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Abstract: Robustness of speaker identification systems 
over additive noise is crucial for real-world applications.  
In this paper, two robust features named Power 
Normalized Cepstral Coefficients (PNCC) and Gammatone 
Frequency Cepstral Coefficients (GFCC) are combined 
together to improve the robustness of speaker 
identification system over different types of noise.  
Universal Background Model Gaussian Mixture Model 
(UBM-GMM) is used as a feature matching and a 
classifier to identify the claim speakers. Evaluation 
results show that the proposed hybrid feature improves 
the performance of identification system when 
compared to conventional features over most types of 
noise and different signal-to-noise ratios. 
 

Keywords: Robust speaker identification, robust feature 

extraction, PNCC, GFCC, FW, UBM-GMM. 

1. Introduction 

Speaker recognition is a task of identifying the 

speaker based on his\her voice information that 

is extracted from speakers underlying speech 

[1]. Speaker recognition is divided into two 

parts: 

1. Speaker identification:  is determining the 

target speaker among a group of speakers and 

answering the question (whose voice is that?). 

2. Speaker verification: is determining if the 

voice belongs to the claimed speaker and 

answering the question (is that the claimed 

speaker’s voice?)[2]. 

Furthermore, Speaker Identification (SID) 

system can be divided into two classes: text-

dependent and text-independent systems, in 

text-dependent, the speaker is required to speak 

a password sentence while in text-independent 

the speaker is not concentrating to a specific 

sentence meaning the speaker is free to say any 

sentence in his\her mind [3]. It has several 

applications such as remote access to services, 

banking operations through a telephone line, 

authentication and forensic applications [1].  

For SID systems, the features related to each 

frame of speech are very important factors to 

implement a good SID system, the SID system 

works well in clean environments, but its 

performance may be degraded on real-life 

environments, where noise is being around the 

speaker [4], so that the features extracted from 

noisy speech in testing phase are no longer 

match the distribution model of clean training 

data [5]. 

The researchers use different approaches to 

overcome this problem, one approach is to use 
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speech enhancement techniques such as spectral 

subtraction [6], iterative Wiener filtering [7], 

Ephraim-Malah filtering [8], adaptive bionic 

wavelet shrinkage [5], deep neural networks [9], 

Empirical mode decomposition [10]. 

Another approach is to extract strong features 

that are robust to noise, Mel-Frequency Cepstral 

Coefficients (MFCC) are a very known and 

widely used features for SID systems [11]. Kim 

and Stern [12] presents an algorithm for feature 

extraction called Power Normalized Cepstral 

Coefficients (PNCC), that use power 

nonlinearity 𝑥𝑎 instead of log  nonlinearity used 

in MFCC features, the results show that PNCC 

features outperform MFCC features in clean and 

noisy environments. Hong and Pan [13] use 

spectrum mean normalization and cepstral mean 

normalization with MFCC features, to produce 

more robust features called modified MFCC. 

Wang et al [14] used wavelet octave 

coefficients residues, to provide complementary 

information to MFCC features, which give a 

noticeable improvement in mismatched spoken 

contents. Regularized linear prediction (RLP) is 

proposed by Hanilci et al [15] to decrease the 

mismatch of training and testing samples. RLP 

is spectral modeling that gives smoothed spectra 

without changing the positions of the formants, 

by correcting rapid changes in all-pole spectral 

envelops. This technique gives better results 

when compared with linear prediction methods. 

Khaled and Khalooq [16] consider the use of 

average framing linear prediction code and 

wavelet transform based feature extraction 

method, where the wavelet transform is used to 

decompose the speech signal first, then, Linear 

Prediction Code coefficients are calculated for 

each subband signal, finally, a dimension 

reduction is used by averaging the considered 

frames, experiments show improved recognition 

rate in white noise. Ganapathy et al [17] 

develop a frequency domain linear prediction 

features, based on the two dimensional auto-

regressive model on the high energy peaks of 

the input speech signal, in time-frequency 

domain. The results show 30% improvement in 

noisy environments when compared to baseline 

MFCC features. Zhao et al [18] introduce new 

features called Gammatone Frequency Cepstral 

Coefficients (GFCC), the work is based on the 

auditory peripheral model, the paper uses the 

gammatone filter bank instead of the Mel-

frequency filter bank, which improves the 

performance hen compared to MFCC features. 

Shantha et al [19] propose a feature extraction 

technique named inverted Mel-frequency 

cepstral coefficients, that captures 

complementary information of MFCC that 

presents in the high frequency part of the 

spectrum, with MFCC features and fused score 

Gaussian mixture model, 93.88 % identification 

rate is obtained on the TIMIT dataset, with 120 

test speakers. Turner and Joseph [20] propose an 

improvement to the MFCC features, by 

replacing the discrete Fourier transform with the 

wavelet packet transform and discrete wavelet 

transform in computing the spectrum of speech 

signal at a variety of wavelet types and levels. 

Mean Hilbert Envelop Coefficients (MHEC) is 

proposed by Sadjadi and Hansen [21] to extract 

features by using smoothed Hilbert envelop of 

gammatone filter bank, the results show that 

MHEC features are less prone to noise than 

MFCC features.  Islam et al [1] propose the use 

of neurogram, which is resulted by applying the 

speech signal to the auditory nerve model; their 

work achieves good results when features are 

extracted from narrowband frequency less than 

1 kHz. Shi et al [22] try to improve the GFCC 

features by normalizing gammatone filter bank, 

and adding dynamic features, and then use an 

autoregressive moving average filter, they 

achieve better results than conventional GFCC 

features. Kim and Stern [23] try to improve 

PNCC features by using power nonlinearity 
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instead of log nonlinearity, medium time 

processing, and asymmetric nonlinear filtering 

to estimate the level of background noise for 

each individual frame and frequency bin and 

temporal masking.  Guo et al [24] combine 

subtotal resonance (SGRs) with PNCC and 

LPCC features to get more robust features 

because of subglottal acoustics spectral 

characteristics varying less than corresponding 

speech signal spectral characteristics for the 

same speaker and that SGRs estimation 

algorithm is reliable even at low signal-to-noise 

ratio. Ahmed et al [25] proposed a feature 

extraction method by using discrete wavelet 

transform and MFCC features with feature 

warping to extract robust features, the proposed 

work gives good results for additive noise and 

presence of reverberation. Kobra et al [26] 

proposed to use mean and variance 

normalization and then applying auto-regression 

moving-average (ARMA) filter (MVA) to 

MFCC features, the new features give 28% 

accuracy improvement comparing with MFCC 

features at 5db SNR level. 

The rest of this paper organized as follows. In 

section 2, the proposed speaker identification 

system described. Methodology was described 

in section 3. Simulation results and discussion 

described in section 4. Finally, the conclusion 

was in section 5. 

2. Speaker Identification System 

Fig. 1 shows the proposed SID system, where 

the speech signal is pre-processed first, after 

that, the features are extracted by the proposed 

extraction algorithm from clean and noisy pre-

processed speech signals. The extracted features 

from the clean utterances are used to train the 

classifier and models are saved. For the testing 

stage, the extracted features from each test 

utterance used as an input to the model of each 

speaker. The model with maximum probability 

result is identified as the target speaker. The 

detail description of each component in the 

system is explained in the next subsections. 

 

Figure 1. Block diagram of SID system. 

2.1. Pre-Processing 

In pre-processing stage, the input speech signal 

is pre-processed through three sub-stages, pre-

emphasis filter, framing and windowing. The 

pre-emphasis filter is a high pass filter used to 

emphasize high frequencies and recompense for 

human speech production which usually has a 

tendency to attenuate high frequencies [27]. A 

simple high order filter with a value of 0.97 is 

given in the equation [27]: 

 

𝑦(𝑡) = 𝑥(𝑡) − 0.97𝑥(𝑡 − 1)              (1) 

 

Where x(t) is the input and y(t) is the output. 

Pre-emphasis is only applied to PNCC features 

as in [23], but not to GFCC features because it 

has a significant impact on GFCC energy-

related features which lead to performance 

dropping [4]. 

Framing is to divide the speech signal into small 

segments, because usually, the speech signal 

length is very high, so it's better to divide it into 

small frames typically 20-30 milliseconds 

length to assure continuity of speech signal. 

Discontinuity in speech signal may lead to 

wrong extracted features, and may affect the 

accuracy of SID system and to ensure that the 

feature vectors are evenly spaced in time-

domain [28]. 
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The Hamming window is used to reduce framed 

speech signal discontinuity in the beginning and 

end of the frame, and increase signal continuity 

between neighboring frames [29]. Given a 

speech signal s(n) , n=1,2,…,N-1 where N is the 

length of the framed signal, then the resulted 

frame signal after invoking hamming 

window, 𝑠𝑤(𝑛)  [29]: 

 

𝑠𝑤(𝑛) = 𝑠(𝑛) ∗ 𝑤(𝑛)      ,0 ≤ 𝑛 < 𝑁             (2) 

 

Where w(n) is the Hamming window function 

and It is defined by [29]: 

 

𝑤(𝑛) = 0.54 − 0.46 cos (
2𝜋𝑛

𝑁−1
) , 0 ≤ 𝑛 < 𝑁 (3) 

2.2. Proposed Feature Extraction Algorithm 

In this stage, the clean and noisy pre-processed 

speech signal is prepared to extract the proposed 

features that are used to build a model for each 

speaker in the training phase and to match them 

in the testing phase. The proposed algorithm is 

shown in Fig. 2, where each stage of the 

extraction algorithm is described below. ∆ 

represents dynamic features. 

 

Figure 2. Proposed feature extraction algorithm. 

2.2.1. Power Normalized Cepstral Coefficients 

PNCC is a very accurate feature that 

outperforms many existing features in clean and 

noisy environments, with slight increases in 

computational cost compared with conventional 

features [30]. The high identification accuracy 

rate comes by using power-law nonlinearity, 

which gives a close approximation of how 

humans can hear [30]. Fig. 3 shows the block 

diagram of processes stages to produce PNCC 

features as described in [12]. 

 

Figure 3. Block diagram of PNCC algorithm. 

Step1: Sort Time Fourier Transform (STFT) is 

applied by using Discrete Fourier Transform 

(DFT) to convert the speech signal from time 

domain to frequency domain, to extract the 

cepstral coefficients [31]. 

Step2: The magnitude is taken to calculate the 

frame power [27]. 

Step3: Gammatone filter bank is calculated 

using Equivalent Rectangular Bandwidth (ERB) 

of the band-pass filter. 

Step4: Three noise reduction techniques were 

applied: Asymmetric noise suppression, 

temporal masking and weight smoothing [23] to 

suppress the noise and channel variation. 

Step5: Applying power function nonlinearity 

because the output behavior does not critically 

rely on the amplitude of the input, just like the 

human auditory system, when the input level is 

below the threshold; the output level is zero. 

Step6: Discrete cosine transform is used to de-

correlate the cepstral features which were highly 

correlated as spectral features [32]. 

Step7: Cepstral Mean Normalization (CMN) is 

a simple feature normalization technique, where 

each cepstral vector 𝑥𝑡 is subtracted by the mean 

value 𝜇𝑥 to produce the normalized cepstral 

vector 𝑥𝑡̂ as [33]: 

 

𝑥𝑡̂ = 𝑥𝑡 − 𝜇𝑥                                     (4) 

 

𝜇𝑥𝑡
=

1

𝑇
∑ 𝑥𝑡

𝑇−1
𝑡=0                                               (5) 
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When the normalization is done, the cepstral 

sequence mean is zero [33]. CMN is good in 

removing the channel distortion and improving 

the recognition rate in noisy environments [33]. 

2.2.2. Gammatone Frequency Cepstral 

Coefficients  

MFCC and  Perceptual Linear Prediction 

features are widely used techniques for 

constructing SID systems [34]. The gammatone 

filter bank creates a series of overlapping band-

pass filters as a model of the human auditory 

system [35]. The implementations of a 

composition of gammatone filter bank, ERB  

and cubic root lead to increase the resulted 

GFCC features robustness in clean and noisy 

environments [4], which made it successfully 

replace for MFCC [18][34]. The block diagram 

of GFCC feature is depicted in Fig. 4 [36]. 

The GFCC features extraction process is 

summarized as [18]: 

Step1: Preprocessed speech signal passed 

through 64 channel gammatone filter bank 

whose center frequencies ranging from 50 – 

8000 Hz. 

Step2: Fully rectify the response of the filter 

(i.e. take absolute value) at each channel then 

decimate into 100 Hz which yields a 10 ms 

frame rate. 

Step3: Take the absolute value for the 

decimated to create T-F representation that is a 

variant of cochleagram. 

Step4: Take cubic root for the decimated 

outputs magnitudes to loudness-compressed as 

in the following equation [18]: 

 

𝐺𝑚[𝑖] = ||𝑔|𝑑𝑒𝑐𝑖𝑚𝑎𝑡𝑒[𝑖, 𝑚]|
1

3⁄               (6) 

 

Where i=0,1,…,N-1, N is number of filters, 

m=0,1,…,M-1, M is number of time frames 

taken after decimation. 

Step5: Apply DCT to de-correlate the 

components and reduce dimensionality. 

 

Figure 4. Block diagram of GFCC algorithm . 

2.2.3. Dynamic Features  

Dynamic features can capture and model 

temporal information between frames, and 

concatenate it with the cepstral features in 

speaker recognition because it helps in 

identifying the speaker style and speaking 

durations more accurately [27]. The first order 

derivative (delta) features ∆ at time t are 

calculated from a set of cepstral neighboring 

feature vectors Z [32]: 

                                             

∆(𝑡) =
∑ 𝜔(𝑍(𝑡+𝜔)−𝑍(𝑡−𝜔))𝑊

𝜔=1

2 ∑ 𝜔2𝑊
𝜔=1

                 (7) 

                                                   

Where 𝜔 is window index, W is the half-

window length and is set to 2. These temporal 

derivatives were then concatenated with the 

cepstral features to result the augmented feature 

vector [37]. 

2.2.3. Feature Warping (FW) 

The purpose of feature warping is to gain more 

robust features by making the features following 

a specific distribution target. Feature warping 

processing steps can be summarized in the 

following steps [38]: 

Step 1: select a target distribution. 

Step 2: extract cepstral coefficients (PNCC and 

GFCC in this paper). 

Step 3: create a lookup table to map the rank of 

sorted cepstral features to target warped features 

using the desired distribution. 

Step 4: isolate a window of N (3 seconds) 

features and sort their values in descending 

order and give a rank for that sorted features, 
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where a rank of 1 is for the most positive value 

and rank N for the most negative value, this 

rank is used as an index in the lookup table 

created in step 3. 

Step 5: move the sliding window by 1 frame. 

Step 6: repeat step (4) for each sliding window 

frame shift. 

The lookup table can be determined by finding 

m [25]: 

 

𝑁+
1

2
−𝑅

𝑁
= ∫ ℎ(𝑧)𝑑𝑧

𝑚

𝑧=−∞
   (8) 

 

If a normal distribution is chosen then [25]: 

 

ℎ(𝑧) =
1

√2𝜋
𝑒−

𝑧2

2    (9) 

 

Where m is the feature warped component, N is 

analysis window length and R is the rank. The 

warped value m can be calculated by initially 

making R=N and solving m by numerical 

integration method for each decremented value 

of R [25]. 

2.2.4. Feature Concatenation 

The final step in the proposed feature extraction 

algorithm is to concatenate the extracted 

features to form the PNCCFW-GFCCFW 

features as shown in Fig. 5. 

 

Figure 5. Final features matrix. 

2.3. Universal Background Model Gaussian 

Mixture Model 

UBM-GMM is the dominant classifier 

implemented for the speaker recognition system 

[1], [2]. In this paper, UBM-GMM is used to 

test the robustness of the proposed features. Fig. 

6 shows block diagram of UBM-GMM for 

testing and training phases. 

 

Figure 6. Block diagram of UBM-GMM. 

2.3.1. Gaussian Mixture Model (GMM) 

GMM is a model that gives the distribution 

probabilities of feature vectors resulting from 

each individual speaker [30]. A GMM for 

speaker j is a weighted sum of M components 

densities and it is expressed by [27]: 

 

𝑝(𝑥⃑, 𝜆𝑗) = ∑ 𝑝𝑖𝑏𝑖(𝑥⃑)𝑀
𝑖=1               (10) 

 

where 𝑥⃑ is D-dimensional random vector, 𝑏𝑖(𝑥⃑), 

i=1,2,…,M are the component densities, and 𝑝𝑖 , 

i=1,2,…,M are mixture weights such that  

 

∑ 𝑝𝑖 = 1𝑀
𝑖=1                           (11) 

 

Each component density 𝑏𝑖(𝑥⃑) is the D-variate 

random vector  𝑥⃑ represented by [39]: 

 

𝑏𝑖(𝑥⃑) =
1

(2𝜋)
𝐷
2  |∑𝑖|

1
2

 𝐸𝑥𝑝(𝑠𝑖(𝑥⃑))            (12) 

 

𝑠𝑖(𝑥⃑) = −
1

2
(𝑥⃑ − 𝜇𝑖⃑⃑⃑⃑ )𝑇 ∑  𝑖

−1
 (𝑥⃑ − 𝜇𝑖⃑⃑⃑⃑ )          (13) 

 

Where 𝜇𝑖⃑⃑⃑⃑  is mean vector and ∑𝑖 is the 

covariance matrix. For SID system, each 

speaker is represented by GMM mean vectors, 
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covariance matrices, and mixture weights and 

they are denoted by his\her model 𝜆 [39]: 

 

𝜆 = {𝑝𝑖, 𝜇𝑖⃑⃑⃑⃑ , ∑𝑖}              (14) 

 

2.3.2. Expectation Maximization (EM) 

This is a two steps training technique; 

initialization step and expectation maximization 

step, the initialization step gives initial estimates 

for Gaussian components, while EM step used 

to re-compute means, covariance and weights 

for GMM components iteratively [40]. For 

UBM mixture i, the posterior probability 

𝑃𝑟(𝑖 | 𝑥𝑡) is computed as [41]: 

 

𝑃𝑟(𝑖 | 𝑥𝑡) =  
𝑤𝑖𝑝𝑖(𝑥𝑡)

∑ 𝑤𝑗𝑝𝑗(𝑥𝑡)𝑀
𝑗=1  

             (15) 

 

New estimation of weights 𝑤𝑖  [41]: 

 

𝑤𝑖 = ∑ 𝑃𝑟(𝑖 | 𝑥𝑡)𝑇
𝑡=1                                          (16) 

 

New estimation of mean µ𝑖 [41]: 

 

µ𝑖 =
∑ 𝑃𝑟(𝑖 | 𝑥𝑡) 𝑥𝑡

𝑇
𝑡=1

∑ 𝑃𝑟(𝑖 | 𝑥𝑡)𝑇
𝑡=1

                                            (17) 

 

New estimation of covariance 𝜎𝑖
2 [41]: 

 

𝜎𝑖
2 =  

∑ 𝑃𝑟(𝑖 | 𝑥𝑡) 𝑥𝑡
2𝑇

𝑡=1

∑ 𝑃𝑟(𝑖 | 𝑥𝑡)𝑇
𝑡=1

                                     (18) 

 

2.3.3. Universal Background Model (UBM) 

UBM is produced by speech samples of all the 

speakers except the speakers to be tested [30] to 

compute the probabilities of the data that not 

belongs to the target speaker [39]. The reason 

behind using UBM is that it is trained using 

hundreds of speaker’s data, which means, it 

does not suffer from the insufficient training and 

unseen data. With that in mind, UBM is trained 

more reliably than any speaker GMM model, 

and the speakers models can be estimated with 

small amounts of data by using maximum a 

posteriori adaptation to find a model for each 

speaker [27]. 

2.3.4. Maximum A Posteriori (MAP) adaptation 

The speaker model is derived by adapting UBM 

parameters from training utterances of the 

speaker and MAP adaptation. The basic idea of 

adaptation is to extract the speaker's model from 

UBM parameters. This provides a better 

coupling between UBM and speaker's model, 

which produces better performance and allows 

for a fast scoring technique [41]. 

2.3.5. Log-Likelihood Ratio (LLR) 

The final decision of matching between adapted 

models, 𝜆𝐺𝑀𝑀, UBM, 𝜆𝑈𝐵𝑀, that resulted from 

the training stage and the testing utterances 

feature vectors X  is done by using log 

likelihood ratio (LLR) [30]: 

 

𝐿𝐿𝑅(𝑋) = log 𝑃(𝑋|𝜆𝐺𝑀𝑀) − log 𝑃(𝑋|𝜆𝑈𝐵𝑀)    (19) 

 

Where X = [ x1,…,xT], T is the number of 

feature vectors. 

3. Experimental Methodology 

Experiments are done on TIMIT [42] dataset 

which consists of 630 speakers, 10 utterances 

per speaker, 530 speakers are randomly chosen 

to calculate UBM and 100 speakers used for 

performance evaluation of the proposed feature, 

9 of 10 utterances are chosen randomly to train 

the GMM and the 1 left utterance is used for  
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testing. The proposed feature extraction 

algorithm robustness is tested in noisy and clean 

conditions, 15 noise types are chosen from the 

Noisex-92 [43] noise dataset which are 

artificially added to the test utterances with a 

signal to noise ratio levels 0,5,10 and 15 db. The 

noise types description are listed in Table 1. All 

utterances are framed into overlapping frames 

with a Hamming window of 25 milliseconds 

frame length, and 10 milliseconds window 

shifts. GFCC with 42 (21 GFCC and 21 

∆GFCC) features are extracted, with 64 

gammatone filters and dropping the 0th 

coefficient, and 42 PNCC (21 PNCC and 21 

∆PNCC) features are extracted with 40 filters, 

and applying pre-emphasizing filter with 0.97, 

and dropping the 0th coefficient, from each 

frame, then applying feature warping with 

window length of 301 frames (3 sec) [38], to 

each cepstral features (GFCC and PNCC), to 

produce GFCC-FW and PNCC-FW, after that, a 

concatenation of resulted features is taken place 

to obtain  the final proposed features. UBM-

GMM is used to evaluate the results, 256 

Gaussian mixtures and 10 expectation 

maximization iterations are used. 

4. Simulation Results and Discussion 

In this section, the proposed features in both 

clean and noisy environments are tested and 

compared with similar studies to show the 

robustness of the features. 

4.1. Simulation Results for Baseline and 

Proposed Features 

Table 2 shows the results of baseline features 

(PNCC, PNCC-FW, GFCC, and GFCC-FW) 

and the proposed features in clean and noisy test 

utterances with similar extraction parameters 

such as frame length, frame shift, features 

length, and dynamic features. The identification  

 

 

accuracy is calculated based on the following 

formula: 

 

𝐴𝑐𝑐 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑠𝑝𝑒𝑎𝑘𝑒𝑟𝑠

𝑡𝑜𝑡𝑎𝑙 𝑡𝑒𝑠𝑡 𝑠𝑝𝑒𝑎𝑘𝑒𝑟𝑠
 × 100%  (20) 

 

In this table, high numbers indicating better 

accuracy. As can be seen that the proposed 

feature extraction algorithm achieves a higher 

identification rate in almost every noise type 

except for machinegun noise type, where PNCC 

feature has better results than the proposed 

feature. GFCC and GFCCFW showed a poor 

performance compared with other features. 

PNCC and PNCCFW have better than GFCC 

based features, due to the robustness in their 

extraction algorithm. 

 

 

 

 

 

Table 1.  noise types description of noisex-92 noise 

dataset  Description Noise Type 

Multi talkers Babble 

Fighter jet noise Buccaneer 1 

Fighter jet noise Buccaneer 2 

Military destroyer engine room Destroyerengin 

Military destroyer operations room Destroyerops 

Fighter jet noise F16 

Factory noise Factory 1 

Factory noise Factory 2 

High radio frequency noise Hfchannel 

Military tank Leopard 

Military tank M109 

Machine gun shoots Machinegun 

An audible noise that has high 

power in low frequencies and low 

power in high frequencies  

Pink 

Car interior Volvo 

Additive white Gaussian noise White 
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Table 2.  Identification rate results of baseline and 

proposed features 

 

PNCC 
PNCC-

FW 
GFCC 

GFCC-

FW 

Proposed 

features 

Clean 99 99 96 98 99 

babble   

0db 69 75 56 51 80 

5db 86 87 77 77 89 

10db 96 93 90 86 93 

15db 95 95 94 93 96 

buccaneer1   

0db 41 45 19 42 53 

5db 65 63 49 62 76 

10db 76 82 73 78 86 

15db 89 89 87 92 93 

buccaneer2  

0db 35 34 5 30 40 

5db 59 55 30 51 65 

10db 64 73 58 75 78 

15db 81 83 81 83 91 

destroyerengine   

0db 55 64 23 48 69 

5db 74 73 50 72 82 

10db 89 87 77 88 90 

15db 89 92 88 93 91 

destroyerops   

0db 54 60 31 51 65 

5db 70 76 67 70 82 

10db 83 83 82 78 87 

15db 91 89 88 91 93 

f16  

0db 53 58 32 42 60 

5db 74 76 60 63 82 

10db 87 89 80 81 89 

15db 91 91 87 91 94 

factory1   

0db 49 54 46 53 63 

5db 75 79 75 74 79 

10db 88 89 86 85 89 

15db 92 94 89 92 96 

factory2  

0db 84 85 73 76 85 

5db 92 93 87 86 90 

10db 95 95 92 89 95 

15db 94 95 95 93 97 

hfchannel   

0db 64 59 30 58 72 

5db 84 84 56 75 80 

10db 91 92 85 88 95 

15db 93 96 88 92 97 

leopard   

0db 96 94 57 80 92 

5db 98 96 81 89 97 

10db 97 97 88 93 98 

15db 98 95 95 96 99 

m109   

0db 72 76 66 64 77 

5db 87 85 82 81 86 

10db 87 89 85 91 92 

15db 95 94 92 92 96 

machinegun   

0db 98 96 90 89 97 

5db 98 98 93 89 97 

10db 99 98 95 94 98 

15db 99 98 97 96 100 

Pink  

0db 39 30 13 38 45 

5db 52 54 29 66 74 

10db 70 75 62 80 85 

15db 82 81 81 89 93 

Volvo  

0db 98 97 93 94 99 

5db 99 96 93 96 99 

10db 99 98 96 98 99 

15db 99 97 97 99 99 

White  

0db 52 44 25 46 55 

5db 67 68 55 67 76 

10db 75 80 79 84 86 

15db 89 87 88 93 94 
      Average 80.5 81.13 70.7 77.89 85.15 

 

4.2. Effect of Feature Length 

Figure 7 shows the effect of features length on 

the identification rate of the proposed features. 

The feature length is the number of features that 

are extracted from each frame of the speech 

signal. The feature vector maximum length is 

equal to the number of filters in the filterbank. 

We can choose the desired number of features 

Features 

Noise type 
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per frame to be extracted. In our work, we chose 

these numbers randomly and tested it, for 

comparison, three features lengths are tested 13, 

21 and 30 to see the effect of features length on 

the identification rate. The results listed in Fig. 7 

represents the average accuracy over all the 

noise types and levels used in this paper. As can 

be seen from the table, 21 and 30 feature length 

gives almost similar results but 21 features 

length gives the best performance in average 

and 13 features length gives poor results among 

them. 

 

Figure 7. Identification rate for different lengths of the 

features. 

4.3. Effect of Dynamic Features 

To see the effect of adding dynamic features to 

the proposed features on the identification rate, 

three tests were done. The first one was done 

without adding dynamic features. In the second 

test, the first-order derivative (∆ or Delta) is 

added to the proposed features. A second order 

derivative (∆2 or Delta-Delta) is extracted and 

added on the third test. The test results are listed 

in Fig. 8, where the results indicating that 

adding the first order derivative (Delta) gives a 

slightly better identification rate than second 

order derivative (Delta-Delta). Again, The 

results listed in Fig. 8 represents the average 

accuracy over all the noise types and levels used 

in this paper. 

 

Figure 8. Effect of dynamic features on identification 

rate. 

4.4. Effect of Frame Length 

The effect of frame length is shown in Fig. 9 

with frame lengths 16, 25, and 32 ms are 

presented respectively. The results show 25 ms 

is the best frame length for the proposed feature 

extraction algorithm which gives the best 

identification rate among tested lengths. The 

results listed in Fig. 8 represents the average 

accuracy over all the noise types and levels used 

in this paper. 

 

Figure 9. Effect of Frame length on identification rate. 

4.5. Comparison with Other Studies 

To test the effectiveness of the proposed 

features in clean and noisy environments, the 

proposed features results are compared with 

several studies that briefly described in Table 3; 

the results indicate that the proposed features 

outperform all of the works compared with. 

Fig. 10,11,12 and 13 shows a comparison 

between the proposed work and the works 

proposed by [1], [24], [26] and [44] 

respectively. The noise types and levels used to 

compare are based on the authors works. 
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Table 3.  Brief description of the systems used in the comparison.

Work 
Proposed 

features 

No. of 

testing 

speakers 

No. of test 

utterances 

No. of 

features 

Frame 

length 

Frame 

shift 

Pre-

emphasis 

Evaluation 

system 

No. of 

mixtures 

Work 

proposed 

by [1] 

Neurogram 100 2 25 42 ms 25.2 ms No UBM-GMM 128 

Work 

proposed 

by [24] 

1. PNCC+SGRs 

2. LPCC+SGRs 

630 1 1. PNCC: 60 

2. LPCC: 24 

Not 

stated 

Not 

stated 

No UBM-GMM 128 

Work 

proposed 

by [26] 

Combining 

MFCC and 

MVA 

100 2 20 15 ms 10 ms 0.97 GMM 64 

Work 

proposed 

by [44] 

Auto-regressive 

with MFCC 

(AR-MFCC) 

200 1 64 20 ms 10 ms 0.97 GMM 64 

 

Figure 10. Compare proposed work with work proposed by [1]. 

 

Figure 11. Compare proposed work with work proposed by [24]. 
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Figure 12. Compare proposed work with work proposed by [26].  

    

Figure 13. Compare proposed work with work proposed by [44].

5. Conclusions 

In this work, new concatenation feature based 

on PNCC and GFCC are studied for robust SID 

system over noisy channel. UBM-GMM is used 

as feature matching with 256 Gaussian 

mixtures, and 10 expectation maximization 

iterations. Experiments are done on the TIMIT 

dataset with 100 speakers used to test the 

performance of the proposed feature, 9 of 10 

utterances are chosen randomly to train the 

GMM and 1 utterance used for testing. The 

testing is done on both clean and noisy 

conditions to test the robustness of the proposed 

features, 15 noise types are chosen from the 

Noisex-92 noise dataset that are added to the 

test utterances with a signal to noise ratio levels 

of 0,5,10 and 15 db. The performance results 

show that the proposed features outperforms 

baseline features (PNCC and GFCC) and other 

proposed works [1], [24], [26] and [44], feature 

warping technique even increased the 

identification rate. 
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