency is 2 f  ( f  is the operated frequency). 

The analyzed bi-isotropic object has a boundary surface S and n̂ s is defined as the unit 

vector outward S . Note that  in equation (20), the left second term in the operator K is 

called as the residue term[17] that guarantees the continuity of the field as the observation 

point approaches the source point. If the observation point is not on S , the residue term 

equals to zero. 

The expressions of electric and magnetic fields inside the bi-isotropic region are relatively 

complex due to the introduction of bi-isotropic constitutive relations, namely, 

 

 D E H E j Hr r r                                    (22) 

 

 B E H j E Hr r r                                    (23) 

 

where r , r are Tellegen and Pasteur parameters, respectively. A bi-isotropic medium 

with 0
r

   and 0
r

   is named Pasteur medium while the one with 0
r

   and 0
r

   

named Tellegen medium. It should be noted that the limit condition of 
2 2

1
r r

    must be 

satisfied and otherwise the nature of the medium is radically changed. To represent the 

fields in the bi-isotropic region, a field splitting scheme is applied as referred to [18]. At 

first
d

E , 
d

H in the homogeneous bi-isotropic medium are split into two independent and 

uncoupled wave-fields, namely, (plus) wave-fields E

, H


and (minus) wave-fields E


, H


 

 

         
d

E E E
 

                                             (24) 

          
d

H H H
 

                                             (25) 

 

Each pair of wave-fields ( )E H
 

and ( )E H
 

is related with respective medium 

characterized by ( ) 
 

, ( ) 
 

, ( ) 
 

and ( )k k
 

which are defined by 

 

          ( )
r

j
e


   



                                          (26) 

          ( )
r

j
e


   




                                          (27) 

          
j j

e e
  

 




 
                                        (28) 
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          r r
k k     

                                        (29) 

 

where 2
1

r
     0 1  and

r

j
e j


 


  . Since two wave-fields are independently 

governed by the Maxwell equations ( )E H
 

and ( )E H
 

can be obtained using the surface 

equivalent principle, respectively. The expressed by 

 

 

      ( , )E J M L J K M
      

                                  (30)  

      
2

1
( , )H J M K J L M


    



                                 (31) 

where ( )J M
 

and ( )J M
 

are surface equivalent currents placed over the interior surface. 

The integro-differential operators L

and K


are defined by 

 

  

     

   

,

1
,

2
             

X r G r r d r

S

X r G r r d r

k s

L X j  
 




    





        


 





                              (32) 

       
1

ˆ,

2

K X X r G r r d r n X r
s

s
 

                                     (33) 

          ,

4

j k r r
e

G r r

r r





 

 



                                      (34) 

 

as can be seen, the expressions of scattered wave-fields in plus and minus medium induced 

by  ( )J M
 

and ( )J M
 

are similar to those of free space except that materials 

parameters are different. In other word, ( )E H
 

and ( )E H
 

can be obtained from the 

equation (17) and (18) through replacing 

( , , , , , )
d d

k J M   by             , , , , ,k k J M J M     
           

Here, the 

relations of between  ,
d d

J M and     ,J M J M
   

can be obtained from the Maxwell 

equations [18],  

 

          
1

( )

2
d d

jj
J e J M



 



                                        (35) 

          
1

( )

2
d d

j
M e M j J








                                       (36) 

 

With the aid of equation (24) and equation (25), one can derive the scattered fields in the 

bi-isotropic region, given by, 
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     , , ,
d d d d d

E J M E J M E J M
   

                                (37) 

     , , ,
d d d d d

H J M H J M H J M
   

                                (38) 

 

and 

  

 
1

, ( )

2

1
                            ( )

2

d d

d d

jj
E J M L e J M

d

j
K e M j M



 






  




   


 

                               (39) 

 

2

1
, ( )

2

1 1
                             ( )

2

d d d

d d

jj
H J M K e J M

j
L e M j J



 




 

  






    


 

                             (40) 

to determine the unknown currents 
d

J and 
d

M , the boundary condition is needed to 

enforce on the surface of the bi-isotropic scatterer, that is, the total tangential fields should 

be continuous across the surface of the bi-isotropic scatterer. Therefore, a set of combined 

fields integral equations can be obtained as below, 

 

 

   
ta n

ta n

1 1

          ( ) ( )

2 2

1 1

          ( ) ( )

2 2

in c
E L J K M

d d

jj j
L e J M K e M j J

d d d d

jj j
L e J M K e M j J

d d d d

 


  

 


  

 

 
   

 

 
   

 








 

                                            (41) 
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where in c
E and in c

H are the incident electric and magnetic fields in free space and 

subscript (tan) defines tangential components. In general, the solution of the equation sets 

(41) and (42) is based on the method of moments (MoM) [2]. 

 

 

Numerical Results and Discussions 

 

First example considers a bi-isotropic sphere with the radius against propagation constant 

of 1 .5k a   as shown in Figure 1. For comparison with the exact solution, we chose 
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4
D B F

  and 
D B F

   then,  
2

1
D B F r

     and  
2

1
D B F r

    [19]. Here, 

r r r
j    is denoted. Material lossy is not considered in this example. The spherical 

surface is modeled using 424 triangular patches and totally the 1272 unknown are needed 

to solve. The normalized bistatic cross-sections (BCS) for the co-polarized component 

 
 and the cross polarized components 

 
 corresponding to different values of 

r
 are 

given in Figure 2 and Figure 3 when 0
r

  .in the same figures we also present the exact 

solutions based on the modal expansion theory [19]. Good agreements are found between 

them. The calculated results are also well compared with those from [12] [20]. 

 

 
Fig. 1 The geometry of a chiral sphere with the radius of a. 

 

 

Fig. 2 Bistatic cross sections for co-polarized scattered field component 
 

normalized by 
2

 versus the evaluation angle   for different 
r

 when 0
r

  . 
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Fig. 3 Bistatic cross sections for cross-polarized scattered field component 
 

normalized 

by 
2

 versus the evaluation angle   for different 
r

 when 0
r

  . 

 

 

Conclusion 
 

In this paper, different constitutive relations for chiral media are discussed, a circularly 

polarized wave scattered by the interface between two chiral media generally produces 

waves with both circular polarizations. It is known that a wave with left-hand circular 

polarization normally incident on a plane metallic mirror, reflects from the mirror as a 

right-hand circularly polarized wave. For an ideally reflective plane interface we find the 

condition at which such transformation is not the case. According to Equation (10) the 

component H should also be zero in the total field direction. Thus in a chiral medium for 

the field with generalized circular polarization the Maxwell equations and constitutive 

relations have the same form as in an Achiral medium, but the equivalent material 

parameters differ for the fields with different circular polarization. In this paper, the 

coupled field integral equations based on the equivalent principle have been formulated for 

the scattering by general bi-isotropic objects including Pasteur and Tellegen media. The 

formulations are validated with two analysis examples.  
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