# Design and Implementation of Audiometric Instrument Based on Microcontroller

Lecturer Ali Abdul Elah Noori College of Electrical and Electronics Techniques Foundation of Technical Education, Bagdad, Iraq <u>aliabdulelahnoori@Gmail.com</u>

Assist. Lecturer Malik Bahnam Abbu Samter College of Electrical and Electronics Techniques Foundation of Technical Education, Bagdad, Iraq <u>maliksamter@yahoo.com</u>

Assist. Lecturer Ghaidaa Abdulrahmaan Khalid College of Electrical and Electronics Techniques Commission of Technical Education, Bagdad, Iraq <u>Ghaidaa A@@yahoo.com</u>

## Abstract

The aim of this paper is to design and implement an audiometry testing instrument (Audiometer) by using PIC  $\stackrel{1}{}\stackrel{1}{}\stackrel{F}{}\stackrel{VVA}{}$  microcontroller that has the capability to apply an audio sound to the patients' ear with a frequency range of ( $\stackrel{r}{}\stackrel{\circ}{}\stackrel{Hz}{}$  to  $\stackrel{AKHz}{}$ ) with an intensity ranging from (- $\stackrel{1}{}\stackrel{\circ}{}$  to  $\stackrel{1}{}\stackrel{1}{}\stackrel{\circ}{} dB$ ), and recording the patients' response through an input device. The instrument hardware was implemented by using a push button switch, headphone circuit, power supplies, two output units using  $\stackrel{r}{}X \stackrel{1}{}\stackrel{1}{}LCD$  display and RS  $\stackrel{r}{}\stackrel{r}{}r$  serial port interface connected with Personal Computer (PC) from through the ports COM  $\stackrel{1}{}$  or COM  $\stackrel{r}{}$  and microcontrollers programmer with its special program (Topwin  $\stackrel{1}{}$ ).

The proposed design of audiometer and simulation results of many cases of hearing states are carried out using ISIS  $\forall$  professional simulator and Matlab  $\dagger \cdot \dagger \cdot$  environment. Finally, Proton IDE Basic compiler (high level language) is used to write a program which is employed to program microcontroller.

Keywords: Audiometry; PIC 1 <sup>1</sup>F AVVA Microcontroller.

الخلاصة

الهدف من هذا البحث هو تصمييم وتنفيذ جهاز الاختبار السمعي (مقياس السمع) باستخدام المسيطر الدقيق PIC 17F ۸۷۷A لارسال مدى من الترددات من ۲۰KHz - ۲۰KHz الى المريض ومعرفة استجابته لهذه الترددات من خلال وحدات الاخراج. ينجز التصميم المادي للجهاز باستخدام مسيطر دقيق PIC 17F ۸۷۷A واحد, مفاتيح ضغط, دائرة السماعة, مجهزات القدرة وحدتين اخراج ؛ عارضة 16 × 2 LCD ومنفذ التوالي RS ۲۳۲ المربوط مع الحاسب الشخصي (PC) من خلال المنافذ 1 COM او ۲ COM ومبرمجة المسيطرات الدقيقة مع برنامجها الخاص (۲ Topwin). ينفذ التصميم المقترح لجهاز مقياس السمع ونتائج المحاكاة لعدة حالات من حالات السمع باستخدام المحاكي ISIS V Professional وبيئة برنامج Matlab ۲۰۱۰ يستعمل برنامج Proton IDE Basic (لغة المستوى العالي) لكتابة البرنامج الذي يستخدم لبرمجة المسيطر الدقيق.

#### 1. Introduction

An audiometer is used to measure the ability of a patient to hear at specific frequencies. Fundamental to this measurement is pure tone measurement. The audiometer is used to generate pure tone signals at specific frequencies within the  $\gamma \circ \cdot$  Hz to  $\wedge$  kHz range. For each frequency the level of loudness is incremented from soft to loud. The patient is asked at which point he/she starts to hear the sound, which will then represent the patient's hearing threshold at that frequency. The final result is plotted as an audiogram that will be interpreted by medical professionals to determine proper treatments [ $\gamma$ ].

The weakest sound heard at a selected frequency is the hearing level in decibels (dB HL) for that particular frequency. This is a relative value; the intensity reference is  $\cdot$  dB HL, or audiometric  $\cdot$ , which corresponds to the average threshold response (for a normal intensity range of -1  $\cdot$  to +7  $\circ$  dB HL) of a group of 1A- to 7 $\circ$ -year-olds with no otologic pathology. The sensitivity of the normal ear varies with frequency; therefore,  $\cdot$  dB HL represents different levels of sound pressure at different frequencies. (Minus dB HL readings indicate that hearing sensitivity is greater for that particular frequency than for the average value) [<sup>7</sup>].

At present, there are various types of audiometer readily available on the market. They can be different depending on the specifications and features, but generally a dedicated hardware is needed for high-quality and reliable measurements, resulting in high price. In terms of research, historically the earlier work focused on hardware implementation, usually at the integrated circuit (IC) or embedded system levels [ $, \xi$ ]. Techniques such as direct digital synthesis (DDS) have been considered [ $\circ$ ]. As the availability of good-quality personal computer expanded, the focus has shifted towards PC-based systems [3]. Some has also attempted on integrating other hearing loss measurement features into the same device [ $, \Lambda, 3$ ]. Finally, remote hearing scanning and active noise control based on PC have introduced in [, 3, 3] respectively.

This paper is organized as follows: The hardware design for audiometric test is first introduced in Section  $\gamma$ , the software and simulink design is then described in Section  $\gamma$ ,

Testing and results are discussed in Section  $\xi$ , and finally, concluding remarks and observations are given in Section  $\circ$ .

# **7. Hardware Design**

The block diagram of the proposed hardware which consists of five basic parts is shown in Fig. (1).

- ). PIC)  $F^{VV}A$  Microcontroller.
- <sup>7</sup>. Switches selection circuit.
- ۳. Headphone circuit.
- ٤. Output units.
- •. Power supplies.

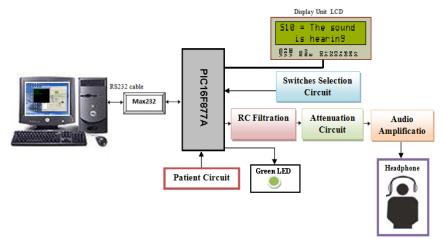



Fig. (1) Block diagram audiometric test based on PIC13FAVVA microcontroller.

#### **1,1. PIC17FAVVA Microcontroller**

#### **1,1**. Switches Selection and Patient Circuit

The push bottom switches  $S^{1}$  to  $S^{A}$  are connected to microcontroller port B (RB ·-RB<sup>V</sup>) to select the range of frequencies from  $`\cdot$ Hz- $`\cdot$ KHz.  $S^{9}$  is connected to  $\overline{MSLR}$  pin to reset the microcontroller and  $S^{1} \cdot$  is connected to the pin RD` to know patient's response, which is displayed in LCD or PC as message "*The sound is Heard*" in addition to light green LED connected to the pin RD $^{V}$ . The connections of push bottom switches are illustrated in Table (1).

| Switches  | PIC pin                                | Pin No. | Function                        |  |  |
|-----------|----------------------------------------|---------|---------------------------------|--|--|
| S١        | RB· (input pin)                        | ٣٣      | Select Yo.Hz                    |  |  |
| S۲        | RB <sup>1</sup> (input pin)            | ٣٤      | Select ° · · Hz                 |  |  |
| S٣        | RB <sup>7</sup> (input pin)            | ۳٥      | Select \ Hz                     |  |  |
| S٤        | RB <sup>r</sup> (input pin)            | ٣٦      | Select <sup>Y</sup> ···Hz       |  |  |
| S٥        | RB <sup><sup>£</sup></sup> (input pin) | ٣٧      | Select $^{\forall} \cdots$ Hz   |  |  |
| S٦        | RB° (input pin)                        | ۳۸      | Select $ \cdot \cdot \cdot Hz $ |  |  |
| S٧        | RB <sup>1</sup> (input pin)            | ۳۹      | Select <b>\</b> Hz              |  |  |
| S٨        | RB <sup>V</sup> (input pin)            | ٤.      | Select <sup>^</sup> ···Hz       |  |  |
| S٩        | MSLR pin                               | ١       | Reset circuit                   |  |  |
| S١٠       | RD <sup>¬</sup> (input pin)            | ۲٥      | Patient's response              |  |  |
| Green LED | RD <sup>V</sup> (output pin)           | 77      | Patient's response              |  |  |

Table (1) connections of push bottom switches with the PIC11FAVVA microcontroller pins.

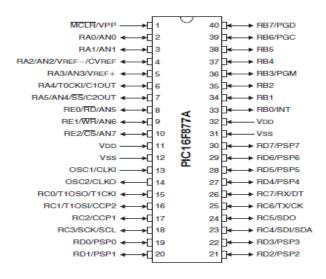



Fig. (\*) Pin connection of PIC \`F^VVA.

#### **<sup>r</sup>**,<sup>r</sup>. Headphone Circuit

The headphone circuit consists of three main parts; RC filtration, attenuation circuit and audio amplification. The PIC<sup>\\\\\\FA\Y\A}</sup> microcontroller generates a signal with one or two different frequencies on the specified PIN by using "Freqout" instruction. The generated signal is a square wave and filtering may be required to obtain a smooth signal and to remove the quantization noise are the attenuation module and amplification module. The attenuation circuit is implemented using a \\-stage (- \lambda \cdot, -\!\forall \cd

ladder network to achieve the  $\gamma \cdot dB$  (- $\gamma \cdot dB$  to  $\gamma \cdot dB$ ) dynamic range with a step resolution of  $\circ dB$  [<sup>A</sup>].

Since, the amplitude of the output signal may not be adequate, the audio amplification module is required to provide sufficient current drive and to match the load resistance of the audiometric headphone at  $^{\psi}\Omega$  [A].

## ۲, ٤. Output Unit

Two output units were used in this paper,  $2 \times 16$  LCD and RS<sup>YYY</sup> serial port. The LCD is alphanumeric display, which is frequently used in microcontroller-based applications. Some of the advantages of LCDs are their low cost and low power consumption. (SC<sup>YYY</sup>C) is one of the most popular LCD modules used in the industry and also by hobbyists. The circuit diagram of the LCD and the PIC<sup>YYFAYY</sup>A microcontroller is shown in Fig. (<sup>r</sup>) [<sup>YY</sup>]

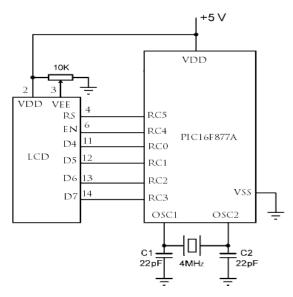



Fig. (\*) circuit diagram between the LCD and the PIC11FAVVA microcontroller.

In addition LCD output unit, the RS<sup>YYY</sup> serial port can be connected in this instrument. The pins RC<sup>7</sup> and RC<sup>V</sup> of the PIC<sup>1</sup><sup>T</sup>F<sup>AVV</sup>A are configured as RS<sup>YYY</sup> serial output and input, respectively. RS<sup>YYY</sup> voltage levels are  $\mp$ <sup>1</sup><sup>Y</sup>V. Normally RS<sup>YYY</sup> voltage levels are converted to CMOS levels using RS<sup>YYY</sup>-level converter chips, such as the MAX<sup>YYY</sup>. An RS<sup>YYY</sup>-level converter chip converts the  $\cdot$  to  $+\circ$  V output from the microcontroller into  $\mp$ <sup>1</sup><sup>Y</sup>V RS<sup>YYY</sup> levels. Similarly, the RS<sup>YYY</sup>-level output from a device is converted into  $\cdot$  to  $+\circ$  V suitable for the microcontroller inputs. MAX<sup>YYY</sup> is a <sup>1</sup><sup>7</sup>-pin IC having dual RS<sup>YYY</sup> transmitters and receivers. This IC requires external capacitors for its operation to adjust the voltage level differences between the PC-based logic and the PIC-based logic as shown in Fig. ( $\epsilon$ ) [<sup>1</sup><sup>Y</sup>].

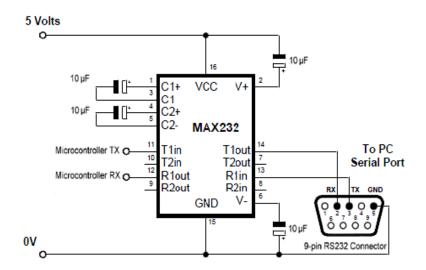



Fig. (٤) MAX<sup>ΥΨΥ</sup> RS<sup>ΥΨΥ</sup>-level converter.

# **r**. Software and Simulation

The software is written using Proton Basic IDE; the Proton language is a high level language consisting of  $1^{\circ}$  instructions. The proposed coding by using Proton IDE compiler and Software flowchart of the audiometric test are respectively shown in Fig. (°) and (<sup>1</sup>).

| File Edit View Help                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 🗋 🤌 🔲 📈 🖗                                       | ) 🗋 🖉 (역 😓 🧟 2월 2월 2월 2월 2월 20 1월 20 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |
| 🏝 💊 • 👆 🍕                                       | × 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |
| G C PROTON_G4                                   | audomtry 🔄 Untitled 📑 thermometer 📑 Untitled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |
| Code Explorer 🔹 🔀                               | Untitled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S - 1                                |
| Control (C) | <pre> 2 ** Name : Aukioneter.BAS 3 ** Author : Ali Abdul-Elsh Noori 3 ** Aithor : Disgin and Englementetion of Test of Aukiometric 5 ** : Based on Microcontroller 6 ** Date : 11/1/2011 7 ** Version : 1.0 9 ** .: 10 Periode 10 Perio</pre> |                                      |
| – 🜔 play6 🔍                                     | 23 MRSOut CStr TEXT1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | >                                    |
| Results                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |
|                                                 | wget Device 16/877A r<br>rog an words used from a possible 8192 (16-52%)<br>bib bries used ma a possible 398 (7.07%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Friday, November 11, 20<br>5:08:16 F |

Fig. (°) Proton IDE coding of audiometric test.

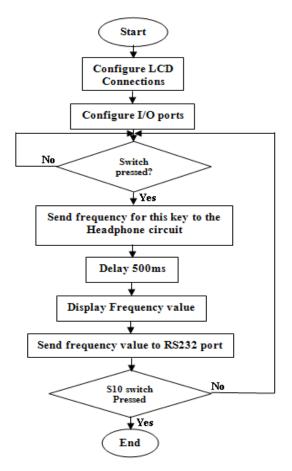



Fig. (<sup>1</sup>) The proposed flowchart of PIC microcontroller program.

The hex file of Proton IDE is downloaded into microcontroller programmer (Top programmer) through Topwin<sup>\</sup> Program which is accompanied with the microcontroller programmer. The Top PIC programmer device designed to operate with the USB port is shown in Fig. ( $^{\vee}$ ). After the PIC microcontroller programming is finished, the PIC  $^{\uparrow}f^{\wedge}V^{\vee}A$  becomes ready to connect in hardware circuit.



Fig. (<sup>v</sup>) Top programmer and Topwin<sup>1</sup> program disk.

The hardware design is implemented by "ISIS  $\vee$  professional simulator" to simulate the electronic circuit of the audiometric test instrument as shown in Fig. (A).

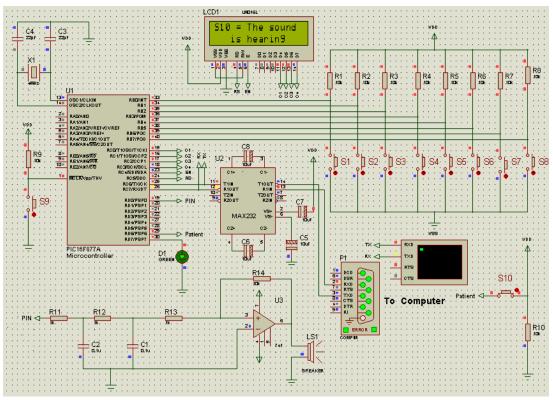



Fig. (^) Electronic circuit of test of audiometric instrument.

# 4. Testing and Results

In the experimental work, source code is written in the Basic language. The source file is then compiled by invoking the Proton IDE program. The code was tested using ISIS  $\vee$  Professional simulator. When the examiner presses one of the S<sup>1</sup> – S<sup>A</sup> switches, the instrument applies a sound wave of the corresponding frequency to the patients' ear through the headphone. Simultaneously, the frequency value is displayed on the LCD. The patient presses S<sup>1</sup> when he hear the sound, causing a green LED to be lite and displaying a message of "the sound is heard" on the LCD screen. The values of frequencies are displayed on an LCD screen as shown in Fig. (<sup>4</sup>).

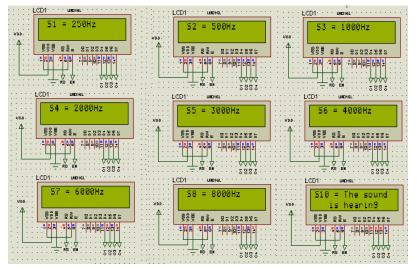



Fig. (1) Frequencies values display in LCD after pressing on different switches.

In addition LCD output unit, the RS $\gamma\gamma\gamma$  serial port can be connected with COM $\gamma$  or COM $\gamma$  in PC to display values of frequencies through "Smarterm terminal emulation program". This program can be activated on the PC to communicate with the audiometric instrument. The frequency range obtained is shown in Fig. ( $\gamma$ ) when the SmartTerm terminal emulation program is used.

| Audiometric Test Based on Microc | ontroller PIC16F877A |
|----------------------------------|----------------------|
| Press Any Switch To Start        |                      |
| 51 is pressed = 250Hz            |                      |
| 52 is pressed = 500Hz            |                      |
| 53 is pressed = 1000Hz           |                      |
| 54 is pressed = 2000Hz           |                      |
| 55 is pressed = 3000Hz           |                      |
| 56 is pressed = 4000Hz           |                      |
| S7 is pressed = 6000Hz           |                      |
| S8 is pressed = 8000Hz           |                      |
| S10 is pressed = The sound is he | aring                |
|                                  |                      |
|                                  |                      |
|                                  |                      |
|                                  |                      |
|                                  |                      |
|                                  |                      |
|                                  |                      |
|                                  |                      |

Fig. (1.) Frequencies values display in PC after pressing on different switches

The simulation results of audiometer cases by using the proposed hardware are implemented in environment of Matlab  $(\cdot)$  program to examine the left and right ear in different case of hearing as shown in Fig. (1)

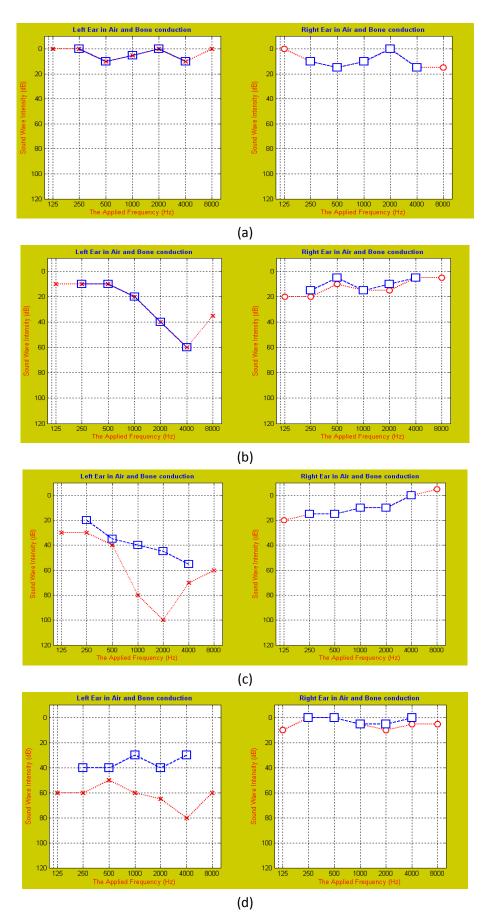



Fig. (11) Haering cases: (a) Normal case, (b) Sensonural hearing loss case,
(c) Conductive hearing loss case, (d) Mixed hearing loss case.

#### Conclusions

Many conclusions can be derived in this paper; the most important results can be summarized as follows:

- a. The audiometric instrument based on PIC microcontroller has been designed and implemented successfully. The simulation and hardware implementation results have been presented to verify the feasibility of the system.
- b. Using PIC microcontroller unit, the frequency range and amplitude can be easily changed through programming without further hardware changes or by increasing push bottom switches connected to PIC microcontroller.
- c. The audiometric testing instrument based on PIC microcontroller offers high performance at low cost, and hence is suitable for commercial and industrial applications.
- d. The audiometric testing instrument based on PIC microcontroller is portable and easy to use.

## References

- [1] A. Hemakom, A. Noymai, P. Israsena, S. Boonyanukul & C. Chinnarat," Remote Hearing Screening As Part of Auditory Telerehabilitation; A Preliminary Report" *International Conference on Virtual Rehabilitation*, <sup>YV</sup> – <sup>Y9</sup> June, <sup>Y</sup> · <sup>Y1</sup>.
- Bulletin, Audiometric Testing: Information for Employers and Workers, Alberta, January <sup>\*</sup> · · <sup>^</sup>. <u>http://industry.alberta.ca/whs-ohs</u>
- [<sup>r</sup>] M. Maloberti, S. Brigati, F. Francesconi, G. Grassi, D. Lissoni, P. Malcovati, A. Nobile, & Poletti, "An ·, ^ µm CMOS Mixed Analog Digital Integrated Audiometric System" Proc. *IEEE Solid-State Circuits Conference*, 1994, pp. 117–119.
- [1] P. Malcovati, "Design of Integrated Circuits for Audiometric Applications", Proc. IEEE International Symposium on Circuits and Systems, , Y., pp. 191–1912.
- [°] H.C. Wu, L.P. Yang, C.H. Chen, S.T. Young, & T.S. Kuo, "A Low-cost Architecture of Audiometer Based on Direct Digital Synthesizer", *Proceedings of The first Joint BMES/EMBS Conferences Serving Humanity, Advancing Technology*. Vol. <sup>7</sup>, Octuber, 1999, pp. A92, 17-17.
- [7] C.A. Martinez-Baez, L.F. Borjon, & A. Noyola, "Manual And Automatic Programmable Audiometer", Proc. IEEE Inter Conf on Engineering in Medicine and Biology Society, Vol. 17, 1991, pp. 1910 – 1917.
- [<sup>v</sup>] K. Kochanek, L. Sliwa, J. Zajac, & H. Skarzynski, "A Universal Computer Audiometer for Objective Hearing Testing and Screening," *Proc. Medical Measurement and Applications*, pp. <sup>1</sup> – <sup>r</sup>, <sup>v</sup> • • <sup>v</sup>.
- [4] Y. Faycal, B. Wahiba, B. Lotfi, B. Ratiba, & A. Benia, "Computer Audiometer for Hearing Testing", Proc. Advances in Electronics and Micro-electronics, Y..., pp. 111-115.

- [1] D. Azeez, M. A. Ali, H, Husain, G. K. Beng, C. Umat & R. Mustafa, "Implementation of Active Noise Control for Hearing Test Application Using PC" International Conference on Instrumentation, Communication, Information Technology and Biomedical Engineering, pp. 1-2, 7...9.
- [1] Website of Microchip Technology, Inc. <u>http://www.microchip.com/1.1./index.htm.</u>
- [17] A. Lay-Ekuakille, G. Vendramin<sup>1</sup>, & A. Trotta, "Design of an Energy Harvesting Conditioning Unit for Hearing Aids" *T*•th Annual International IEEE EMBS Conference, pp. <sup>YT</sup><sup>1</sup>·-<sup>Y</sup><sup>1</sup></sup> August, <sup>Y</sup>··<sup>A</sup>
- [12] Cheng-Yuan Chang & Sheng-Ting Li, "Active Noise Control in Headsets by Using a Low-Cost Microcontroller" *IEEE Transations on Industrial Electronics*, Vol. °<sup>A</sup>, No. °, May Y.11, pp. 1977-1967.
- [1°] A. V. Deshmukh, *Microcontrollers Theory And applications*, Tata McGraw-Hill, <sup>۲</sup>···°.
- [1] I, Dogan, PIC BASIC Projects Using PIC BASIC and PIC BASIC PRO, ELSEVIER, 1.12