STRUCTURAL BEHAVIOR OF GEOPOLYMER REINFORCED CONCRETE BEAMS: A SHORT REVIEW

Authors

  • Mustafa Adel Saeed Civil Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq Author
  • Ali Sabah Ahmed Al Amli Civil Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq Author

DOI:

https://doi.org/10.31272/jeasd.27.1.7

Keywords:

Flexural strength, shear strength, fly ash, Metakaoline, slag, Carbon Dioxide

Abstract

The significant CO2 emissions that can be associated with cement manufacture is the primary cause of global warming. Thus, the authors and research groups are motivated by many factors to find long-term solutions to this problem. Geopolymer concrete is such type of concrete in which the primary binder has resulted from alkali activation of some source materials like fly ash, metakaoline, rice husk ash, and ground granulated blast furnace slag. Commonly, geopolymer concrete gives comparable mechanical strength properties to conventional concrete. The use of this type of concrete is restricted by the properties of the used source materials and the molar concentrations of the alkali activator. As a consequence, making investigations into the relevant structural behavior as a result of these variables are rich source of scientific research. The goal of this work is to provide a brief overview of the recent contributions that have dealt with the structural behavior of geopolymer concrete. The context of this paper was obtained to illustrate the main findings as well as the used source materials and some additional considerations.

References

Dattatreya J. K. and Rajamane N. P. (2011) “Flexural Behavior of Reinforced Geopolymer Concrete Beams,” International journal of civil and structural engineering, Vol. 2, No. 1, pp. 138-159.

Sarathi, D.P, Nath, P. and Sarker, P.K. (2014). “The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature”. Materials Design. Vol. 62, pp. 32-39. DOI : 10.1016/j.matdes.2014.05.001.

Sofi., A. and Phanikumar., B.R. (2015). “An experimental investigation on flexural behaviour of fibre-reinforced pond ash-modified concrete”. Ain Shams Engineering Journal. Vol. 6, pp. 1133-1142. DOI :10.1016/j.asej.2015.03.008.

Ambily, G., Umarani, R., Kapali, D and Iyer, N. (2014). “Development of ultra-high-performance geopolymer concrete.” Magazine of Concrete Research. Vol 66. pp. 82-89. DOI:10.1680/macr.13.00057.

Kumar, B.S.C., Ramesh, K. and Poluraju., P. (2017). “An Experimental Investigation on Flexural Behavior of GGBS and Metakaolin Based Geopolymer Concrete”. ARPN journal of engineering and applied sciences. Vol. 12, No. 7, pp. 2052-2062.

Bakharev T.( 2005). “Geopolymeric materials prepared using Class Fly ash and elevated temperature curing”. Cement and Concrete Research. Vol. 35, pp. 1224-1232. DOI:10.1016/j.cemconres.2004.06.031.

Kaur, K., and Chand, J., (2019). “Replacement of concrete by geopolymer concrete by using fly ash and GGBS”. International Journal of Innovative Technology and Exploring Engineering (IJITEE). Vol. 8, No. 6. DOI:10.35940/ijitee.l3676.1081219

Jeyasehar, C.A., Saravanan, G., Salahuddin, M. and Thirugnanasambandam., S. (2013). “Development of fly ash based geopolymer precast concrete elements”. Asian journal of civil engineering. Vol. 14, No. 4, pp. 605-615.

Chau-Khun, A and Abdullah, O.W. (2018). “Structural and material performance of geopolymer concrete: A review ”. Construction and Building Materials. Vol 186.pp. 90-102. DOI:10.1016/j.conbuildmat.2018.07.111.

Hardjito, D. and Rangan, B. V. (2005) “Development and Properties of Low-Calcium Fly Ash-Based Geopolymer Concrete,” Research Report, Faculty of Engineering, Curtin University of Technology.

Kumar B.S.H and K. Ramesh. (2018). "Analytical Study on Flexural Behaviour of Reinforced Geopolymer Concrete Beams by ANSYS." IOP Conf. Series: Materials Science and Engineering. Vol. 455, No. 1.

Rangan B. V. (2010) “Fly Ash-Based Geopolymer Concrete,” Proceedings of the International Workshop on Geopolymer Cement and Concrete, Allied Publishers Private Limited, 2010.

Provis, J.L., Deventer, V.J.S.J. (2009). “Geopolymers, structure, processing, properties and application’, Woodhead Publishing Limited. DOI:10.1533/9781845696382

Singh B., Ishwarya G., Gupta M., and Bhattacharyya S.K., (2015) “Geopolymer concrete: A review of some recent developments” Construction and Building Materials Vol. 85, pp. 78–90. DOI:10.1016/j.conbuildmat.2015.03.036.

Bakharev T. (2005). “Resistance of geopolymer materials to acid attack”. Cement and Concrete Research. Vol. 35, No. 4, pp. 658-670. DOI:10.1016/j.cemconres.2004.06.005.

Duxson, G. and Lukey, C. (2006). “Geopolymer technology the Current State of The Art,” Journal of Material Science, Vol. 42, No. 9, pp. 2917-2933. DOI:10.1007/s10853-006-0637-z

Varga G. (2007). “The Structure of Kaolinite and Metakaolinite,” Epitoanyag, Vol. 59, No. 1, pp. 6-9. DOI:10.14382/epitoanyag-jsbcm.2007.2.

Habert, G., De LacaillerieJ.B.D.E and Roussel, N. (2011). “An environmental evaluation of geopolymer based concrete production reviewing current research trends”. Journal of clean production. Vol. 11, pp. 1229-1238. DOI:10.1016/j.jclepro.2011.03.012

Islam A., Johnson U.A., Jumaat M.Z. and Bashar, I.I. (2014). “The development of compressive strength of ground granulated blast furnace slag-palm oil fuel ash-fly ash based geopolymer mortar”. Materials & Design, Vol. 56 pp. 833-841. DOI:10.1016/j.matdes.2013.11.080.

Davidovits, J. (1991). “Geopolymers: inorganic polymeric new materials,” Journal of Thermal Analysis, Vol. 37, , pp. 1633-1656. DOI:10.1007/bf01912193.

Yost, J.R., Radlinska, A., Ernst, S., Salera, M. and Martignetti, N.J. (2013). “Structural behavior of alkali activated fly ash concrete-Structural Testing and Experimental Findings”. Materials structures. Vol. 46, pp. 449-462. DOI:10.1617/s11527-012-9985-0

Li C, Sun H, and Li L.(2010) “A review the comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements” Cement and Concrete Research. Vol. No. 9., pp. 1341–1349. DOI:10.1016/j.cemconres.2010.03.020.

Ishwarya, B.S.G., Gupta, M. and Bhattacharyya, S.K. (2015). “Geopolymer concrete: A review of some recent developments”. Construction and building materials. Vol. 85, pp. 78-90. DOI:10.1016/j.conbuildmat.2015.03.036

Vaitkevicius V., Stuopys, A. and Ivanauskas, E., (2010) “ Preconditions for the application of petrasiunai “quarry dolomite screenings and dolomite powder in conventional and self-compacting concrete mixes". Engineering structers technology. Vol. 4, pp. 138-138. DOI:10.3846/skt.2010.18.

Pires, E. F.C., Limab, T.V., Marinhoa, F.J.V., De Vargas, A.S., Mounzer, E.C., Darwish, F.A.I. and Silva, F.J. (2019). “Physical nonlinearity of precast reinforced geopolymer concrete beams”.Journal of Materials Research and Technology .Vol. 8 No. 2, pp. 2083–2091. https://doi.org/10.1016/j.jmrt.2019.01.016.

Huseien, G.F., Sam, A.M. and Shah, K.W. (2019). “Utilizing spend garnets as sand replacement in alkali-activated mortars containing fly ash and GBFS”. Construction and Building Materials Vol. 225, pp. 132–145. DOI:10.1016/j.conbuildmat.2019.07.149.

Vijai, K., Kumutha, R., and Vishnuram, B.G. (2012). “Experimental Investigations on Mechanical Properties of Geopolymer Concrete Composites”. Asian Journal of Civil Engineering (Building and Housing). Vol. 13, No.1 pp.89-96. DOI:10.9790/1684-140305105109.

Komnitsas, K.A. (2011) “Potential of geopolymer technology towards green buildings and sustainable cities. International conf. on green buildings”. and cities”, Procedia Engineering, vol. 21, pp. 1023–1032. DOI:10.1016/j.proeng.2011.11.2108.

Pradip, N. and Sarker, P.K. (2014). “Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition”. Construction building materials. Vol. 66. Pp. 163-171. DOI:10.1016/j.conbuildmat.2014.05.080.

Kumar, Y.H., and Chandra, B.S. (2017). “Effect of Molarity on Compressive Strength of Geopolymer Mortar with GGBS and Metakaoline”. International Journal of Civil Engineering and Technology, Vol. 8, No. 4, pp. 935-944.

Kumar, Y.H, and Chandra, B.S. (2017). “Effect of Sodium Hydroxide and Sodium Silicate Solution on Compressive Strength of Metakaolin and GGBS Geopolymer”. International Journal of Civil Engineering and Technology, Vol. 8, No. 4, pp. 1905-1917.

Sofi D., Van Deventer J.S.J., Mendis P.A., Lukey G.C. (2006). “Engineering properties of inorganic polymer concretes (IPCs)”. Cement and Concrete Research. Vol. 37, pp. 251-257. DOI:10.1016/j.cemconres.2006.10.008.

Patil, S.G. and Manojkumar, (2013) “Factors Influencing Compressive Strength of Geopolymer Concrete”. International Journal of Research in Engineering and Technology. pp. 372-385. DOI:10.15623/ijret.2013.0213070.

Van Jaarsveld J.G.S., van Deventer J.S.J., Lukey G.C. (2002). “The effect of composition and temperature on the properties of fly ash and kaolinite based geopolymers”. Chemical Engineering Journal. Vol. 89 No. 13, pp. 63-73. DOI:10.1016/s1385-8947(02)00025-6.

Prachasaree, W., Limkatanyu, S., Hawa, A., and Samakrattakit, A. (2014). “Development of equivalent stress block parameters for fly-ash-based geopolymer concrete”. Arabic journal of scientific engineering. Vol. 39, No. 12, pp. 8549–8558. DOI:10.1007/s13369-014-1447-2.

Li C., Sun H. and Li, L. (2010). “A review the comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements” Cement concrete research. Vol. 40, pp. 1341–1349. DOI:10.1016/j.cemconres.2010.03.020.

Bakharev T. (2005). “Durability of geopolymer materials in sodium and magnesium sulfate solutions”. Cement and Concrete Research. Vol. 35 No. 6, pp. 1233-1246. DOI:10.1016/j.cemconres.2004.09.002.

Salim, B. (2011). “Effects of fly ash and dolomite powder on the properties of self-compacting concrete”. Construction building materials. Vol. 8, pp. 3301-3305. DOI:10.1016/j.conbuildmat.2011.03.018.

Chun LB, Sung KJ, Sang KT, Chae ST. (2008). “A study on the fundamental properties of concrete incorporating pond-ash in Korea”. 3rd International conf. on the sustainable concrete technology and structures sustainable concrete technology and structures in local climate and environmental conditions, Vietnam. pp. 401-408.

Gali S., Ayora, C.P., Alfonso, E.T, and Labrador, M. (2001). “Kinetics of dolomite–portlandite reaction Application to Portland cement concrete”. Cement Concrete Research. Vol. 6, pp :933-939. DOI:10.1016/s0008-8846(01)00499-9.

Dattatreya, J., Umarani. G., Kapali., R., and Nagesh, I., (2004). “Development of ultra-high-performance geopolymer concrete”. Magazine of Concrete Research..volume 66. No. 6 pp. 82-89. DOI:10.1680/macr.13.00057.

VenkataKiran, P. and Jawahar, G.J. (2017). “Flexural Studies on Fly Ash and GGBS Blended Reinforced Geopolymer Concrete Beams,” International Journal of Research and Scientific Innovation, Vol. 4, No. 8, pp. 91-95.

Palomo A., Grutzeck M.W., Blanco M.T. (1999). “Alkali activated Fly Ashes Cement for the Future”, Cement and Concrete Research. Vol. 29, pp. 1323-1329. DOI:10.1016/s0008-8846(98)00243-9.

Kumaravel, S. and Thirugnanasambandam, S. (2013) “Flexural behaviour of reinforced lowcalcium fly ash based geopolymer concrete beam”. Global journal of research engineering. Vol. 13, No. 8.

Kumaravel, S., Thirugnanasambandam, S. and Jeyasehar, C.A. (2014). “Flexural behavior of geopolymer concrete beams with GGBS”. IUP journal of structural engineering. Vol. 7, No. 1. pp. 45-54.

Saranya, P., Praveen, P. and Shashikala, A.P. (2020). “Behaviour of GGBS-dolomite geopolymer concrete beamcolumn joints under monotonic loading”. Structures.Vol. 25. DOI:10.1016/j.istruc.2020.02.021.

Shi C., and Jiminez F.A, (2002).“A. New cements for the 21st century the pursuits of an alternative to Portland cement”. Cement concrete research.Vol.32 pp. 865–879. DOI:10.1016/j.cemconres.2011.03.016.

Kumar, Y.H. and Kumar, S.C. (2017). “Study on Strength and Durability Parameters of Geopolymer Concrete With GGBS for 12M and 14M Alkali Activators,” ARPN Journal of Engineering and Applied Sciences, Vol. 12, No. 4, pp. 1202-1212.

Kumar, Y.H. and Keerty, V. (2017).“Experimental Studies on Properties of Geopolymer Concrete With GGBS and Fly Ash”. International Journal of Civil Engineering and Technology, Vol. 8, No. 1, pp. 602-609.

Chang, E. H., (2009). “Shear and Bond Behaviour of Reinforced Fly Ash-Based Geopolymer Concrete Beams”. Department of Civil Engineering. PHD Thesis. Curtin University of Technology.

Vecchio, F.J. (2000). “Disturbed Stress Field Model for Reinforced Concrete Formulation” Journal of Structural Engineering, Vol. 126 No. 9. pp. 1070–1077. DOI:10.1061/(asce)0733-9445(2000)126:9(1070).

Canbay, E. and Frosch, R.J. (2005). “Bond Strength of Lap-Spliced Bars”, ACI Structural Journal, Vol. 102 No.4, pp. 605–614. DOI:10.14359/14565.

Ambily.P.S, Madheswaran. C.K , Sharmila.S and Muthiah.S, (2011). “Experimental and analytical investigations on shear behavior of reinforced geopolymer concrete beams” Volume 2. No. 2.

Jeyasehar, C.A., Saravanan, G., Salahuddin and Thirugnanasambandam S. (2013). “Development Of Fly Ash Based Geopolymer Precast Concrete Elements” Asian Journal Of Civil Engineering (BHRC), Vol., 14 No., 4. Pp.607 – 615.

Park R, Pauley T. (1975) “Reinforced Concrete Structures”. John Wiley & Sons, New York. DOI:10.1002/9780470172834.

Hutagi, A and Khadiranaikar, R.B. (2016). “Flexural Behavior of Reinforced Geopolymer Concrete Beams”. International Conf. on Electrical, Electronics, and Optimization Techniques (ICEEOT). DOI:10.1109/iceeot.2016.7755347.

Yacob, N.S. (2016)“Shear Behavior Of Reinforced Fly Ash-Based Geopolymer Concrete”. Masters Theses. Presented to the Graduate Faculty of the Missouri University Of Science And Technology.

Kumar, B.S., Ramesh, K. and Poluraju, P., (2017). “An experimental investigation on flexural behavior of GGBS and Metakaolin based Geopolymer concrete”. ARPN Journal of Engineering and Applied Sciences. Vol. 12. pp. 2052-2062.

Maranan, G.B. , Manalo, A.C., Benmokrane, B., Karunasena, K and Mendis, P., (2017). “Shear Behavior of Geopolymer Concrete Beams Reinforced with GFRP Bars”. ACI Structural Journal, Vol. 114 No. 2. DOI:10.14359/51689150.

Srinivas, M.R, Kumar, Y.H., and Kumar, B.S.C., (2019). “Studies on Flexural Behavior of Geopolymer Concrete Beams with GGBS”. International Journal of Recent Technology and Engineering (IJRTE). Vol. 7.

Bhavana, P., and Srinivas, T. (2021). “Manufactured sand effect on flexural behavior of geopolymer RCC structural elements”. Seventh International Symposium On Negative Ions, Beams And Sources (NIBS 2020). DOI:10.1063/5.0058556.

Downloads

Published

2023-01-01

How to Cite

STRUCTURAL BEHAVIOR OF GEOPOLYMER REINFORCED CONCRETE BEAMS: A SHORT REVIEW. (2023). Journal of Engineering and Sustainable Development, 27(1), 80-94. https://doi.org/10.31272/jeasd.27.1.7