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Abstract 

 

The Multiple Valued Logic (MVL) is one of the keys to building processors in the 

futurebecause the use of the MVL in control and uP will reduce the number of instruction 

that necessary to solve problems and it increases the parallelism. The MVL will increase 

the speed of the systems and reduce the required memory size and reduce the connections. 

This paper proposed a new theory to extend the binary logic as operations in new space 

called Convert-Coded-Collect space (CCCi). The CCCi space is a closed space has i integer 

values, it used to convert the input to the output in three phases called convert phase, coded 

phase and collect phase respectively.   

The CCCispace carries out with any integer number of MVLs that depend on the value of i. 

This paper will discuss two cases of the CCCi space, first two values (i=2) that called CCC2; 

it will prove the CCC2 is more efficient from than the Boolean algebra. The other case for 

this space is CCC4 that has 4 values MVL. This theory is a useful MVL so it has simple 

functions witha package of advantages. 

This paper will discuss an example to design a logic multiplier under Boolean logic, under 

CCC2 space and under CCC4space to show the advantages of the new theory. 

 

 الخلاصت

 

لاى اسخخذام الوٌطق ُْ احذ الوفاح٘ح الاساس٘ت لبٌاء الوعالجاث فٖ الوسخقبل ( MVLالوٌطق الوخعذدة الوسخْٗاث )

ّاًِا سْف  اكلوشال( سْف ٗقلل هي عذد الخعل٘واث اللاسهت لحل uPالوخعذدة الوسخْٗاث فٖ الس٘طزة ّالوعالج الذق٘ق )

قل٘ل حّ٘ل حجن الذاكزة الوطلْبت لقحوسخْٗاث سْف ٗشٗذ سزعت الٌظن ّدة الحشٗذ هي عول٘ت الخْاسٕ. الوٌطق الوخعذ

 الاحصالاث.

حجو٘ع -حزه٘ش -الوٌطق الزٌائٖ كعول٘اث فٖ فضاء جذٗذ ٗسوىفضاء ححْٗل  اقخزحج ُذٍ الْرقت ًظزٗت جذٗذة لخْس٘ع

(Convert-Coded-Collect space (CCCi)الفضاء ُْ فضاء هغلق ٗولك .) iصح٘حت حسخخذم لخحْٗل هي الق٘ن ال

 الوذخلاث الٔ الوخزجاث فٖ رلاد هزاحل حذعٔ هزحلت ححْٗل ّ هزحلت حزه٘ش ّ هزحلت حجو٘ع علٔ الخْالٖ. 

. ُذا البحذ سٌ٘اقش حالخ٘ي هي iاعخوادا علٔ ق٘وت MVLsعول هع إٔ عذد صح٘ح هي ٗحجو٘ع -حزه٘ش -فضاء ححْٗل 

أكزز كفاءة ُّٖ سْف حزبج اًَ  CCC2( ّالذٕ س٘ذعi=2ٔ٘وَ ارٌ٘ي )للق حجو٘ع الاّل- حزه٘ش - حالاث فضاء ححْٗل 
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ق٘ن للوٌطق الوخعذدة  4ّالذٕ ٗولك CCC4 (. حالت أخزٓ لِذا الفضاء Boolean algebraٌُْٖ )٘لْهي الجبز الب

٘ولك (. ُذٍ الٌظزٗت للوٌطق الوخعذدة الوسخْٗاث ُٖ هف٘ذة بح٘ذ حعطٖ هٌطق هخعذدة الوسخْٗاحMVL 4الوسخْٗاث )

اى ُذا البحذ سْف ٗسخعزض هزال للخصو٘ن لذائزة ضزب هٌطقٖ بْاسطت الوٌطق  .و٘شاثحشهت هي البس٘طت هع دّال

 لب٘اى ه٘شاث ُذٍ الٌظزٗت. CCC4ّ فضاء  CCC2البلًْٖ ّ فضاء 

 

Keywords: Multiple valued logic, multiple valued logic, convert-code-collect space, Boolean 

algebra, PLA, logic gates, multiplier. 

 

1- Introduction 

 

Multiple Valued Logic(MVL)or Many-Valued Logic (in some references)is where the 

number of discrete logic levels is not confined to two. This is unlike binary, which only has 

two levels, logic level 0 and logic level 1, ie {0, 1}. Ternary logic has three logic levels {0, 1, 

2} while quaternary has four logic levels {0, 1, 2, 3}.The number of logic levels is equal to 

the radix of the number system employed 
[1]

. 

Even before the era of semiconductor technology, switching relays were binary in nature. 

They were energized, logic 1, or de-energized, logic 0. In the electronics and computing 

industry the status of two-valued, or binary, logic has reached its present level of complexity, 

sophistication, and application largely because of the continuous development of 

microelectronics and their ability to provide efficient two state devices and circuits. Binary 

logic has been very successful down through the years. There are mathematical tools available 

which have helped in its development and these were originally developed by the 

mathematician George Boole who generated Boolean algebra which aided in the success of 

binary logic 
[2]

. 

The main reason for research beyond the present day binary logic systems is interconnection 

problems, both on-chip and between chips. With increase in capability per chip, the 

difficulties of placement and routing, on chip, of the digital logic elements are escalating. It is 

often the case that the silicon area used for interconnections may be greater than that used for 

the active logic elements. Also the difficulties of bringing an increasing number of 

connections off-chip is promoting a new consideration of packaging concepts in an attempt to 

overcome problems which are becoming mechanically, thermally, and electrically extreme. 

All these factors point to the use of a logic system higher than that of binary circuits so that 

the information content per interconnection and per line can be increased 
[2]

. 

Within the electronics industry, binary logic is used in almost all applications but multiple 

valued logic has the potential for enriching the current two valued reality. Because of the 

necessary co-existence with binary logic, radix conversion is a topic of immediate concern. 

But multiple-valued to binary and binary to multiple-valued converters would just be another 

type of converter as used in analog-to-digital and digital-to-analog converters 
[3]

. 
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In binary systems the number and naming of one-variable functions isn’t as complex as it is in 

multiple valued logic systems. An r-valued system has r possible outputs for r possible input 

values, and accordingly r
r
 outputs of a single r-valued variable 

[3]
. 

y, ie 2 

possible input states 1 & 0, the number of functions is 2
2
 = 4.But with a radix of r = 4 for 

quaternary, ie 4 possible input states 0, 1, 2 & 3, the number of functions is 4
4
 = 256 

[3]
.This 

in effect proves that in any numerical system, the smaller the radix the larger the number of 

digits necessary to express a given quantity 
[2]

. 

Nevertheless, multiple valued circuits have many advantages for digital filtering circuits. One 

such advantage is that the digital filtering application is a prime example of the use of logic 

continuously at a fixed speed. This, along with the reduction in gate count brought about by 

switching from binary to MVL, combines to make it possible that a high gate count, binary-

CMOS implementation operating continuously at high speed, can consume a lot more power 

than the multiple valued equivalent given the devices 
[4]

. 

One obvious feature that multiple valued data representation has is its potential for reducing 

the number of lines required for the parallel transmission of large amounts of data. The 

intense need for compaction in memory arrays has led to several commercial memory 

developments using multi-valued data coding by companies such as Motorola and Intel, who 

have used four-valued read only memories (ROMs) in some of their commercial products 
[2]

. 

Within the communications sector, specialists in long distance transmission have recognized 

the potential for information compaction and bandwidth reduction using multiple valued 

coding, a form of MVL. In communications however, problems have arisen in the 

transmission of signals and when the signals are received they are often very difficult to 

detect. But the potential is still there for development of multiple valued techniques in the 

areas of pre and post processing of communications signals 
[2]

.  

This paper extend the binary logic to MVL, it proposed a new theory that will demonstratea 

new definition for the MVL and its functions; it has seven sections that will discuss the theory 

and its results as follows:section 1 is an introduction to MVL and itsapplications; section 2 is 

a briefedhistory of MVL. Section 3 clear some previous works for more reading. 

The second part will discuss the new theory in MVL, in section 4 we give a hint to the theory 

by discussion the PLA design approach (NOT-AND-OR). Section 5 is the main section in this 

paper that states the new theory from the Convert-Coded-Collect (CCCi) space with some 

proofs for this theoryby the discussions of the CCC2 and the CCC4 spaces. An example 

(logical multiplier circuit) will clear the advantages for this theory is presented in section 6. 

The properties of the CCCi MVL discuss in details in section 7. 

 

2- History of MVL[5] 

 

Many-valued logic as a separate subject was created by the Polish logician and philosopher 

Łukasiewicz (1920), and developed first in Poland. His first intention was to use a third, 
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additional truth value for "possible", and to model in this way the modalities "it is necessary 

that" and "it is possible that". This intended application to modal logic did not materialize. 

The outcome of these investigations is, however, the Łukasiewicz systems, and a series of 

theoretical results concerning these systems. Essentially parallel to the Łukasiewicz approach, 

the American mathematician Post (1921) introduced the basic idea of additional truth degrees, 

and applied it to problems of the representability of functions. Later on, Gödel (1932) tried to 

understand intuitionistic logic in terms of many truth degrees. The outcome was the family of 

Gödel systems, and a result, namely, that intuitionistic logic does not have a characteristic 

logical matrix with only finitely many truth degrees. A few years later, Jaskowski (1936) 

constructed an infinite valued characteristic matrix for intuitionistic logic. It seems, however, 

that the truth degrees of this matrix do not have a nice and simple intuitive interpretation.  

A philosophical application of 3-valued logic to the discussion of paradoxes was proposed by 

the Russian logician Bochvar (1938), and a mathematical one to partial function and relations 

by the American logician Kleene (1938). Much later Kleene's connectives also became 

philosophically interesting as a technical tool to determine fixed points in the revision theory 

of truth initiated by Kripke (1975). The 1950s saw (i) an analytical characterization of the 

class of truth degree functions definable in the infinite valued propositional Łukasiewicz 

system by McNaughton (1951), (ii) a completeness proof for the same system by Chang 

(1958, 1959) introducing the notion of MV-algebra and a more traditional one by Rose/Rosser 

(1958), as well as (iii) a completeness proof for the infinite valued propositional Gödel system 

by Dummett (1959). The 1950s also saw an approach of Skolem (1957) toward proving the 

consistency of set theory in the realm of infinite valued logic. In the 1960s, Scarpellini (1962) 

made clear that the first-order infinite valued Łukasiewicz system is not (recursively) 

axiomatizable. Hay (1963) as well as Belluce/Chang (1963) proved that the addition of one 

infinitary inference rule leads to an axiomatization of L∞. And Horn (1969) presented a 

completeness proof for first-order infinite valued Gödel logic. Besides these developments 

inside pure many-valued logic, Zadeh (1965) started an (application oriented) approach 

toward the formalization of vague notions by generalized set theoretic means, which soon was 

related by Goguen (1968/69) to philosophical applications, and which later on inspired also a 

lot of theoretical considerations inside MVL. The 1970s mark a period of restricted activity in 

pure many-valued logic. There was, however, a lot of work in the closely related area of 

(computer science) applications of vague notions formalized as fuzzy sets, initiated e.g. by 

Zadeh (1975, 1979). And there was an important extension of MVL by a graded notion of 

inference and entailment in Pavelka (1979). In the 1980s, fuzzy sets and their applications 

remained a hot topic that called for theoretical foundations by methods of many-valued logic. 

In addition, there were the first complexity results e.g. concerning the set of logically valid 

formulas in first-order infinite valued Łukasiewicz logic, by Ragaz (1983). Mundici (1986) 

started a deeper study of MV-algebras. These trends have continued since the 1980s. Research 

has included applications of MVL to fuzzy set theory and their applications, detailed 

investigations of algebraic structures related to systems of MVL, the study of graded notions 
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of entailment, and investigations into complexity issues for different problems in systems of 

MVL. This research was complemented by interesting work on proof theory, on automated 

theorem proving, by different applications in artificial intelligence matters, and by a detailed 

study of infinite valued systems based on t-norms. 

 

3- Some Previous Works 

 

This section is a short review for some examples of the modern works in the different MVL 

fields that listed in the previous section. Most works in MVL fill in the fields of the “fuzzy 

logic” such as Ref. [6] and “Łukasiewicz logic and its applications” such as Ref. [7 and 

8],Colin Keng-Yan Tan in Ref. [9] discusses N-valued Lukasiewiczlogic, fuzzy logic and 

belief augmented frames MVL. 

The n-value MVL is the field of this paper, in this field we have a different and distinct ideas, 

such exampleRef.[10] focuses on the fixed polarity Reed- Muller (FPRM) expression of MVL 

symmetric functions, Ref.[11] discuss the Multiple-valued decision diagrams (MDDs) that 

give a way of approaching problems by using symbolic variables which are often more 

naturally associated with the problem statement than the variables obtained by a binary 

encoding.Robert K Brayton and Sunil P Khatri in Ref.[12] try to expand Multiple-valued 

decision diagrams using mod-p decision diagrams, it is a good work but the final results are 

not suitable to implement free MVL systems.Christian Lang and Bernd Steinbachin Ref. [13] 

proposed a nice work that presents algorithms that allow the realization of multi-valued 

functions as a multi-level network consisting of min- and max-gates. Hence Ref.[14] and Ref. 

[15] are propose a set of reversible logic functions, the results proposed a large number of 

gates, so all gate required to LUT for function definition.Ref.[16] proposesspecial 

mathematics logic to implement ternary and penta logic registers in the MVL, that is a 

complex functions with very limited flexibility.Galois Field logic discuss inRef.[17] use 

GF(4) for 4 values MVL and Ref.[18] for ternary MVL that are results complex functions 

with limited flexibility. 

Some methods and problems in the implementation of MVL discuss in Ref.[19] this 

dissertation summarizes the study conducted to research the MVL circuits and feasibility of 

design and validation of quaternary arithmetic circuits using SUSLOC technology and also 

quaternary dual recoding squaring circuits using CMOS gates. The research indicates that the 

quaternary circuits do offer the benefit of lower power consumption compared to the 

traditional two-valued (binary) logic circuits. While Ref.[20] discuss the development of 

INGAAS-based multiple-junction surface tunnel transistors for multiple-valued logic circuits. 

Ref.[21] discusses the implementation of multi-valued logic gates using full current-mode 

CMOS circuits. Mojtaba Jamalizadehet al in Ref. [22] use the minimum, maximum, 

complement, truncated difference and some other limited operations to implement the MVL 

the final results is lowflexibility functions with limited applications. Fergal Tuffyin Ref.[1] 

show a good report discusses the based upon the research and implementation of multiple 
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valued memory circuits using resonant tunnelling devices (RTDS) and MVL. Ref.[23] solves 

a special problem in high speed multiple valued logic full adder using carbon NANO tube 

field effect transistor. Finally Ref.[24] andRef. [25] have good examples in the modern 

applications of MVL. 

 

4- PLA Design Approach(NOT-AND-OR) 

 

The first PLDs were programmable logic arrays (PLAs). A PLA is a combinational, three-

levelNOT-AND-OR device that can be programmed to realize any sum-of-products logic 

expression, subject to the size limitations of the device. 

An n x m PLA with p product terms can contains p(2n-input) AND gates and m(p-input) OR 

gates. Fig (1) below shows a small PLA with four inputs, six AND gates and three OR gates 

and outputs. Each input is connected to a buffer that produces both a true and complemented 

version of the signal for use within the array. Potential connections within the array are 

indicated by X’s; the device is programmed by establishing only the connections that are 

actually needed. Thus, each AND gate can be connected to any subset of the primary input 

signals and their complements. Similarly each OR gate can be connected to any subset of the 

AND-gate outputs 
[26]

. 

 

  

Fig (1): A 4 x 3 PLA with six product terms [26]. 
 

The NOT-AND-OR approach in PLA is able to implement any logical function. This 

approach is the staring point to expand binary logic to general MVL. The NOT-AND-OR 

approach is a special case the general case proposed a new approach has three phases each 

phase is expanded to the NOT-AND-OR approach. The first phase is Convert phase that has 

two jobs first is convert any input value to other possible values (NOT gate that convert 0-to-1 

and 1-to-0), while the second job is the rejection any input (tri-state buffer as hidden in Fig 

(1)). The second phase is Coded phase that able to coded any two inputs data to give a single 
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output this phase use AND (we can use NAND, NOR, XOR, XNOR and any other types of 

Boolean gates) to detect any input case (1 and 1 as example) as value 1 and other  input cases 

to 0s as in equation (1).  

 

  


 


ow

 and B A
A,BF AND 0

111
   (1) 

 

The third phase is the Collect phase that use to collect each outputs of the second phase, this 

phase use generally the maximum relation (OR gate in Boolean). The three phases have 

different relations in closed set of values (0, 1). The combination for the three phases will 

called Convert-Coded-Collect (CCC). Fig (2) shows the functions and symbols of the Boolean 

gates for (a) Convert phase, (b) Coded phase and (c) Collect phase. 

 
Input NOT 

A A  
0 1 

1 0 
 

 
Symbol function equation figure 

NOT inverter A   
REG Tri-state Z 

 

 

 

 

(a) 

 

 

 

 

 

Inputs NOR XOR XNOR AND 

A B BA
 

BA
 

BA

 

AB  

0 0 1 0 1 0 

0 1 0 1 0 0 

1 0 0 1 0 0 

1 1 0 0 1 1 

 
 

(b) 

 

Inputs OR 

A B BA  
0 0 0 

0 1 1 

1 0 1 

1 1 1 
 

 

Symbol function equation Figure 

OR Max (A, B) BA   

 

(c) 

 

Fig(2): The functions and symbols of the Boolean gates for (a) Convert phase, 
(b) Coded phase and (c) Collect phase. 

 

Symbol function equation figure 

NOR NOT-OR BA   

XOR Exclusive

-OR 
BA   

XNOR Exclusive
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BA   

AND And AB   

OR 

 

AND 

NOR 

XOR 

XNOR 
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5- The Convert-Coded-Collect (CCCi)Space 
 
This section try to clear the mean of the CCCi space and its operations, it has three sub-

sections first give the theory and a general definition for the CCCi space while the other two 

sub-sections are a proofs for this theory using two examples for CCCi space. The first 

example is CCC2 that is equivalent to Boolean algebra to clear some ambiguous in the first 

sub-section, while the second example is proof how the CCC4 able to implement a MVL with 

4 levels. 

 

5.1- Theory and Definition 

 

Theory: The Convert-Coded-Collect(CCCi)space is any closed space has i integer values 

setSi ={0,…, i-1}. This space has three phases Convert, Coded and Collect; itis able to 

containmentlogical functionsthat use to convertany input in the closed set Si to any output in 

the same set Si underthelogical conditions.The Convert, Coded and Collectphases can be 

definedas follows: 
 

1- Convert phase 
 

This phase has one input and one output (1-to-1), this phase able to convert any input 

SiA under the logical conditionsto any other values in Si and convert any maximum valueto 

the minimum valuein Si. This phase required at least to 
i

2log2  functions. 

 

2- Coded phase 

 

This phase has two inputs and multi-outputs (2-to-n), in this phase each acceptable 

combination for the two inputs SiBA , must be coded under the logical conditionsto a 

unique value in Si.Hence, an acceptable set to satisfy the conditions for this phase is Ei and Fi 

gates that define as in equations (2) and (3), this phase required at least to i2  functions. 

 

  


 


ow

iBA
BAEi

min

max
,    (2) 

  


 


ow

iAB
BAFi

min
,    (3) 

  

3- Collect phase 

 

This phase has multiple inputs and one output (n-to-1), in this phase then 

inputs SiDCBA ,,, will generate under the logical conditionsa single value in Si.Hence, an 

acceptable function to satisfy the conditions for this phase is MAX (maximum) that define as 

in equation (4) also we can use MIN (minimum) or DIF (maximum -minimum). Another 

important gate supplemented with this phase is X gate that is an exchange switch and it is 
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defined as in equation (5).This phase required at least to 2  functions, the CCCi space has at 

least to )1log(2 2 ii functions. 

 

   ),(maximum, BABAMAX     (4) 

    ABFiBAXFi ,,       (5) 

 

 

5.2- The CCC2 Space 

 

The definition of CCCi space in the previous section has some ambiguous, the application of 

CCCi with two values S2 = {0, 1}(binary logic) will calledCCC2.The comparison of the 

CCC2 with the classical logic will clear the ambiguous. The three phases of CCC2 discuss as 

follows: 
 

1- Convert phase 
 

This phase has one input and one output (1-to-1), and it can be defend simply as shown in Fig 

(3a) that has same result of Fig (2a). 
 

2- Coded phase 
 

This phase has two inputs and multi-outputs (2-to-n), and it can be defend simply as shown in 

Fig (3b), hence compare with the result of Fig (2b). 
 

3- Collect phase 
 

This phase has multi-inputs and one output (n-to-1), and it can be defend simply as shown in 

Fig (3c). This phase is same inFig (2c) with additional supplemented gate (X gate). 
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Input NOT 

A A  
0 1 

1 0 
 

 

Symbol function equation figure 

NOT inverter A   
REG Tri-state Z 

 

 

 

(a) 

 

Inputs E0 E1 F0 XF0 F1 

A B NOR AND XOR AND 

0 0 1 0 0 0 0 

0 1 0 0 1 0 0 

1 0 0 0 0 1 0 

1 1 0 1 0 0 1 

 

 

 

 

 

 
 

(b) 

 

 

 

 

 

 

 

 
 

   (c) 
 

Fig(3): The functions and symbols of the CCC2 space for (a) Convert phase, (b) Coded 

phase and (c) Collect phase. 
 

The simple comparison between Fig (3) and Fig (2) shows the CCC2 able to generate all the 

relations of classical logic (NOT, AND, OR, XOR, …). The convert and collect phases have 

same functions of the classical logic, the coded phase has distinct functions in the definitions 

but they have same outputs except XOR. The CCC2 functions are not commutative but they 

more flexibility from the Boolean functions. The functions E1 and F1 have same truth table as 

special case therefore F1 will be neglected. Some case in the coded phase of CCCi hasn’t 

output code but these cases solved with the XFi gate combination as in case of F0 and XF0 in 

Fig (3b).  
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5.3- The CCC4 Space 

 

The definition of CCCi space in the previous section requires to enhancement.The application 

of CCCi with the values S4 = {0, 1, 2, 3} (quaternary logic) will calledCCC4it will 

enhancementthesolutions and the applications of the CCCi space. The three phases of CCC4 

discuss as follows: 
 

1- Convert phase 
 

This phase has one input and one output (1-to-1), so it can be defend simply as shown in Fig 

(4a&4b). This phase has 4 main gates LN, UN, LR and UR these gates able to presentall the 

requirements of the convert phase in CCC4, the additional gate AN is auxiliary function 

because it replace by LN and UN serially, it (AN) will be neglected to reduce the number of 

gates. 
 

2- Coded phase 
 

This phase has two inputs and multi-outputs (2-to-n), and it can be defend simply as shown in 

Fig (4c&4d).The solutions of the equations (2) and (3) in CCC4 (max=3 and min=0) under S4 

set gives 8 gates. The design in the next section will clear the meaning and using of these 

gates. 
 

3- Collect phase 
 

This phase has multi-inputs and one output (n-to-1), and it can be defending simply as shown 

in Fig (4e&4f). The MAX and X gatesare the same in equations (4) and (5) with max=3. 
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(c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(c)                                                                                                                  (d) 

 

Inputs Output 

A B BA  
0 0 0 

0 1 1 

0 2 2 

0 3 3 

1 0 1 

1 1 1 

1 2 2 

1 3 3 

2 0 2 

2 1 2 

2 2 2 

2 3 3 

3 0 3 

3 1 3 

3 2 3 

3 3 3 

           (e)         
 

Fig(4): The functions and symbols of the CCC4 space for (a) truth table for 

convert phase, (b) symbols table for convert phase,(c) truth table for coded 

phase, (d) symbols table for coded phase, (e) truth table for collect phase, (f) 

symbols table for collect phase. 

 

 

Inputs Outputs 

A B E0 E1 E2 E3 F0 F1 F2 F3 

0 0 3 0 0 0 0 0 0 0 

0 1 0 0 0 0 1 0 0 0 

0 2 0 0 0 0 2 0 0 0 

0 3 0 0 0 0 3 0 0 0 

1 0 0 0 0 0 0 0 0 0 

1 1 0 3 0 0 0 1 0 0 

1 2 0 0 0 0 0 2 0 0 

1 3 0 0 0 0 0 3 0 0 

2 0 0 0 0 0 0 0 0 0 

2 1 0 0 0 0 0 0 1 0 

2 2 0 0 3 0 0 0 2 0 

2 3 0 0 0 0 0 0 3 0 

3 0 0 0 0 0 0 0 0 0 

3 1 0 0 0 0 0 0 0 1 

3 2 0 0 0 0 0 0 0 2 

3 3 0 0 0 3 0 0 0 3 
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6- Design Example: Multiplier in the CCCi Space 

 

This section is an enhancement to the proof of the theory in the pervious section. This section 

selects a logic circuit (multiplier) as an important circuit in the real word. It has two 

subsections first shows the implementation of 2*2bits multiplier in Boolean and in CCC2 

space. These 2*2 bits in CCC2 equivalent to 1*1 bit in CCC4 this multiplier will design in the 

second example. Hence, we can use this approach to design themultiplier for any value of i in 

CCCi space. 

 

6.1- 2x2 binary multiplications in CCC2 

 

The truth table of 2*2 bits in CCC2 space that equivalent to the truth table in Boolean algebra 

is shown in Fig (5). The results of the simplification of the truth table are shown in equation 

(6) for the classic Boolean and in equation (7) for the CCC2 space. The methods design that 

convert the truth table to logical equations are not important also they have a large details fill 

out of the range of this paper. 

 

Inputs Outputs 
A1A0 B1B0 O0 O1 O2 O3 

00 00 0 0 0 0 

00 01 0 0 0 0 

00 10 0 0 0 0 

00 11 0 0 0 0 

01 00 0 0 0 0 

01 01 1 0 0 0 

01 10 0 1 0 0 

01 11 1 1 0 0 

10 00 0 0 0 0 

10 01 0 1 0 0 

10 10 0 0 1 0 

10 11 0 1 1 0 

11 00 0 0 0 0 

11 01 1 1 0 0 

11 10 0 1 1 0 

11 11 1 0 0 1 
 

Fig(5): The truth table of 2*2 bits multiplier in CCC2 space (Boolean algebra). 

 

 

01013

0111012

1010010100111

000

BBAAO

BBABAAO

BAABAABBABBAO

BAO









              (6) 
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                    (7) 

 

 

The equations (6) & (7) shows that the Boolean design required to 26 gates while the CCC2 

required to 9 gates. 

 

6.2- 1x1 quartered multiplication in CCC4 

 

The truth table of 1*1 bits multiplier under CCC4 space is shown in Fig (6). The results of the 

simplification of the truth table are shown in equation (8) for the CCC4 space. This design 

required to 22 gates in CCC4. 

 

 

(8) 

 

 

 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig(6): The truth table of 1*1 bits multiplier in CCC4 space. 
 

 
 
 
 

Inputs Outputs 
A B O0 O1 

0 0 0 0 

0 1 0 0 

0 2 0 0 

0 3 0 0 

1 0 0 0 

1 1 1 0 

1 2 2 0 

1 3 3 0 

2 0 0 0 

2 1 2 0 

2 2 0 1 

2 3 2 1 

3 0 0 0 

3 1 3 0 

3 2 2 1 

3 3 1 2 
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7- The Advantages of the CCCi Space MVL 
 
This section will clear the advantagesof the CCCi space, it has two sub-sections, first is the 

general CCCi MVL advantageswhile the second shows the advantagesand some important 

relations for CCC2 and CCC4. 

 

7.1- General CCCi MVL Advantages 

  

The new theory has given a new form of the MVL and this form has made it a package of 

advantagesdescribed as successful or useful. Someadvantagesare fundamental conditions for 

successful MVL. The most important general advantages for the CCCi space are: 

 

1- Comprehensivenessall cases: 
  

Any case of inputs in MVL hasn’tcodein the output will require to special solution or circuit 

(interfacing and additional cost) or the designer must reject this case from the design. This 

condition will enforce as condition for success.Hence, in section 5.1 the truth table in Fig (3b) 

the case of (01) hasn’t output (has 0 output for all gates) but it solved with additional X gate 

as the case of XF0 in Fig (3b).This condition is not realized in most previous works in MVL, 

therefore they not completely useful. 

 

2- Unique solution for each case: 
 

The output of the functions in CCCi (as in Figures (3 and 4)) is unique value. This condition 

gives a more flexibility to the system designer. The XOR gate in Fig (2b) has some 

ambiguous in its results because the output represent an overlap between 01 and 10 cases 

while CCC2 solved this case using two combinations F0 and XF0.  

 

3- Logical meaning: 
 

 This advantage will simplify the design algorithms and simplify the implementation of the 

functions. Some previous works such asRef. [11], Ref. [12] and Ref. [25] required to truth 

tables to define the relations between inputs and outputs while CCCi give a simple logical 

equations to define the relations between inputs and outputs as in equations (2, 3, 4 and 5). 

  

4- Minimum number of functions (gates): 

 

Generally the decreasing of the functions number will simplify the design algorithms. Hence 

the CCCispace has very low number of functions it require to )1log(2 2 ii  functions,or in 

details the CCC2 has 7 functions and the CCC4 has 14 functions.As example the Ref. [25] 

and Ref. [22] shows the number of functions is  i
i

O it mean 16 gates(functions) for the binary 

and 256 gates for 4 MVL. 
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5- High flexibility: 

 

The high flexibility functions will reduce the number of gates that required implementing any 

circuit or system. The functions ofthe CCCi space are flexible as example the design example 

in section (6.1) shows that the design using Boolean algebra required to 26 gates while the 

same circuit design using CCC2 required to 9 gates. Generally, this advantage has tradeoff 

with the advantage 4. The proposed relations must be balance between advantages 4 and 5. 

  

6- Simple design: 
 

This advantage is a result to the advantages 4 and 5 so it also depend on the good balance 

between the advantages 4 and 5.The different practical design examples (as D-flip-flop, adder 

and MUX) shows the CCCi space give a simple design, so its approaches are suitable for the 

object oriented systems. 

 

7- Easy to implement in semiconductors media: 
 

This advantage is satisfiedin the functions of the CCCi because all the functions (the functions 

of convert phase and the equations (2, 3, 4 and 5)) are implemented in the real word as 

electronic circuits.This property gives the CCCi system facilityto successful as a commercial 

systems. 

 

8- Compatible with binary logic: 
 

 All the CCCi spacefunctions can be implemented using the classical logic so they can be use 

inside any binary system with a simple interface as hybrid systems. 

 

7.2- Special CCCi MVL Advantages 

 

This sub-section will discuss some additional special advantages for the CCCi application in 

the MVL field. It focuses on the CCC2 and CCC4 spaces as practical cases to use in the future 

to substitutes the Boolean logic. 

 

1- Special Advantages of the CCC2Space  
 

The nearest form to the CCC2 space MVL is the Boolean algebra but the practical 

applications show that it is more efficient from then the Boolean algebra. As example the 2*2 

bits multiplier required in Boolean algebra to 26 gates as in equation (6) while the CCC2 

space requires to 9 gates as in equation (7) ie.less than 35% from the cost of Boolean algebra. 

The results of some practical applications such as D-flip-flop, adder, MUX, and other 

standardcircuits that used in the ALU unit show the ratio of the gates that used in CCC2 with 

respect to the Boolean algebra fill in the range 20%-to-120% with average less than 65%. 

Also the CCC2 is more simplicity from the Boolean algebra because it required to define 6 

gates (NOT, E0, E1, F0, X and MAX) while Boolean algebra required to define 7 gates 
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(NOT, AND, NAND, XOR, XNOR, OR and NOR) with special function to solve the overlap 

in XOR and XNOR gates. 

 

2- Special Advantages of the CCC4Space 
 

The design example of the 1*1 bits multiplier that required to 22 gates the equivalent 2*2 bits 

multiplier in CCC2 required to 9 gates ie. about 250%. This ratio reversed in the complex 

design as example the 2*2 bits in CCC4 in compare with the 4*4 bits in CCC2 required to 

about 90%. 

 

3- The CCC2 and CCC4 Relation 
 

This point refers to the advantage 8 (compatible with binary logic)but this relation is more 

simplicity.Any circuit implement using CCC2 can be satisfy using CCC4 if all the values 

except the 0s in the CCC4 space are convert to 1s. 

While any function implement using CCC4 can be implement as two bits CCC2. As 

example,the implement of UN function in CCC4 in terms of the CCC2 required to NOT gate 

for the upper bit and direct pass for lower bit that output of the CCC4 to CCC2 converter as in 

Fig (7). 

 

 

 

 

 

 

 

 

 

(a)       (b) 
 

Fig(7): The implementation of CCC4 in circuit of CCC2 (a) general diagram, (b) 

converter function with example of the results of UN gate. 

 

 

4- CCCi for Powers of Two 
 

The relations between CCC2 and CCC4 can be expand to the relation betweenthe CCC2 and 

the CCC8 so they relations found with all the CCCi if i is a power of 2 (2, 4, 8, 16,…..). Same 

case repeated with CCC4 and CCC16 and so on. 

The relations between CCC2 and the general powers of two CCCi are repeated with other 

values of i but these cases (not powers of 2) required to complex interfaces to convert the 

values from CCCi space to CCC2. As example the relation between CCC2 and CCC3 has 

same properties of the CCC2 and the CCC4 but with complex interface and lower efficiency. 
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