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Abstract:

The goal of this paper is control and estimation speed of indirect field orientation
control induction motor. The system is nonlinear and one therefore cannot directly use
any linear system toolsfor estimation. However, the standard discrete Kalman filter (KF)
has been used for state estimation. As such, the nonlinear model has been discredited
and extended to be suitably applied for such filter. The entire state estimated system has
been modeled using MATLAB/SIMULINK blocks. The state estimation algorithm and
motor discretized model are coded inside special S- function of m-file type. Also, the
error covariance matrices of measurement and process will be developed from the system
model. PI controller isreplaced by fuzzy logic controller. The common conclusion drawn
from such study is that fuzzy logic controller has shown a superior performance.
Keywords: indirect field orientation indication motor, Kalman filtering, extended
Kalman filtering
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1. Introduction

A fuzzy logic (FL) control system essentially embeds the experience and intuition of
ahuman plant operator and sometimes those of a designer and/ or researcher of the plant. FL,
on the other hand does not strictly need any mathematical model of the plant. It is based on
plant operator experience and heuristics, and is very easy to apply. Fuzzy control is basically
an adaptive and nonlinear controller , which gives robust performance for linear and nonlinear
plant with parameter variation * 1%

In controlling AC motor drives, speed transducers such as tacho-generator, resolvers, or
digital encoders are used to obtain speed information. Using these speed sensors has some
disadvantages 1%

They are usually expensive

The speed sensor and the corresponding wires will take up space.

In defective and aggressive environments, the speed sensor might be the weakest part
of the system.

Especially the last item degrades the systems reliability and reduces the advantage of an

induction speed sensorless vector control method Y.

On the hand , avoiding sensor means use of additional algorithms and added computational
complexity that requires high- speed processors for real time applications . as digital signa
processors have become cheaper, and their performance greater , it has become possible to
use them for controlling electrical drives as a cost effective solution.

Estimation of unmeasurable state variables is commonly called observation. A device (or a
computer program) that estimates or observes the states is called a state — observer. An
observer can be classified according to the type of representation used for the  plant to be
observed 1%

If the plant is deterministic, then the observer is a deterministic observer; otherwiseitisa
stochastic observer. The most commonly used observer is Luenberger and Kaman types.

The Luenberger observer (LO) is of the deterministic type, and the Kalman Filter (KF) is of
the stochastic type. The basic Kalman filter is only applicable to linear Stochastic systems, and
for non-linear systems the extended Kalman filter (EKF) can be used, which can provide
estimates of the states of a system or of both the states and parameters [

The EKF isarecursive filter (based on the knowledge of statistics of both the state and noise
created by measurement and system modeling), which can be applied to non-linear time
varying stochastic systems EKF being insensitive to parameter changes and used for
stochastic systems where measurement and modeling noises are taken into account!™

2. model of induction motor

The state space model for induction motor developed in stationary reference frame, is
given below ¥
x = AX + Bu (1)
Y =Cx 2
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Where P = p/2 denoted the number of motor pole pairs.
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Where [i‘is] d-axis & g-axisof stator current (A)
qs
ko= (LyLs — L)L, Ke=1+1(2)2, Kre=
T

(3PLm)/(2jL,) and Ky .=P/J .TheparametersL, , Lsand L, arerotor , stator and main
inductance respectively P number of pole pairs. T, = L,/r; isthe rotor time constant: J isthe
inertia constant of the motor: T isthe external load: o, isthe rotor electrical speedin
angular frequency.
The motor equation (2) is to be discredited for the digital implementation as: ©°

Xi+1 = AiXx + Bruk — (5)

Yk = Ck Xk (6)

Ay and By are the discretized system and input matrices, respectively . They are

Ac=eT=1+AT+UD0 4 L. =1 +AT (7)
— (T _ T A _ ABT?
Bi=fy e*Bdi =[ € ~1]ATB=BT +——+ ...
~BT 8)
Ck=C 9)
Where T isthe sampling time and | is an identity matrix.
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3. Elements of Fuzzy Controller

A fuzzy controller basically comprises four basic principal components, i.e., afuzzification
inference, knowledge base, fuzzy inference engine and a defuzzification interface % Figure
(2) shows ablock diagram of afuzzy controller, which includes these Basic operations.

| Fuzzy Inference Bl
- Fngie 1§ [
- ‘
1 2 |y I Ia
N —K,pP >
Knowledge Basa % z=-1
Fuzzy Rie | P B
Sats Base

Fig.(1) fuzzy controller block diagram.
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In Figure (1), aPI fuzzy controller is shown. Theinput of the controller isusually the error e
and change of error e The crisp output of the fuzzy controller is usualy the control input (CI)
Ie*qS to. the IFOC induction motor. The gainsK 's at the input are used for normalizing the
corresponding universe of discourses, while those at the outputs will be used for tuning
purposes. However by changing thegains k., k.. ,and K,, therange of universe of discourse
can either be increased (stretched) or decreased (compressed) (&

1) Fuzzification

The quantized input data are converted into suitable linguistic variables, which may be
viewed as |abels of fuzzy sets.

2) RuleBase: -

The genera form of thelinguistic rulesis:- If premise Then consequent.
The premises (which are sometimes called antecedents) are associated with the fuzzy
controller inputs. The consequents (sometimes called action) are associated with the fuzzy
controller outputs. Each premise (or consequent) can be composed of the conjunction of
several terms. Also the number of fuzzy' controller inputs and outputs places an upper limit on
the number of elementsin the premises and consequent.

3) Inference Engine:-

The inference or fuzzy processing is the heart of the FLC, it isthe Specified process that
transforms fuzzy inputs into a fuzzy output by dealing with fuzzy rules, as aresult of which
the response’ corresponding to the inputs is produced. Mainly there are two different kinds of
fuzzy rules according to the expression of the consequent [*©!

Mamdani-type: fuzzy rules consider alinguistic variable in the consequent:
With (Xy,.,., X, ) and (Y) being theinput and output linguistic variables, respectively,
and (Ay,..., An) and (B) being linguistic variabels, each one of which having
associated fuzzy set defining its meaning.

Takagi — sugino — King- type :fuzzy rules are based on representing the consequent as a
polynomial function inputs:

If X1iSAY, ........ Xn then:

Y—p1X1+ ......... ann+ po

With (X........... Xn) and y being the input and output linguistic, respectively, and po,
PLP2- e pn being real — vaue weight.

235



Journal of Engineering and Development, Vol. 17, No.6, December 2013, ISSN 1813- 7822

4) Defuzzification

Basicdly, defuzzification is amapping from of a space of fuzzy control actions defined
over an output universe of discourse into a space of nonfuzzy (crisp) control actions. The
defuzzification strategy isaimed at producing a nonfuzzy control action that best represents the
possibility distribution of an inferred fuzzy control action. Many strategiescanbe used for
performing the defuzzification. Different defuzzification method have been
Developed and applied :

Center of gravity/area-COG.

Center of sums.

Center of largest area.

First of maxima.

Middle of maximaand Height method.

The COG isthe best well-known defuzzification method. It produces smoothly varying
recommended actions, o it isfavorable to usein control gpplications. This distinctive property
encourages us to use COG defuzzification. The genera expression for COG can be given by

R i
ex _ iz Center
M= 5™ (19)
i=

Where R isthe number of the active rules that apply for the given fuzzy inputs, Center! is
the center of the it output MFand p. correspondstothe i* output MF. Theresult of the
this process is the change of g-componente of stator current Ai¢; of fuzzy controller for IFOC
IM.

4. The Kalman filter theory and algorithm

Theamin all estimation problemsisto have an estimator that gives an accurate estimate
of the true state even though one cannot directly measure it. Two obvious requirements,
should be attained: 0

First, the average value of our state estimate is to be equal to the average value of the
true state. That is, the estimate has not to be biased one way or another. Mathematically,
one would say that the expected value of the estimate should be equal to the expected
value of the state.

Second, the requirement a state estimate that varies from the true state as little as
possible. That is, not only do we want the average of the state estimate to be equal to the
average of the true state, but also want an estimator that results in the smallest possible
variation of the state estimate. Mathematically, an estimator with the smallest possible error
variance is sought
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It so happens that the Kalman filter is the estimator that satisfies these two criteria. But the
Kaman filter solution does not apply unless certain assumptions about the noise that
affects the system under study must be satisfied:
1. Itisfirstly to assume that the average valué of both wy and v are zero.
2. One has to further assume that no correlation exists between wy and vi. That is, at any
time k, wy and v are independent random variables.
One may summarize the recursive state estimation of the discrete Kalman filter as shown, in
Figure.(2). Inthefigure, the superscripts "-1", "T" "+" and "-" indicate matrix inversion,
matrix transposition, posteriori and priori of variable r&spectivelym]. TheK matrix iscalled the
Kalman gain and the P matrix is called the estimation error covariance. The flowchart includes
the initialization of state X in the absence of any observed data at k=0, and the initial valué of
the a posteriori covariance matrix Py.

Initialization
X0 =E[Xo]
Po = E[(Xo-E[Xo]) (o-ElX0])J

A\ 4

State estimate propagation
- +
Xk = AxaX k1

A

A 4

Error covariance prpogation
P = AP Aert Qua

A 4
Kalman gain matrix

K = pi G [CPx CTit R

v

State estimate update
X=X+ Kiyk = CieX i)

I

Error covariance update
Pk+:(| - Kka)Pk-

»
»

Fig. (2) Recursive algorithm of Discrete Kalman filter
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The timing diagram of the various quantities involved in the discrete optimal filter equationsis
shown in Figure.(3). The figure shows that after we process the measurement at time (k-1), we
have an estimate of xy; (denoted xya) and the covariance”® of that estimate (denoted P, ).
When time k arrives, before we process the measurement at time k we compute an estimate of
Xk (denoted xi) and the covariance of that estimate (denoted P;, ). Then the measurement is
processed at time k to refine our estimate of .. The resulting estimate of xx isdenoted x and

its covariance isdenoted P} 1

A A
Cr— Ry 4 Ck Ry
Xi X X Xi
Ap_q Qg1 Ak, Qk
— ———
Pr- Py P P
Tk Tk time

Fig. (3) Timeline showing a priori and a posteriori state estimates and
estimation- error covariance

By substituting error covariance update equation into propagation equation, and the state
estimate propagation equation into update equation, the algorithm of Figure.(2) will be

summarized as

Ki=Px ¢% [ CiPc % sRe] * (14)
X = Ap-1 Xie KV - Cr Xi) (15)
Pk = Ak ( (-KkCi)Pr)Ak-1 +Qk-1 (16)
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5. Extendevcd Kalman Filter (EKF)

To estimate the rotor speed, it nonlinear model is formed with the states consisting of
the parameter to be estimated and the original states. Equation (2) is the free-noise
discretized version of IM model. The new model isformed after corruption with state and.
M easurement noises to give 4+

Xie1 =T (Xu,k) +wy
Ye=Cq4 Xi T (17)

Where
Xk = [ ( itsis its]s ¢sir 7\511“ G)r ]k+

isthe combined state and parameter matrix, f(x,U,k) isthe nonlinear state function, whichis
given by

A11X1 + A13X3 + Q1aX4X5 + by Uy f1
A11X; — A14X5X3 + Ag3X, + b11u2} f2
f(x,u,K) = AXi+Bgui= az1X1 + Az3X3 + A34X4 X5 = |f3| (18)
Q31X; — A34X3X5 + A33X, l 4J
l—a15x4x1 + 15X, X3 + X5+ bgaT 1 5

To use nonlinear model of 1M with standard KF, the model must be linearized about current
operating point, giving alinear perturbamodel represented by Jacobian m F(x,u,k)

0f1 Of1 3fr 91 3]
0_761 dx, 9dx3 Oxq4 Oxs
ax1 axg 6?(3 OX4_ axs
9x1 dx; Odx3 Oxg Oxs
Ofs Ofs Ofa 3fs s
dx1 dxp; 9dx3 Odxq4 Oxs
9fs ofs ofs 9fs s
[dx1  dx; d8x3 O9xy Oxsd

af (xuk
F (X,u,k) = f(;: )]x(k)+u(k) =

aiq 0 a3 A14X5  A14X4
[ 0 ag;  TQuaXs a3 —a14x3]
=| asy 0 ass A34X5  A34X4
0 A3;  —A34X5  G33  —A3X3
l—a15x4 a;sx3  QAisXz —Q15X 1 1
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6. Simulated Results

SIMULINK isan extension to MATLAB and alows graphical block diagram
modeling and simulation of dynamic systems. It is easier to devel op state estimator using
this package, as many componentes of the system are already included in the SIMULINK
block diagram library. (¢

The discretized model of the motor and the state estimation algorithm has been
entered into a S-function-type of m-file. An m-fileisaMATLAB program that allows
algorithms or equations to be entered in a programming language. An S-function block,
from the SIMULINK nonlinear library, links this m-file into agraphical block for use
within the overal state estimation system.

Theliguistic rule shown in Table (1) are used in the F.L . controller, the number (3)

corresponds to positive large and (2) indicates positive médiums etc.

Table (1) FL controller rulebase

Rule base Ee;
uml-|-1-10]1]21]3
312]1
313131312 211
-2 1313121212]|01]-3
11312121211 ]-1-3
1
_To [32(z[ol[-[-[3
1|2
1 311]-1-1-1-1-3
1121212
2 310]-1-1-1-1-3
2121213
3 -1-1-1-1-1-1-3
11212121313

1. The step responses Performance of fuzzy:-

The step responses for Pl and FL controllers are tuned to reach 120 rad/sin about 0.68
sec. With no overshoot. For both Controllers, these settings are kept constant for the

following tests as abasis for comparison as show in Figure (4) And Figure (5).
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Rotor Speed

L=l

Time (sec.}

Fig. (4 )step speed response of PI

Rotor Speed

S

Cured (4)

Time (sec.)

Fig .(5) step speed response of the FL-based induction motor drive
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2. Speed Tracking Performance of fuzzy

Figures (6) and (7) show the speed tracking performance, under no load condition, of
both FL and PI controllers; asthe Pl and FC gains are being freezed with their settingsin the
previous step response. The slope of the trapezoidal command speed is (wpr 2) (rad/s).
Initially, both controllers have difficulty in following the command because of the current
limit and the time needed to build up the flux once the flux is established.

As seen from Figure (6), the PI controller failsto track the ramp with zero steady-error
over the tracking cycle; asasmal valué of steady state valué of error remains along the tracking
response. To improve the speed tracking performance, the gains of the PI controller have to be
retuned, such as increasing the integration gain K;. However, overshoot and oscillation are
usually associated with the increase of K. Therefore, thereis a serious conflict in the speed
performance. Figur e (7) shows that after a short period of starting time (about 0.2 sec), the FL
controller shows very good speed tracking performance, indicated by the amost perfect
overlap of the command speed with the actua speed. A gain, the speed performancein the
transient period can be improved by agood initial setting of FL input

Rotor Epead -
100 e Aium| Epeed
—— Ruference Spasd
- 1] !
= 1]
40
§fx
} 0
g =20
-4
<50
80
=100
Timm (sac)
Stator Curremt -~
150 i
100
=0
=
-
§ o
()
=
=]

8

-
- ;
\ 1
i i e
a=— !
:
i
1
]
]
i
1
I
[}
;
1 )
i
i
)
T
1]
[}
L]
i
1
1
i
|
]
i
'
]
]
[
'
1]
1 3
i
1
i
1
1
]
]
I
1
|
]
1
b
i

-150 0.5 1 15
Tirna (2ac)

Fig. (6) speed tracking performance of the Pl — based induction motor
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100 —
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H —— Reference Speed

_____________________________________________________________________
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(m]

EP, T—— SRR "W WP 15

________________________

B e

-80

-100
Time (sec)

Stator Current

Stator Curent (4)

o o5 1 1.5
Time (sec)

Fig .(7) speed tracking performance of the FL — based induction motor drive

3. Detuning Effects

The rotor's resistance is doubled while the motor is unloaded. Consequently, the flux and
torque current commands are no longer decoupled. As expected, the field orientation-detuning

problem causes the greatest degradation in performance.
The speed response performance with Pl controller much degrades when the rotor

resistance increased to two times the rated value (0.228).1t is evident frorn Figur (8) that the
responseis oscillatory. Thisis because the decoupling is lost the system becomes coupled. On
the other hand, FC has the potentials to compénsate the parameter variation, as shown in

Figure. (9).
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Fig .(9) Detuning effect of FL induction motor
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4. The step Speed Responses of fuzzy and EKF:-

In the case of Figure (10) simulation, state covariance is decreased; the algorithm
begins to behave such that the state space model gives more accurate estimates compared to
measure valies so it assigns less importance to the measurements. This causes a decreasein
Kaman gain, which reduces the correction speed of the currents. In the extratime used for
current correction the algorithm finds opportunity to decrease the steady-state error. Thisis
clear in Figure (10), where the speed errors are plotted on the same graph of reference and
actual speed. One can see that the speed error finally reaches zero at appropriate setting of
covariance matrices. The filter showed high performance in terms of noise rejection and the
improvement of motor opearation.
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Fig .(10) (a) (b)
(step speed response of the FL-based induction motor drive)
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Fig .(10) (c) (d)
step speed response of the FL-based induction motor drive

5. Speed Tracking Performance of fuzzy and EKF

In Figure (11), speed reversal at no-load is given with reference speed. The speed
sequenceis given as follows:
Time ref=[0,0.5,1,15, 2,25, 3];
Speed_ref=[0120 120 O -120-120 OJ;
The actual speed, estimated speed and the reference speed are plotted together.
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Fig.(11) speed tracking performance of the FL — based induction motor drive
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Conclusion:

1-

In step response situation, both FL and PI controller share the same designing
procedure; as the response time constant can be controlled by retuning of their
constructing gains. Since The IM system, as previously mentioned, is of nonlinear
nature, and there is no systematic procedure to design these controllers for the required
response. Therefore, in some settings of its gains, Pl controller might be superior to FL
counterpart.

FL controller shows an excelente tracking performance as compared to Pl controller.
Asitisclear from the related figures, there is a perfect overlap between the actual and
reference speed. Y et, tracking performance of Pl controller can be improved by
retuning of its gains (proportional and integral gains), but excessive increase might
lead to instability problems.

The EKF showed high performance in terms of noise rejection and the improvement
of motor operation.

The EKF shows high tracking performance for both high and low speed estimations
and close to reference speed.
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Appendix

The parameters three-phase induction motor are listed in Table

Rated power 37.4 Kw
Rated voltage 460 V
Base frequency (f) 50 Hz
Base Torque(Th) 197.88 Nm
Number of poles (P) 4

Stater leakage inductence 0.8mH
(LIS)

Rotor |eakage inductance 0.8mH
(Llr)

Magnetizing inductance (L)) | 34.7mH
Rotor resistance (ry) 0.228 ohm
Stator resistance (ry) 0.087 ohm
Rated speed (n) 1725 rpm

249



