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Abstract : 
 

         Many systems exist in real control applications whose characteristics are difficult to 
be mathematically modeled, therefore performing the design of an adequate controller is a 
computationally complex task using the classical methods. Alternatively, neural networks 
prove to be a good tool in control systems design which can be used without the need to 
know the exact model. This paper aims at designing a neuro-controller that combines both 
supervised and adaptive neuro-control schemes. The supervised scheme mimics the 
classical PID controller off-line; while the adaptive scheme can adapt to the system 
uncertainty on-line, which could eliminate the need for an exact model. The objective of the 
proposed neural control system is to stabilize a robot arm and the resulting robot arm 
angles. However, an experimental set-up of an inverted pendulum rig mounted on a cart is 
used as the test-bed. The simulation results prove that the proposed adaptive neuro-control 
scheme successfully maintained the pendulum in an upright position at steady-state. 
Keywords— supervised neural control, PID control, adaptive neural control, back\ propagation 
neural networks, robot arm control, inverted pendulum stabilization problem, system modeling, 
dynamic system analysis and control 
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  :الخلاصة
           

الطرق استخدام  مما یجعلانظمھ كثیره یصعب نمذجة خصائصھا ریاضیا   ھنالك الحقیقیھ السیطرةتطبیقات  في          
 عتبریذلك  كبدیل  عن شبكات العصبیھاستخدام ال  عملیھ معقده حسابیا ،لذا  مناسب التقلیدیھ في تنفیذ تصمیم مسیطر

 الدقیق الریاضي دون الحاجھ الى معرفة النموذج من   یمكن استخدامھا  حیث وسیلھ جیدة في تصمیم انظمة السیطرة 
السیطره العصبیھ الاشرافیھ والمتكیفھ  كلا من نمطي البحث الى تصمیم مسیطر عصبي یدمج  یھدفھذا . للنظام

)supervised and adaptive( الاشرافي یحاكي مسیطر   حیث  ان النمط . معاPID    التقلیدي الغیر مباشر
off-line في حین النمط المتكیف یتكیف مع غموض النظام ، on-line بذلك وعلیھ یمكن الغاء الحاجھ  مباشر بشكل 
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مع زاویةالذراع   روبوت راع تحقیق استقرار ذ ان ھدف نظام السیطره المقترح ھو.  للنظام  دقیق  ریاضي الى نموذج 
 اثبتت نتائج .مثبت على عربھ متحركھ  مقلوب بندول منصةتم استخدام  لكنھ عملیا  لاجراء ھذا البحث . الناتجھ
في  البندول على بنجاح الحفاظ قادر على التحكم  و عصبيال التكیف  على اساس ان نظام السیطره المقترحالمحاكاة

  .ارحالة الاستقر في وضع رأسي
  
  

I. Introduction 
 

 

         Intelligent control using neural networks has been applied to various control problems in 
the literature [1][2][3]. This type of control is known to be effective in many situations, 
especially when the controlled system exhibits uncertainties. On the other hand, PID 
controller has been used as a major control method for real control problems. The simple 
structure of the PID controller contributes to reasonable robustness against noise and 
parameter variations. However, due to process uncertainty the PID controller may fail in 
performing the required control. Thus, it is desirable to combine the intelligent control 
approach with the traditional PID controller structure.  
           In this paper, an alternative neuro-control scheme is proposed. The proposed scheme is 
based on combing both supervised neural control and adaptive neural control schemes. A 
back-propagation neural network is trained off-line first to mimic a PID control action using 
supervised control scheme where the PID works as the teacher in this case. The neural 
controller can then be placed on-line in an adaptive scheme where it will continuously update 
its weights.  
          The proposed neuro-controller is used to stabilize an inverted robot arm and has shown 
its effectiveness through Simulink simulations where the stabilization is determined by 
solving the standard inverted pendulum problem. The dynamics of inverted pendulum 
simulates the dynamics of robotic arm in the condition when the center of pressure lies below 
the centre of gravity for the arm so that the system is also unstable, and hence robotic arm 
behaves very much like inverted pendulum under this condition. 
 
 

II. The Inverted Pendulum Problem 
 

         As a nonlinear and unstable system with unknown and/or varying parameters, inverted 
pendulum on a cart poses a challenging control problem. The system, which is shown in 
Figure.(1), consists of an inverted pole hinged to a cart and free to fall in the plane, in a 
roughly vertical orientation by moving the cart horizontally in the plane while keeping the 
cart within some maximum distance of its starting position. This classical system, which is 
variously known as the inverted pendulum problem, pole-balancing, or broom-balancing, 
seems to have been one of the attractive tools for testing linear and non-linear control laws. 
The problem was originally investigated in a neural network context in [4] and [5], and quickly 
became a classic object of study in both system dynamics and control systems theory, and in 
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the theory of control systems-learning, as well. Subsequently, numerous papers in the 
literature used inverted pendulum problem as a testing benchmark for the developed 
controllers due to its high nonlinearity, uncertainty, and lack of stability. This testing 
approach was also extended to test the robot arm  
ability to interact with its environment in [6], [7] and [8].  

   
                        Fig. (1). Free body diagram of the inverted pendulum system 
 
          The main task here is to design a controller which keeps the pendulum system 
stabilized. There are important points to remember when designing such controller. One point 
is that standard linear PID controllers cannot be used for this system because they cannot map 
the complex nonlinearities in the pendulum process. In contrast, neural networks have shown 
that they are capable of identifying complex nonlinear systems and hence they are well suited 
for generating the complex internal mapping between inputs and control actions. Another 
point is that PID controller can operate correctly only if the system operates around a certain 
point and fail if any sort of uncertainty in form of disturbance or change in system parameters 
may occur. On the contrary, neural networks will adapt to such uncertainty by adjusting the 
weights and maintain controlling the system. Also a neural network can approximate data on 
which it has never been trained.   
            Two steps are carried out in this work to design this neuro-controller. The first step is to 
derive the mathematical model of the inverted pendulum system (this will be given in section 
IV). The second step is to develop a neural network controller which determines the correct 
control action to stabilize this model. 
 
III. Neuro-control of the inverted pendulum 
 

            In the literature on neural networks architecture for control systems applications, a 
large number of control structures have been proposed and used. In this paper, however, a 
particular emphasis is given on two of these structures which can be used to stabilize the 
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inverted pendulum. These two neuro-control structures are namely; the neuro-supervised 
control structure and the neuro-adaptive control structure. 
         In supervised control the neural network uses an existing controller, PID in this case, to 
learn the control action. Supervised control proceeds with a teacher providing the control 
output for the neural network to learn. The simplest approach to this method is to teach the 
network off-line; subsequently the neural network is placed in the feedback loop as in 
Figure.(2). The main disadvantage of this scheme is the developed neuro-controller is based 
on a control law which can only effectively control a specific model for the inverted 
pendulum under certain operating conditions. If these model parameters are slightly changed 
or if the model was subjected to unknown disturbance then this controller would fail to keep 
the pendulum stable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (2). Supervised control using existing controller 
 

        Figure. (2) shows the adaptive control scheme which has the ability to adapt on-line. 
This is achieved by presenting the neuro-controller with an error signal which is calculated by 
subtracting the actual output from the desired output. Subsequently this error is used to adjust 
the neural network weights on-line. However, the existing algorithms to perform adaptive 
adjusting are slow and have very low convergence rates. In these algorithms, the criterion to 
be minimized presents a quadratic of higher order which implies the existence of local 
minima. Moreover, online training allows neither multiple session optimization, nor 
employment of global optimization methods. Therefore, the probability of finding and getting 
stuck on a poor local minimum is high. Also, on-line adaptation of all the network weights 
does not intelligently use available, large data sets, and because it does not give priority to 
identify the system dynamics (or some specific operation points of the system); the resulting 
network is not a good approximation of the system to be modeled. With these drawbacks this 
scheme cannot cope with the uncertainty, instability and non-linearity involved in the inverted 
pendulum. 
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Fig. (3). Adaptive control scheme 
 
The proposed neuro-control scheme overcomes the drawbacks of these two schemes by 
combing them together. The neural network is trained off-line first to imitate the PID 
controller, then the PID controller will be replaced by the trained neural network, which will 
control the system instead, while continues its learning in an adaptive manner to.   
 
 
 

IV. Inverted Pendulum Modeling 
 

           The free body diagram of the system Figure.(1) is used to obtain the system model 
based on equations of motion. Figure.(4)  below shows the two parts of this system's free 
body diagram in details, where the forces acting on the cart are depicted to the left and on the 
pendulum to the right (the figure's parameters are defined on the next page).   
  

 
 
 
 
 
 
 
 
 
 

 
Fig .(4). Detailed free body diagram of the system with the cart (left) and 

inverted pendulum(right) 



Journal of Engineering and Development, Vol. 17, No.3,  August 2013, ISSN 1813- 7822 
 

                                                                       188

      Where Figure's 4 parameters are determined by the following: 
M: mass of the cart. 
m: mass of the pendulum. 
b: friction of the cart. 
L: length to pendulum center of mass. 
I: inertia of the pendulum.  
F: force applied to the cart. 
x: cart position coordinates (with its first and second derivatives represent the linear velocity 
and acceleration, respectively). 
θ : pendulum angle from the vertical axis (with its first and second derivatives represent the 
angular velocity and acceleration, respectively). 
g: gravitational acceleration. 
P and N: interaction forces between the cart and the pendulum in the vertical and horizontal 
directions respectively. 
As depicted, both the cart and the pendulum have one-degree-of-freedom which is determined 
by x and θ , respectively. Hence, these two degrees-of-freedom can be mathematically 
modeled according to the basic Newton's equations as: 
 

 

1 1

1 1

x =    = ( x)

( cos sin )

linearM M
Cart

rotationalI I
Pendulum

F F N b

F NL PLθ θ θ

− −

= = +

∑

∑

&& &

&&
   

 
Summing the forces in the free body diagram of the cart in the horizontal direction, the 
following equation of motion is produced: 
 

x xM b N F+ + =&& &        (1) 
 

The sum of forces in the vertical direction is not considered because there is no motion in this 
direction and that the reaction force of the earth is considered balances all the vertical forces. 
 

The force exerted in the horizontal direction due to the moment on the pendulum is 
determined as follows: 
 

momentF mLθ= &&        (1-1) 
 

The component of this force in the direction of N is cosmLθ θ&& . 
 

The component of the centripetal force acting along the horizontal axis is as follows: 
 

2
centripetalF mLθ= &       (1-2) 
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The component of this force in the direction of N is 2 sinmLθ θ& . 
 

Summing the forces in the free body diagram of the pendulum in the horizontal direction an 
equation for the interaction force N can be written as: 
 

2x cos sinN m mL mLθ θ θ θ= + −&& &&&     (2) 
 

By substituting equation (2) into equation (1), the first equation of motion for this system is 
produced: 
 

2( )x x cos sinM m b mL mL Fθ θ θ θ+ + + − =&& &&& &    (3) 
 

Then by summing the perpendicular forces to the pendulum, the second equation of motion 
can be provided by: 
 

sin cos sin x cosP N mg mL mθ θ θ θ θ+ − = +&& &&   (4) 
 

Also by summing the moments around the centre of pendulum to eliminate P and N in 
equation (4) which leads to the following equation: 
 

sin cosPL NL Iθ θ θ− − = &&      (5) 
 

Combining equations (4) & (5), the second dynamic equation is set to be: 
 

 2( ) sin x cosI mL mgL mLθ θ θ+ + = −&& &&    (6) 
 

The equations (3) and (6) are completely defining the dynamics of the inverted pendulum 
system, and they are non linear equations. Since the pendulum is required to be stabilized at 
an stable equilibrium position ( 0180θ = ), it is possible to linearize these equations by 
approximating: 
 

 cosθ  = -1 ,  sinθ  = - ϕ  and  2θ& = 0  
 

It is assumed that ϕ  is kept as a very small angle value from the vertical upward direction of 
the pendulum. Therefore the equivalent linear system equations are: 
 

( )x xM m b mL uϕ+ + − =&&&& &       (7) 
 

where u represents the input to the control system, and     
 

2( ) xI mL mgL mLϕ ϕ+ − =&& &&       (8) 
 

To obtain the transfer function of the linearized system equations analytically, the Laplace 
transform of the system equations is taken. The Laplace transforms are: 
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2 2

2 2 2

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
M m s X s bsX s mLs s U s
I mL s s mgL s mLs X s

+ + − Φ =

+ Φ − Φ =
   (8-1) 

 

When finding the transfer function, initial conditions are assumed to be zero. The transfer 
function relates the variation from desired position (output) to the force on the cart (input). 
Since the angle Φ  is sought as the output of interest, so:   
 

2

2

( )( ) [ ] ( )I mL gX s s
mL s
+

= − Φ      (8-2) 

 

Then, substituting into the second equation will yield: 
 

2 2
2 2( ) ( )( )[ ] ( ) [ ] ( ) ( ) ( )I mL g I mL gM m s s b s s mLs s U s

mL s mL s
+ +

+ + Φ + + Φ − Φ =   (8-3) 

By assuming that 2 2( )( ) ( )q M m L ml mL= + + − , and rearranging the equation above then the 
transfer function will be as : 
 

3 2 2

( )
( ) ( ) ( )
s mLs

U s qs b l ml s mgl M m s bmgL
Φ

=
+ + − + −

   (9) 

 

The forces that have the most effect on the cart will be its weight, the reaction driving force 
acting on the cart and the friction. In order to model the motion of the cart mathematically to a 
reasonable precision friction can be disregarded because the cart is moving at a nominal speed 
and that the cart is moving on a very well lubricated track. 
 
Thus neglecting the friction in the system, that is, by take the coefficient of friction 0=b , 
then: 
 

1)(
)(

22 −
=

Φ

P

P

As
K

sU
s        (10) 

 
where : 

gmM
KP )(

1
+

=        , and       2 2

( )
( )( ) ( )P

M m mgLA
M m I mL mL

+
= ±

+ + −
 

 

and thus the linearized approximation transfer function for the inverted pendulum system has 
been obtained.  
        In practice the experiment can be carried out using a setup as shown in Figure.(5) [9]. As 
shown in this setup, the pendulum rig consists of a simple cart which runs along a track. The 
cart is restricted to traveling in the track axis. The position of the cart is controlled by a DC 
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motor and drive belt. A pole with mass on the end is pivoted on the cart and is free to swing in 
the same axis. The output from this system is the angle of the pendulum measured using 
optical encoder sensor. The output signal is sent to a control algorithm via a data acquisition 
card. The control algorithm determines a control action to keep the pendulum inverted. A DC 
signal controls the speed and magnitude of the motor which determines the position of the 
cart.  
        Therefore the actuation mechanism, which consists of the movable cart on track driven 
by the DC motor via a pulley and belt, its transfer function, can be written as: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (5). The experimental set-up of the pendulum rig 
 

)1(
)(

)(
)(

+
+

=
s

rsmMK
sE
sU

m
m τ

     (11) 

 
where mK  and mτ  are the system gain and time constant, respectively, and it depends upon 

the load drive. r  is proportional to the force F . 
Finally  the transfer function for the whole uncontrolled system can be given as: 
 

)1)(1()(
)(

2

2

−+
=

Φ

P
m A

ss

sK
sE
s

τ
     (12) 

 
where  )( mMrKKKK MPF +=  

              =)(sE Error Voltage 
            =Φ )(s  Angular Position of Pendulum 
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The above physical parameters of the system prototype may be chosen according to [10] which 
are given in Table 1. 
 
                 Table 1 : The physical parameters of the system prototype 
 

Symbol Description Value 
M Mass of Cart 900 gm 
m Mass of the Pendulum 100 gm 
b Friction of the Cart 0.01  N/m/sec 
L Length of Pendulum to Center of Gravity 23.5 cm 
I Moment of Inertia (Pendulum) 5.3 gm-m2 

R Radius of Pulley 2.3 cm 

Mτ  Time Constant of Motor 0.5 sec 
Km Gain of Motor 17 rad/sec/V 
KF Gain of Feedback 9/π V/rad/sec 

 
 

V. Implementation of the Proposed Neuro-controller  
 

         The developed neuro-control scheme was implemented using Simulink. As was disused 
in section III that this scheme results from applying both supervised and adaptive control 
structures. The first structure uses supervised learning as shown in Figure.( 6) where there is 
an existing PID controller in the feed-forward loop. The MLP (multilayer percepetron) back-
probagation type neural network will be trained off-line first to imitate this controller. Two 
different cases of external disturbance subjected on the force on the cart and on Theta are 
considered. In this case the reference position is assumed to be zero. On the other hand three 
different types of inputs are subjected at the system input where the system is run free of 
external disturbances. These inputs are impulse, step, and band limited white noise 
respectively.  
         Figure.(7) shows the second structure used afterwards where the PID controller has 
been removed and replaced by the MLP where it can be trained and adjust its weights on-line. 
Therefore it can adapt and compensate effectively for any disturbance or uncertainty. The 
MLP used in this experiment is an add-on for Simulnk and is given by toolbox developed in 
[11] and inspired by methodologies presented in [12]. The MLP consists of an input, an output 
and 2 hidden layers and was trained by tuning its perceptions' weights in the off-line training 
phase such that to maintain a unity system feedback loop gain.   
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Fig .(6). Simulink implementation using the supervised control structure 

 

 
Fig .(7). Simulink implementation using the adaptive control structure 

 
 

VI. Simulation Results and Neuro-controller Performance 
 

        This section demonstrates the testing experimentation results of the proposed adaptive 
neuro-controller using the Simulink implementation described in the previous section.  The 
supervised learning scheme of Figure. (6) is used first to train the neural network. Then this 
trained neural network will be the core of the proposed adaptive neuro-controller shown in 
Figure .(7). 
       Figure .(8) shows the response to an impulse disturbance in force subjected on the cart 
only where the overall feedback adaptive neuro-control system rejects the disturbance due to 
such force disturbance applied on the cart. Similarly, Figure .(9) shows the response to an 
impulse disturbance on position of the inverted pendulum only where the system rejects the 
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disturbance on the position of the pendulum. In these two test cases the reference position 
input is kept zero.  
        Figure. (10) shows the impulse response of the inverted pendulum system to an impulse 
input subjected on the system input. While Figure. (11) shows the step response of the 
compensated inverted pendulum system to as step input. This Fig shows that the system 
becomes stable as the output stabilizes and compensates for certain small value of Theta, the 
angle of the pendulum from the vertical.  
Finally, Figure. (12) shows the system response to input disturbance of a random noise with 
variance equals to 0.01. 
 
 
 
 
 
 
 
 
 
                               
 
 
 
Fig .(8). System response to disturbance in force subjected on the cart 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig .(9). System response to disturbance on position of the inverted pendulum 
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Fig .(10). System impulse response to an impulse input 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                

Fig .(11). System step response to a step input 
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         Fig .(12). System response to an input disturbance of a random noise with 

variance equals to 0.01                      
 
 
        In all the test cases mentioned above except for the step input Figure. (11) the inverted 
pendulum is initially at vertical zero position then the system has become stable as Theta 
returns back to zero. For the step input case Figure. (11) the inverted pendulum is initially at 
vertical zero position then the system stabilizes at small value of the vertical angle Theta 
slightly beyond zero. 
        As illustrated by the results of Figure. (8) and Figure.(9) that the proposed adaptive 
neuro-control algorithm rejects properly and robustly the two different types of impulse 
disturbances imposed on the force (on the cart) and on the position (on pendulum). While 
from the results of Figure. (10) and Figure. (11), it is obvious that the overall feedback 
control system respond successfully and follows the required two deterministic inputs, 
impulse input and step input. In addition, Figure .(12) shows that the overall feedback control 
system is responding successfully to an input disturbance sequence of a random noise with 
variance equals to 0.01 by stabilizing the vertical value of Theta to be always around zero 
value despite this random noise. 
           The overall performance of this proposed adaptive neuro-control scheme seems to be 
promising where the controller successfully maintained the pendulum in an upright position at 
steady-state. However, further adjustments and modifications are required to improve the 
system stability during the transit response period and/or stabilizing the system at larger 
values of Theta, the angle of the pendulum from the vertical.  
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VII. Conclusions 
 

        In this paper an alternative neuro-control scheme is proposed. This scheme is based on 
combing the well-known supervised learning and adaptive control schemes together in order 
to obtain their better features. The supervised learning control scheme is used to train the 
neural network to mimic PID control action off-line, and then the neural network is used to 
control the system while the network continues its training on-line to compensate for any 
uncertainty or disturbance.  
         The proposed neuro-controller is used to stabilize an inverted robot arm and show its 
effectiveness through simulation. The stabilization will be determined by solving the standard 
inverted pendulum problem which is perhaps the most widely used benchmarking study to 
assess the effectiveness of emerging control design techniques.  
        The back-propagation learning method is used to train the multilayer perceptron neural 
network to control the pendulum which is free to pivot on a cart. The goal of the neural 
controller is to maintain the inverted pendulum balanced. The neural network has been 
implemented with Simulink and the experimental results show the effectiveness of the used 
adaptive neuro-control technique as the network is able to balance the pendulum. 
        This proposed adaptive neuro-control scheme is open to future development to achieve 
substantial improvements in the system stability during the transit response period and/or 
stabilizing the system at larger values of Theta, the angle of the pendulum from the vertical.   
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