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Abstract: Training a surgeon to be skilled and competent 
to perform a given surgical procedure is essential in 
providing a high quality of care and reducing the risk of 
complications. However, existing training techniques limit 
us from conducting in-depth analyses of surgical motions 
to evaluate these skills accurately. We develop a method 
to identify the gestures by applying unsupervised 
methods to cluster the surgical activities learned directly 
from raw kinematic data. We design an unsupervised 
method to determine the surgical motions in a Suturing 
procedure based on predefined surgical gestures. The first 
step is to find the prototypes by clustering the surgemes 
of the expert surgeon from all the same expert trials. 
Then, we map the other surgeons surgemes to the nearest 
representative of the prototypes and report the clustering 
accuracy by employing the rand index technique. We 
utilize four techniques in our proposed unsupervised 
approach for gesture clustering based on Hierarchical and 
FCM algorithms. In addition, we highlight the advantages 
of representing time series data before clustering in terms 
of computation time saving and system complexity 
reduction, respectively. 

Keywords: DTW, RMIS, FCM, Ward, Rand-Index, 

Surgemes, Calinski Harabasz, Xie-Beni, and Clustering. 

1. Introduction 

The innovations in surgical robotic platforms 

have opened new training and education 

capabilities for surgeons to provide high-quality 

surgical care in the operation room. In addition, 

the information captured by robotic minimally 

invasive surgery (RMIS) delivers program-based 

insights that could potentially help enhance 

patient outcomes and care costs [1]. Also, the 

accessibility of the driven data representing the 

movement of the surgeons gives the 

opportunities to create and build models for 

objective methods and assessments that deliver 

feedback during a surgical task [2].  

Most techniques are supervised classification 

based on predefined or pre-segmented gesture 

data. These surgical gestures (surgemes) are 

annotated manually by chief surgeons, 

consuming more time and being susceptible to 

human mistakes by missing parts (surgemes) or 

inconsistently applied criteria throughout a 

surgical task [3, 4]. Several works intended to 

identify surgical activities from unsupervised 

viewpoints without prior knowledge of gestures  

[2, 5, 6]. Despinoy et al. [5] proposed a 

framework for segmentation and recognition 

surgemes from kinematic data. They first applied 

unsupervised segmentation by finding a relevant 

selection of dexemes (a numerical representation 

of subgestures to perform a surgemes). Secondly, 

they used learning features from dexemes to 

associate them with corresponding surgemes 

(composed of a set of dexemes) [5]. Another 
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approach introduced by Fard et al. [7] is known 

as soft boundary unsupervised surgemes 

segmentation. The temporal sequence of 

surgemes segment and merge based on some 

criteria, and then the boundaries between parts 

are smoothed. A recent deep-learning approach 

was proposed by Murali et al [8], based on a deep 

convolution network using both kinematic and 

video data for surgical gesture segmentation. 

This paper aims two folds: i) we propose an 

unsupervised method to identify the surgemes of 

the surgeons based on clustering algorithms. ii) 

we re-represent the segments by utilizing the 

mean of the feature instead of using all the time 

frames to reduce the complexity and 

computational time and make the proposed 

approach more feasible.         

2. Methodology  

2.1. Surgemes Clustering Framework 

Fig. 1 shows the overall flow diagram of our 

proposed approach for surgical gesture clustering 

based on raw kinematic data. First, the surgemes 

prototypes were obtained from the expert 

surgeon by clustering their surgemes from all 

trials using unsupervised algorithms. In the 

second step, we utilize the medoid method to 

individually locate the representative surgeme 

for each surgeme prototype. Next, we mapped 

every gesture of the trainee surgeon per trial on 

the representative surgemes by measuring the 

distance with all the representative gestures and 

assigned it to the cluster with the smallest 

distance. Finally, we assess the performance of 

our unsupervised approach using the rand-index 

between the ground truth and the predicted labels 

of the clustering approach. More details about 

each step will be discussed in the following 

sections. 

This approach starts by normalizing each 

surgeme using mean and variance to ensure that 

the data are scale and shift invariants which allow 

reasonable comparison between them. 

Let 𝑋𝑖 be a time series, then the corresponding 

normalized signal �̂�𝑖 is: 

�̂�𝑖 =
(𝑋𝑖 − 𝜇𝑖)

𝜎2
𝑖

                                              (1) 

Where 𝜇𝑖 and 𝜎𝑖 are the arithmetic mean and 

standard deviation of time series i, respectively. 

Next, to form the prototype surgemes, we employ 

unsupervised methods on one expert surgeon 

gestures using hierarchical and Fuzzy c-means 

(FCM) Algorithms. 

The hierarchical clustering method has been 

shown to be effective and efficient at separating 

human activities, which is well-suited for time 

series clustering. [9, 10]. Then, we employ the 

minimum variance algorithm (Ward) on a 

pairwise distance matrix which is obtained by 

computing the distance between two segments to 

create the prototype surgemes. The distance 𝑑𝑟𝑠 

between two clusters Cr and Cs is defined as the 

 

Figure 1: Overview of our Clustering Surgemes approach using Rand-Index for each surgeon. 
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distance of their centroid is equivalent to the 

following equation: 

drs =
nrns

nr+ns
‖Xr − Xs‖

2
                      (2) 

Where 𝑋𝑟 and 𝑋𝑠 are the centroids of the two 

clusters, 𝑛𝑟and 𝑛𝑠 are the number of objects in 

cluster Cr and Cs, respectively [11]. 

Additionally, we used fuzzy c-means (FCM) to 

partition the expert surgeon's surgemes into a 

predefined number of clusters equal to the 

number of distinct surgemes in each surgical 

task. 

The FCM partition membership needs to meet 

the following constraint to prevent the trivial 

solution by allocating all the cluster 

memberships to zero: 

∑ uij = 1       ∀ j = 1,2 … n

C

i=1

                    (3) 

The objective function of the FCM that meets the 

criteria can be formulated as follow:  

J(U, V) = ∑ ∑ uij
m d2(xj, vi)

C

i=1

n

j=1

              (4) 

The parameter m>1 is the fuzzifier that controls 

the rate of the membership value. The values of 

partition membership 𝑢𝑖𝑗 and prototype centers 

that require minimizing 𝐽 and the distance 

between data sample 𝑥𝑗  and the set of cluster 

centers 𝑣𝑖 can be determined by the following 

equations [12]:  

uij =
(1 d(xj, vi)⁄ )2 (m−1)⁄

∑ (1 d(xj, vk)⁄ )2 (m−1)⁄C
k=1

            (5) 

vi =
∑ uij

mn
j=1 xj

∑ uij
mn

j=1

                                          (6) 

The distance measure plays a vital role in time 

series clustering, where the data are grouped 

based on their similarity. The Euclidean distance 

and dynamic time warping (DTW) is the most 

frequently used similarity measurement due to its 

effectiveness and efficiency in determining the 

similarity between objects. Euclidian distance is 

simple, fast, and parameter-free. However, it is 

sensitive to noise and shifts in the time axis. It 

also requires both signals to have equal time 

lengths (one-to-one matching)  [13]  

On the other hand, DTW employs a one-to-many 

matching between time axes without considering 

local and global shifting issues in the time series 

data, which overcomes these restrictions. By 

resolving this time scale issue (local shift), it is 

possible to match time series data similar in 

pattern but have a different time axis.[14].         

DTW distance can be implemented using 

dynamic programming in which the accumulated 

distance formula recursively computes the 

optimal warp path between two segments 𝑋𝑖 =

[𝑥1 … , 𝑥𝑀] and 𝑌𝑖 = [𝑦1 … , 𝑦𝑁]: 

D(Xi, Yj) = δ(xi, yj)  

+min {

D(xi−1, yj−1),

D(xi, yj−1),

D(xi−1, yj)

}                       (7)  

where 𝛿(𝑥𝑖 , 𝑦𝑗) is the Euclidian distance between 

the two aligned segments of the warp path (that 

give the minimum distance) [15].  

To evaluate how well our proposed approach 

works for clustering surgemes, we compare the 

resulting predicted labels with ground truth 

labels using the rand-index. The higher the rand-

index value, the better performing. 

2.2. Rand-Index Performance Evaluation 

Unsupervised performance evaluation is not an 

easy task to assess the cluster results in the 

absence of data labels. However, for the dataset 

[16], a senior specialist in robotic surgery 

provided the manually segmented references. 
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The most common quality measure in the domain 

of time series clustering is the Rand index [17]. 

We used the Rand index criteria between the 

predicted result labels of our proposed 

framework and the ground truth surgeme labels. 

The Rand index values are between 0 and 1, 

where one indicates the two surgemes are 

identical or precisely the same. The Rand index 

criteria between the ground truth labels and the 

predicted labels are defined as the measure of the 

ratio of the correct decisions taken by the 

approach. In other viewpoints, it can be defined 

as the number of agreements between two  

groups, G and Y, over the total number of pairs 

(agreements and disagreements), which can be 

calculated using the following equation [17, 18]: 

RI(G, Y) =
TP + TN

TP + Fp + TN + FN
                (8) 

where 𝑇𝑃, 𝐹𝑝, 𝑇𝑁 and 𝐹𝑁 are the corresponding 

number of true positives, false positives, true 

negatives, and false negative results, 

respectively.  

2.3. Calinski Harabasz Validity Index 

The variance ratio criterion (VRC), known as the 

Calinski Harabasz (CH) index, is computed for K 

clusters and N data points as:  

𝑉𝑅𝐶 =
𝑡𝑟𝑎𝑐𝑒𝐵

𝑡𝑟𝑎𝑐𝑒𝑊
×

(𝑁 − 𝐾)

(𝐾 − 1)
                      (9) 

Where 𝑡𝑟𝑎𝑐𝑒𝐵 and 𝑡𝑟𝑎𝑐𝑒𝑊 are the overall 

between-cluster variance and within cluster 

variance, respectively.  

The overall between-cluster 𝑡𝑟𝑎𝑐𝑒𝐵 can be 

written as [19]: 

𝑡𝑟𝑎𝑐𝑒𝐵 =  ∑ 𝑛𝑖‖𝐶𝑖 − 𝐶‖2                  (10)

𝐾

𝑖=1

 

Where 𝐶𝑖is the centroid of cluster 𝑖, 𝑛𝑖 is the 

number of observations in cluster 𝑖, and C is the 

centroid of the entire sample data.  

The overall within-cluster variance 𝑡𝑟𝑎𝑐𝑒𝑊 is 

defined as: 

𝑡𝑟𝑎𝑐𝑒𝑊 =  ∑ ∑‖𝑥𝑗 − 𝐶𝑖‖
2

              (11)

𝑛𝑖

𝑗=1

𝐾

𝑖=1

 

Clusters that are well-defined clusters will have a 

high variance between clusters variance 𝑡𝑟𝑎𝑐𝑒𝐵 

and a small variance within-cluster 𝑡𝑟𝑎𝑐𝑒𝑊. The 

higher the CH ratio, the better the data 

partitioning will be. The solution with the highest 

Calinski-Harabasz index value is the one that has 

the optimal number of clusters [19, 20]. 

2.4. Xie-Beni Validity Index 

The ratio of the compactness of the fuzzy c-

partition to its separation is called the 

compactness and separation validity function or 

well-known as the Xie-Beni index, which can be 

computed as [21]: 

𝑋𝐵 =
∑ ∑ 𝑢𝑖𝑗

2  ‖𝑉𝑖 − 𝑋𝑗‖
2𝑛

𝑗=1
𝐶
𝑖=1

𝑛 min
𝑖,𝑗

 ‖𝑉𝑖 − 𝑉𝑗‖
2            (12) 

Where 𝑛 is the number of data points. The fuzzy 

centroid 𝑉𝑖 (𝑖 = 1, 2 … 𝑐) and the fuzzy 

membership 𝑢𝑖𝑗 of 𝑋𝑗 belonging to cluster 𝑖 are 

calculated using 

𝑉𝑖 =
∑ 𝑢𝑖𝑗

𝑚 𝑋𝑗
𝑛
𝑗=1

∑ 𝑢𝑖𝑗
𝑚𝑛

𝑗=1

                         (13) 

𝑢𝑖𝑗  =

(
1

‖𝑋𝑗 − 𝑉𝑖‖
)

1
𝑚−1

∑ (
1

‖𝑋𝑗 − 𝑉𝑖‖
)

1
𝑚−1

𝑐
𝑖=1

             (14) 

A lower value of XB implies a partition in which 

all the clusters are compact and separate. Thus, 

the smaller values of XB correspond to the 

optimal number of clusters [19, 21]. 
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3. Experimental Results 

3.1. Dataset 

The experiments on the proposed approach are 

conducted with a general and public surgery 

dataset [16]. This dataset includes both kinematic 

and video information from eight different expert 

surgeon levels: expert, intermediate, and novice 

surgeons. Each surgeon repetitively performed 

three basic surgery tasks (suturing, needle 

passing, knot tying) five times (known as a trial). 

We used only the raw kinematic data captured at 

30Hz from the da Vinci robotic surgery system 

with different trial frame lengths. There is 76 

dimensions or variables information to describe 

the kinematics for all four manipulators. Each 

manipulator has 19 variables that consist of 3 

cartesian positions, nine rotation matrices, three 

linear velocities, three angular velocities, and one 

gripper angle [16]. 

This dataset has manually annotated ground truth 

segments (surgemes) for each trial at every task. 

Each annotation provides the label of the 

surgeme, the start, and the end frames in the 

kinematic data allocated for each trial. In 

particular, the common vocabulary of potential 

surgemes comprises 15 elements and is listed 

with their description in Table 1 for the three 

surgical tasks. Some surgemes seem to be in 

more than one task; however, the background 

environment differs between tasks [16]. 

Therefore, even though there are a combined 

total of 15 surgemes, not necessarily all of them 

show up in one surgical task. For example, 

suturing, needle passing, and knot tying include 

10, 8, and 6 of the 15 surgemes, respectively. 

 

 

Table 1: Surgemes Vocabulary for all the surgical tasks [16]. 

Surgeme index Gesture description Suturing 
Needle- 

Passing 

Knot- 

Tying 

G1 Reaching for a needle with right hand    

G2 Positioning needle    

G3 Pushing a needle through tissue    

G4 Transferring needle from left to right    

G5 Moving to the center with the needle in the grip    

G6 Pulling suture with the left hand    

G8 Orienting needle    

G9 Using the right hand to help tighten the suture    

G10 Loosening more suture    

G11 Dropping suture at the end and moving to endpoints    

G12 Reaching for a needle with left hand    

G13 Making C loop around the right hand    

G14 Reaching for suture with the right hand    

G15 Pulling suture with both hands    

Number of Gestures in each task 10 8 6 
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3.2. Gestures Representation and Visualization  

We re-represent the surgemes of each trial for 

every surgical task by computing the mean of 

each 76 variables separately (rather than using 

the whole segment time frames for each 

component. Averaging each segment simplifies 

the computation and eliminates the bias of the 

time. Furthermore, this approach allows us to use 

any similarity measure rather than only DTW 

since surgemes have identical dimensions. 

We visualize the surgemes for all the trials of the 

suturing task in Fig. 2 using the t-Distributed 

Stochastic Neighbor Embedding (t-SNE)  by 

reducing the high-dimensional space of the 

surgemes to a low-dimensional map of two or 

three dimensions [22]. Fig. 2 illustrates a 

reasonable and precise separation of the 

surgemes, even though some gestures occur in 

multiple locations because it is also dependent on 

the surgeon's skill level. 

3.3. Hierarchical Clustering Results  

We develop our surgeme clustering approach 

directly onto the raw kinematic data to prevent 

excessive pre-processing. We run three 

experiments based on hierarchical clustering 

(with Ward linkage) on the JIGSAWS dataset. In 

the first two sets, we used the DTW as a distance 

measure between the surgemes, while in the third 

set, we employed the Euclidean distance. The 

results are reported based on the framework 

discussed in Error! Reference source not 

found.1 by applying the unsupervised learning 

approach.  

In the first experiment, we cluster all the 

surgemes of one expert surgeon utilizing the 

Ward Hierarchical clustering to find the 

prototype surgical gestures for each cluster. The 

raw surgemes are a time series with 76-

dimensional and different time lengths. We have 

chosen the surgemes of an expert surgeon with 

the highest Global Rating Scores (GRS) among 

the expert surgeons. Because the higher scores of 

expert surgeons have resulted from the 

consistency and smoothness of their trajectories 

during the surgical task, leading to a better 

clustering outcome. Hence, we employed DTW 

as a practical and feasible pairwise distance 

measure between any two surgemes in this case. 

 
(a) 

 
(b) 

Figure 2: t-SNE visualization of surgeme labels in 

Suturing task (a) 2-dimension, and (b) 3-dimension 

embedding. 

The rand-index measures the agreement between 

the ground truth and clustered gestures. But first, 

we evaluate the optimal number of clusters using 

the Calinski-Harabasz clustering evaluation 

criterion, as illustrated in Error! Reference 

source not found.3(a). The plot shows that the 

highest Calinski-Harabasz value occurs at 
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eleven, suggesting that the optimal number of 

clusters is eleven in this case of Ward linkage 

clustering. Error! Reference source not 

found.3(b) shows the Rand-Index values change 

with the number of clusters. We can observe that 

the highest value of the Rand-Index is achieved 

when we use eleven clusters in the Hierarchical 

algorithm that fits with the Calinski-Harabasz 

criterion. The rand index resulting from 

clustering the expert data intended to find the 

prototypes is 92%.  

At this point, each prototype has candidate 

surgemes to be a representative surgical gesture 

within the cluster. We used the medoid to locate 

the representative for each prototype by 

computing the DTW distance among the same 

cluster members and then finding the minimum 

distance relevant to the elected representative 

surgeme. The Medoid technique is used here 

because the surgemes have different lengths. 

Therefore, employing centers instead of the 

medoid to assign representatives are not 

allowable. Each cluster has a group of surgemes 

and one representative surgeme representing this 

group. Finally, we stream each trainee surgeon's 

sample point (surgeme) per trial. We measure the 

DTW distance between each new data sample 

and the prototype representative and assign it to 

the nearest cluster.  

Error! Reference source not found.4(a) 

presents the average rand-index results of the 

proposed method for clustering the surgemes for 

each trainee surgeon intended for the suturing 

task. At the same time, the rand-index results per 

trial for each surgeon are shown in Error! 

Reference source not found.(b). For example, 

surgeon "E" has the highest average rand-index 

of 96% accuracy because this surgeon was the 

prototype clustering surgeon. Also, from this 

figure, we observed that our proposed method 

could cluster the surgemes of the surgeon who 

mapped each trial to the representative surgemes.    

 
(a) 

 
(b) 

Figure 3: (a) Calinski-Harabasz clustering evaluation 

criterion, (b) Rand-Index plot as a function of the number 

of clusters. 

We implemented another experiment by 

considering each expert's surgeme as a 

representative member. This can be done by 

using the expert's ground truth surgemes as a 

prototype which results in grouping them 

according to their labels rather than clustering 

them. 
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(a) 

 
(b) 

Figure 4: Rand-Index Results for Ward clustering using 

medoid (a) Average Rand Index (b) Rand-Index per trial. 

First, we calculate the pairwise distance between 

all the surgemes of a query surgeon and each 

group of surgemes that belong to the expert 

separately. For example, let us have ten surgemes 

of different labels belonging to the query 

surgeon, and the expert surgeon has three clusters 

of different surgemes, each with a cluster size of 

2, 4, and 5. Then, we measure the distance 

between the ten surgemes and the members of 

each cluster, which results in three distance 

matrices of the size of 2x10, 4x10, and 5x10 

dimensions, respectively. Secondly, we average 

the distance matrix to each cluster, resulting in an 

array of 1x10. Then, we concatenate the resulted 

mean distance arrays in one matrix and map each 

surgemes to its closest group. In all the 

experiment steps, we applied DTW as our 

distance measure. Also, note that the same 

number of clusters were used in both 

experiments.  

Error! Reference source not found. illustrates 

the comparison utilizing the average Rand index 

between the first experimental results that use the 

medoid gesture to represent each cluster. The 

second experiment uses all cluster members as 

representatives for that cluster to assign the labels 

of the test samples (surgemes). We can observe 

that the results are very close to each other for 

most surgeons. Still, the second approach 

performs better than the medoid because it 

considers all the members in the cluster, and it 

reduces the possibility of having a lousy cluster 

representative. Besides, the second approach 

uses the ground truth labels to build the 

prototypes of the expert surgeon instead of 

clustering, which results in an average Rand 

index of around 100%, as seen in Error! 

Reference source not found., surgeon ("E").  

We also investigate the performance of our 

proposed approach by employing the mean 

features of the surgeme mentioned before as an 

alternative to using all the time frames. In this 

case, a surgeme of length (Nx75) will be mapped 

to (1x75), making all the surgemes have the same 

size in the 75-dimensional space. Thus, we can 

employ Euclidean distance as our measure 

instead of DTW. The distance between time 

series is calculated using Euclidean distance 

because the sequences are identical in length. 

Using the DTW is impractical here due to its high 

complexity. 
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Figure 5: Comparison of average Rand-Index between 

using medoid and mean GT in representing the 

surgemes in suturing task. 
 

The histogram of the expert surgemes at the SU 

task is presented in Error! Reference source not 

found.6. We can observe that the expert surgeon 

never performed G10, and two gestures (G8 and 

G9) were performed just one time during the 

entire five trials. Consequently, the optimal 

number of clusters is seven instead of nine for the 

expert gestures.  

 

Figure 6: Histogram of the expert surgeon surgemes in 

SU task. 

We utilize the Calinski-Harabasz clustering 

evaluation criterion to find the optimal number of 

clusters using the mean feature, as illustrated in 

Error! Reference source not found.. For 

example, the number of clusters chosen to be 

seven will give a higher average Rand-Index of 

96%. 

 
(a) 

 
(b) 

Figure 7: Mean feature of the gestures (a) Calinski-

Harabasz clustering evaluation criterion, (b) Rand-Index 

plot as a function of the number of clusters. 

Error! Reference source not found.8 

demonstrates using the mean feature technique to 

implement the proposed framework through 

average rand-index in (a) and per trial in (b) of  

Error! Reference source not found.. We can 

observe from the results in this figure that using 

the mean of the feature is more accurate than the 

results of the previous experiments. Another 

point worth mentioning is that the Rand-index 

results of the expert and intermediate surgeons 

are distinct from those of the novice surgeons. 

This indicates the ability to distinguish their 

surgemes pattern, which is close to the model of 

clustering the expert surgeon. Also, the result 

reveals that enhanced clustering quality is 
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reachable without reducing the time-series 

features by using the mean feature technique. 

 
(a) 

 
(b) 

Figure 8: Rand-Index results for the Ward clustering 

using mean features for each surgeon (a) Average Rand 

Index (b) Rand-Index per trial in suturing task. 

:  

3.4. Fuzzy C-Mean (FCM) 

We conducted another experiment to investigate 

the use of the FCM algorithm to cluster the 

prototype surgical gestures. As mentioned 

previously, FCM is a clustering method wherein 

each surgeme belongs to multiple groups by a 

membership grade. In this experiment, we 

applied the FCM to obtain the prototype 

surgemes by clustering the surgemes of the 

expert surgeon (clustering model). We develop 

our proposed framework on raw kinematic data 

from the JIGSAWS dataset, which was used to 

perform suturing surgical tasks. We employed 

the mean features representation technique of the 

surgemes before clustering due to the time 

computation and low complexity. Therefore, 

Euclidean distance is used as a distance measure 

in this case rather than the DTW. Finally, we 

compare the clustering results of the surgeon 

surgemes with those manually annotated by a 

senior expert surgeon.     

We employ a popular validity index in FCM, the 

Xie-Beni index criteria [19], to measure the 

optimal number of clustering as shown on the left 

of Error! Reference source not found. and the 

Rand-Index accuracy to the right of the exact 

figure. Therefore, the number of clusters chosen 

is seven that reached both the high Xie-Beni 

index and Rand-Index. The fuzzifier controlling 

the partitioning overlap, the small value of m 

approaches one means more crisp boundaries and 

less overlap. For the FCM algorithm, we run an 

experiment for different fuzzy membership m 

with the Xie-Beni validity index, and we set m to 

1.3. For prototype surgemes, we observed that 

clustering of the expert surgemes achieved %95 

of the rand-index accuracy compared with the 

ground truth. 

Using the clustering method to build prototype 

surgemes and employing similarity measures to 

select representative surgeme significantly 

impacts the Rand index outcomes. Error! 

Reference source not found. shows the best 

results of the surgemes clustering using our 

proposed method based on the FCM algorithm. 

Consequently, we can see that the overall 

accuracy improved of the FCM compared to the 

experiments-based hierarchical ward clustering 

algorithm using DTW distance.  
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(a) 

 
(b) 

Figure 9: FCM using Mean Feature of the gestures (a) 

Xie-Beni validity index, (b) Rand-Index plot as a function 

of the number of clusters. 

 
(a) 

 
(b) 

Figure 10: Rand-Index results for The FCM clustering 

using mean features for each surgeon (a) Average Rand 

Index (b) Rand-Index per trial in suturing task. 

In Error! Reference source not found., we 

compared the results obtained by the proposed 

method using all the techniques mentioned in the 

methodology section through the rand-index. We 

can observe that our approach using the mean 

feature method performs better than the other 

clustering approaches in most cases. 

Additionally, the clustering methods based on the 

mean feature surgemes representation with 

Euclidean distance outperform the clustering 

techniques that use DTW as a distance measure. 

It is also important to mention that the enhanced 

clustering quality is achievable even with the 

reduction in the time instance while preserving 

the dimension of the variable unchanged. 

Furthermore, it is crucial to consider the effect of 

the gesture time to accomplish the surgical task, 

where short surgeme are challenging to 

discriminate, resulting in decreased clustering 

performance. Additionally, the insufficient data 

for some surgeons in specific trials makes it 

difficult for any model to differentiate the 

surgeon surgemes from the prototypes of the 

expert surgeon.   

 

Figure 11: Comparison of the Rand-Index between 

different surgemes clustering methods for each surgeon 

in suturing task. 
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4. Conclusions and Future Work 

Surgical gestures are the key elements in a 

surgeon's training system, and they can offer a 

quantitative measurement and feedback to the 

trainee during the robotic surgical session. We 

proposed a new unsupervised approach for 

surgemes clustering by utilizing four techniques 

based on Hierarchical and FCM algorithms. We 

evaluated our method on a real dataset by 

analyzing raw kinematics data from suturing 

tasks performed by individuals with varying 

levels of expertise. Also, we demonstrated the 

benefits of re-representing the time series data 

before clustering in terms of computation time 

reduction and system complexity. 

One of the most challenging tasks in 

unsupervised learning is to deal with outliers. For 

example, some surgeons perform surgemes that 

the expert surgeons generally do not operate. 

This might adversely affect the quality of 

surgeme assignment to the appropriate cluster, 

thereby influencing the clustering algorithm's 

outcome. 

In addition, we used a predetermined number of 

clusters. Therefore, future research should use a 

clustering technique to deal with unknown 

groups derived from expert prototypes. 

Nevertheless, this effort constitutes a step 

forward toward surgemes segmentation. One of 

the future work challenges will be to build a 

clustering method based on using one of the 

experts' surgemes for model initialization and 

then map the surgemes from other subjects. 
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